Home | History | Annotate | Line # | Download | only in npf
npf_ruleset.c revision 1.30.2.1
      1  1.30.2.1    tls /*	$NetBSD: npf_ruleset.c,v 1.30.2.1 2014/08/10 06:56:16 tls Exp $	*/
      2       1.1  rmind 
      3       1.1  rmind /*-
      4      1.17  rmind  * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
      5       1.1  rmind  * All rights reserved.
      6       1.1  rmind  *
      7       1.1  rmind  * This material is based upon work partially supported by The
      8       1.1  rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      9       1.1  rmind  *
     10       1.1  rmind  * Redistribution and use in source and binary forms, with or without
     11       1.1  rmind  * modification, are permitted provided that the following conditions
     12       1.1  rmind  * are met:
     13       1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     14       1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     15       1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     17       1.1  rmind  *    documentation and/or other materials provided with the distribution.
     18       1.1  rmind  *
     19       1.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1  rmind  */
     31       1.1  rmind 
     32       1.1  rmind /*
     33       1.1  rmind  * NPF ruleset module.
     34       1.1  rmind  */
     35       1.1  rmind 
     36       1.1  rmind #include <sys/cdefs.h>
     37  1.30.2.1    tls __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.30.2.1 2014/08/10 06:56:16 tls Exp $");
     38       1.1  rmind 
     39       1.1  rmind #include <sys/param.h>
     40      1.11  rmind #include <sys/types.h>
     41       1.1  rmind 
     42      1.20  rmind #include <sys/atomic.h>
     43       1.1  rmind #include <sys/kmem.h>
     44       1.1  rmind #include <sys/queue.h>
     45      1.17  rmind #include <sys/mbuf.h>
     46       1.1  rmind #include <sys/types.h>
     47       1.1  rmind 
     48      1.17  rmind #include <net/bpf.h>
     49      1.20  rmind #include <net/bpfjit.h>
     50       1.3  rmind #include <net/pfil.h>
     51       1.1  rmind #include <net/if.h>
     52       1.1  rmind 
     53       1.1  rmind #include "npf_impl.h"
     54       1.1  rmind 
     55       1.4  rmind struct npf_ruleset {
     56      1.18  rmind 	/*
     57      1.18  rmind 	 * - List of all rules.
     58      1.18  rmind 	 * - Dynamic (i.e. named) rules.
     59      1.18  rmind 	 * - G/C list for convenience.
     60      1.18  rmind 	 */
     61      1.17  rmind 	LIST_HEAD(, npf_rule)	rs_all;
     62      1.17  rmind 	LIST_HEAD(, npf_rule)	rs_dynamic;
     63      1.18  rmind 	LIST_HEAD(, npf_rule)	rs_gc;
     64      1.17  rmind 
     65      1.19  rmind 	/* Unique ID counter. */
     66      1.19  rmind 	uint64_t		rs_idcnt;
     67      1.19  rmind 
     68      1.17  rmind 	/* Number of array slots and active rules. */
     69      1.17  rmind 	u_int			rs_slots;
     70      1.17  rmind 	u_int			rs_nitems;
     71      1.17  rmind 
     72      1.17  rmind 	/* Array of ordered rules. */
     73      1.17  rmind 	npf_rule_t *		rs_rules[];
     74       1.4  rmind };
     75       1.4  rmind 
     76       1.1  rmind struct npf_rule {
     77      1.17  rmind 	/* Attributes, interface and skip slot. */
     78       1.4  rmind 	uint32_t		r_attr;
     79       1.4  rmind 	u_int			r_ifid;
     80      1.17  rmind 	u_int			r_skip_to;
     81      1.17  rmind 
     82      1.17  rmind 	/* Code to process, if any. */
     83      1.17  rmind 	int			r_type;
     84      1.27  rmind 	bpfjit_func_t		r_jcode;
     85      1.17  rmind 	void *			r_code;
     86      1.17  rmind 	size_t			r_clen;
     87      1.17  rmind 
     88      1.17  rmind 	/* NAT policy (optional), rule procedure and subset. */
     89      1.17  rmind 	npf_natpolicy_t *	r_natp;
     90       1.4  rmind 	npf_rproc_t *		r_rproc;
     91      1.17  rmind 
     92      1.17  rmind 	/* Rule priority: (highest) 1, 2 ... n (lowest). */
     93      1.17  rmind 	pri_t			r_priority;
     94      1.17  rmind 
     95      1.17  rmind 	/*
     96      1.17  rmind 	 * Dynamic group: subset queue and a dynamic group list entry.
     97      1.17  rmind 	 * Dynamic rule: entry and the parent rule (the group).
     98      1.17  rmind 	 */
     99      1.17  rmind 	union {
    100      1.17  rmind 		TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
    101      1.17  rmind 		TAILQ_ENTRY(npf_rule)	r_entry;
    102      1.17  rmind 	} /* C11 */;
    103      1.17  rmind 	union {
    104      1.17  rmind 		LIST_ENTRY(npf_rule)	r_dentry;
    105      1.17  rmind 		npf_rule_t *		r_parent;
    106      1.17  rmind 	} /* C11 */;
    107      1.17  rmind 
    108      1.19  rmind 	/* Rule ID and the original dictionary. */
    109      1.19  rmind 	uint64_t		r_id;
    110      1.18  rmind 	prop_dictionary_t	r_dict;
    111      1.18  rmind 
    112      1.17  rmind 	/* Rule name and all-list entry. */
    113      1.17  rmind 	char			r_name[NPF_RULE_MAXNAMELEN];
    114      1.17  rmind 	LIST_ENTRY(npf_rule)	r_aentry;
    115      1.17  rmind 
    116      1.17  rmind 	/* Key (optional). */
    117      1.17  rmind 	uint8_t			r_key[NPF_RULE_MAXKEYLEN];
    118       1.1  rmind };
    119       1.1  rmind 
    120  1.30.2.1    tls /*
    121  1.30.2.1    tls  * Private attributes - must be in the NPF_RULE_PRIVMASK range.
    122  1.30.2.1    tls  */
    123  1.30.2.1    tls #define	NPF_RULE_KEEPNAT	(0x01000000 & NPF_RULE_PRIVMASK)
    124  1.30.2.1    tls 
    125      1.17  rmind #define	NPF_DYNAMIC_GROUP_P(attr) \
    126      1.17  rmind     (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
    127      1.17  rmind 
    128      1.19  rmind #define	NPF_DYNAMIC_RULE_P(attr) \
    129      1.19  rmind     (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
    130      1.19  rmind 
    131       1.1  rmind npf_ruleset_t *
    132      1.17  rmind npf_ruleset_create(size_t slots)
    133       1.1  rmind {
    134      1.17  rmind 	size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
    135       1.1  rmind 	npf_ruleset_t *rlset;
    136       1.1  rmind 
    137      1.17  rmind 	rlset = kmem_zalloc(len, KM_SLEEP);
    138      1.17  rmind 	LIST_INIT(&rlset->rs_dynamic);
    139      1.17  rmind 	LIST_INIT(&rlset->rs_all);
    140      1.19  rmind 	LIST_INIT(&rlset->rs_gc);
    141      1.19  rmind 	rlset->rs_slots = slots;
    142      1.19  rmind 
    143       1.1  rmind 	return rlset;
    144       1.1  rmind }
    145       1.1  rmind 
    146      1.17  rmind static void
    147      1.17  rmind npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
    148      1.17  rmind {
    149      1.17  rmind 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
    150      1.17  rmind 		LIST_REMOVE(rl, r_dentry);
    151      1.17  rmind 	}
    152      1.19  rmind 	if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
    153      1.17  rmind 		npf_rule_t *rg = rl->r_parent;
    154      1.17  rmind 		TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
    155      1.17  rmind 	}
    156      1.17  rmind 	LIST_REMOVE(rl, r_aentry);
    157      1.17  rmind }
    158      1.17  rmind 
    159       1.1  rmind void
    160       1.1  rmind npf_ruleset_destroy(npf_ruleset_t *rlset)
    161       1.1  rmind {
    162      1.17  rmind 	size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
    163       1.1  rmind 	npf_rule_t *rl;
    164       1.1  rmind 
    165      1.17  rmind 	while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
    166      1.17  rmind 		npf_ruleset_unlink(rlset, rl);
    167       1.1  rmind 		npf_rule_free(rl);
    168       1.1  rmind 	}
    169      1.17  rmind 	KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
    170      1.18  rmind 	KASSERT(LIST_EMPTY(&rlset->rs_gc));
    171      1.17  rmind 	kmem_free(rlset, len);
    172       1.1  rmind }
    173       1.1  rmind 
    174       1.1  rmind /*
    175       1.1  rmind  * npf_ruleset_insert: insert the rule into the specified ruleset.
    176       1.1  rmind  */
    177       1.1  rmind void
    178       1.1  rmind npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
    179       1.1  rmind {
    180      1.17  rmind 	u_int n = rlset->rs_nitems;
    181      1.17  rmind 
    182      1.17  rmind 	KASSERT(n < rlset->rs_slots);
    183      1.17  rmind 
    184      1.17  rmind 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
    185      1.17  rmind 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
    186      1.17  rmind 		LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
    187      1.24  rmind 	} else {
    188      1.24  rmind 		KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
    189      1.24  rmind 		rl->r_attr &= ~NPF_RULE_DYNAMIC;
    190      1.17  rmind 	}
    191      1.17  rmind 
    192      1.17  rmind 	rlset->rs_rules[n] = rl;
    193      1.17  rmind 	rlset->rs_nitems++;
    194      1.17  rmind 
    195      1.17  rmind 	if (rl->r_skip_to < ++n) {
    196      1.17  rmind 		rl->r_skip_to = n;
    197      1.17  rmind 	}
    198      1.17  rmind }
    199      1.17  rmind 
    200      1.17  rmind static npf_rule_t *
    201      1.17  rmind npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
    202      1.17  rmind {
    203      1.17  rmind 	npf_rule_t *rl;
    204      1.17  rmind 
    205      1.17  rmind 	KASSERT(npf_config_locked_p());
    206      1.17  rmind 
    207      1.17  rmind 	LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
    208      1.17  rmind 		KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
    209      1.17  rmind 		if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
    210      1.17  rmind 			break;
    211      1.17  rmind 	}
    212      1.17  rmind 	return rl;
    213      1.17  rmind }
    214      1.17  rmind 
    215      1.17  rmind int
    216      1.17  rmind npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
    217      1.17  rmind {
    218      1.17  rmind 	npf_rule_t *rg, *it;
    219      1.17  rmind 	pri_t priocmd;
    220      1.17  rmind 
    221      1.17  rmind 	rg = npf_ruleset_lookup(rlset, rname);
    222      1.17  rmind 	if (rg == NULL) {
    223      1.19  rmind 		return ESRCH;
    224      1.19  rmind 	}
    225      1.19  rmind 	if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
    226      1.19  rmind 		return EINVAL;
    227      1.17  rmind 	}
    228      1.17  rmind 
    229      1.19  rmind 	/* Dynamic rule - assign a unique ID and save the parent. */
    230      1.19  rmind 	rl->r_id = ++rlset->rs_idcnt;
    231      1.17  rmind 	rl->r_parent = rg;
    232      1.17  rmind 
    233      1.17  rmind 	/*
    234      1.17  rmind 	 * Rule priority: (highest) 1, 2 ... n (lowest).
    235      1.17  rmind 	 * Negative priority indicates an operation and is reset to zero.
    236      1.17  rmind 	 */
    237      1.17  rmind 	if ((priocmd = rl->r_priority) < 0) {
    238      1.17  rmind 		rl->r_priority = 0;
    239      1.17  rmind 	}
    240      1.17  rmind 
    241      1.17  rmind 	switch (priocmd) {
    242      1.17  rmind 	case NPF_PRI_FIRST:
    243      1.17  rmind 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
    244      1.17  rmind 			if (rl->r_priority <= it->r_priority)
    245      1.17  rmind 				break;
    246      1.17  rmind 		}
    247      1.17  rmind 		if (it) {
    248      1.17  rmind 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
    249      1.17  rmind 		} else {
    250      1.17  rmind 			TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
    251      1.17  rmind 		}
    252      1.17  rmind 		break;
    253      1.17  rmind 	case NPF_PRI_LAST:
    254      1.17  rmind 	default:
    255      1.17  rmind 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
    256      1.17  rmind 			if (rl->r_priority < it->r_priority)
    257      1.17  rmind 				break;
    258      1.17  rmind 		}
    259      1.17  rmind 		if (it) {
    260      1.17  rmind 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
    261      1.17  rmind 		} else {
    262      1.17  rmind 			TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
    263      1.17  rmind 		}
    264      1.17  rmind 		break;
    265      1.17  rmind 	}
    266      1.17  rmind 
    267      1.17  rmind 	/* Finally, add into the all-list. */
    268      1.17  rmind 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
    269      1.17  rmind 	return 0;
    270      1.17  rmind }
    271      1.17  rmind 
    272      1.18  rmind int
    273      1.19  rmind npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
    274      1.17  rmind {
    275      1.17  rmind 	npf_rule_t *rg, *rl;
    276      1.17  rmind 
    277      1.17  rmind 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
    278      1.19  rmind 		return ESRCH;
    279      1.17  rmind 	}
    280      1.17  rmind 	TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
    281      1.24  rmind 		KASSERT(rl->r_parent == rg);
    282      1.24  rmind 
    283      1.17  rmind 		/* Compare ID.  On match, remove and return. */
    284      1.19  rmind 		if (rl->r_id == id) {
    285      1.17  rmind 			npf_ruleset_unlink(rlset, rl);
    286      1.18  rmind 			LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
    287      1.19  rmind 			return 0;
    288      1.17  rmind 		}
    289      1.17  rmind 	}
    290      1.19  rmind 	return ENOENT;
    291      1.17  rmind }
    292      1.17  rmind 
    293      1.18  rmind int
    294      1.17  rmind npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
    295      1.17  rmind     const void *key, size_t len)
    296      1.17  rmind {
    297      1.17  rmind 	npf_rule_t *rg, *rl;
    298       1.1  rmind 
    299      1.17  rmind 	KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
    300      1.17  rmind 
    301      1.17  rmind 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
    302      1.19  rmind 		return ESRCH;
    303      1.17  rmind 	}
    304      1.18  rmind 
    305      1.17  rmind 	/* Find the last in the list. */
    306      1.17  rmind 	TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
    307      1.24  rmind 		KASSERT(rl->r_parent == rg);
    308      1.24  rmind 
    309      1.17  rmind 		/* Compare the key.  On match, remove and return. */
    310      1.17  rmind 		if (memcmp(rl->r_key, key, len) == 0) {
    311      1.17  rmind 			npf_ruleset_unlink(rlset, rl);
    312      1.18  rmind 			LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
    313      1.19  rmind 			return 0;
    314      1.17  rmind 		}
    315       1.1  rmind 	}
    316      1.19  rmind 	return ENOENT;
    317      1.18  rmind }
    318      1.18  rmind 
    319      1.18  rmind prop_dictionary_t
    320      1.18  rmind npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
    321      1.18  rmind {
    322      1.18  rmind 	prop_dictionary_t rldict;
    323      1.18  rmind 	prop_array_t rules;
    324      1.18  rmind 	npf_rule_t *rg, *rl;
    325      1.18  rmind 
    326      1.18  rmind 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
    327      1.18  rmind 		return NULL;
    328      1.18  rmind 	}
    329      1.18  rmind 	if ((rldict = prop_dictionary_create()) == NULL) {
    330      1.18  rmind 		return NULL;
    331      1.18  rmind 	}
    332      1.18  rmind 	if ((rules = prop_array_create()) == NULL) {
    333      1.18  rmind 		prop_object_release(rldict);
    334      1.18  rmind 		return NULL;
    335      1.18  rmind 	}
    336      1.18  rmind 
    337      1.18  rmind 	TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
    338      1.24  rmind 		KASSERT(rl->r_parent == rg);
    339      1.18  rmind 		if (rl->r_dict && !prop_array_add(rules, rl->r_dict)) {
    340      1.18  rmind 			prop_object_release(rldict);
    341      1.19  rmind 			prop_object_release(rules);
    342      1.18  rmind 			return NULL;
    343      1.18  rmind 		}
    344      1.18  rmind 	}
    345      1.19  rmind 
    346      1.18  rmind 	if (!prop_dictionary_set(rldict, "rules", rules)) {
    347      1.18  rmind 		prop_object_release(rldict);
    348      1.18  rmind 		rldict = NULL;
    349      1.18  rmind 	}
    350      1.18  rmind 	prop_object_release(rules);
    351      1.18  rmind 	return rldict;
    352      1.18  rmind }
    353      1.18  rmind 
    354      1.18  rmind int
    355      1.18  rmind npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
    356      1.18  rmind {
    357      1.18  rmind 	npf_rule_t *rg, *rl;
    358      1.18  rmind 
    359      1.18  rmind 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
    360      1.19  rmind 		return ESRCH;
    361      1.18  rmind 	}
    362      1.18  rmind 	while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
    363      1.24  rmind 		KASSERT(rl->r_parent == rg);
    364      1.18  rmind 		npf_ruleset_unlink(rlset, rl);
    365      1.18  rmind 		LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
    366      1.18  rmind 	}
    367      1.18  rmind 	return 0;
    368      1.18  rmind }
    369      1.18  rmind 
    370      1.18  rmind void
    371      1.18  rmind npf_ruleset_gc(npf_ruleset_t *rlset)
    372      1.18  rmind {
    373      1.18  rmind 	npf_rule_t *rl;
    374      1.18  rmind 
    375      1.18  rmind 	while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
    376      1.18  rmind 		LIST_REMOVE(rl, r_aentry);
    377      1.18  rmind 		npf_rule_free(rl);
    378      1.18  rmind 	}
    379      1.17  rmind }
    380      1.17  rmind 
    381      1.17  rmind /*
    382  1.30.2.1    tls  * npf_ruleset_cmpnat: find a matching NAT policy in the ruleset.
    383  1.30.2.1    tls  */
    384  1.30.2.1    tls static inline npf_rule_t *
    385  1.30.2.1    tls npf_ruleset_cmpnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
    386  1.30.2.1    tls {
    387  1.30.2.1    tls 	npf_rule_t *rl;
    388  1.30.2.1    tls 
    389  1.30.2.1    tls 	/* Find a matching NAT policy in the old ruleset. */
    390  1.30.2.1    tls 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
    391  1.30.2.1    tls 		if (rl->r_natp && npf_nat_cmppolicy(rl->r_natp, mnp))
    392  1.30.2.1    tls 			break;
    393  1.30.2.1    tls 	}
    394  1.30.2.1    tls 	return rl;
    395  1.30.2.1    tls }
    396  1.30.2.1    tls 
    397  1.30.2.1    tls /*
    398  1.30.2.1    tls  * npf_ruleset_reload: prepare the new ruleset by scanning the active
    399  1.30.2.1    tls  * ruleset and 1) sharing the dynamic rules 2) sharing NAT policies.
    400      1.17  rmind  *
    401  1.30.2.1    tls  * => The active (old) ruleset should be exclusively locked.
    402      1.17  rmind  */
    403      1.17  rmind void
    404  1.30.2.1    tls npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset)
    405      1.17  rmind {
    406  1.30.2.1    tls 	npf_rule_t *rg, *rl;
    407  1.30.2.1    tls 	uint64_t nid = 0;
    408      1.17  rmind 
    409      1.17  rmind 	KASSERT(npf_config_locked_p());
    410      1.17  rmind 
    411  1.30.2.1    tls 	/*
    412  1.30.2.1    tls 	 * Scan the dynamic rules and share (migrate) if needed.
    413  1.30.2.1    tls 	 */
    414  1.30.2.1    tls 	LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
    415  1.30.2.1    tls 		npf_rule_t *actrg;
    416      1.18  rmind 
    417  1.30.2.1    tls 		/* Look for a dynamic ruleset group with such name. */
    418  1.30.2.1    tls 		actrg = npf_ruleset_lookup(oldset, rg->r_name);
    419  1.30.2.1    tls 		if (actrg == NULL) {
    420      1.17  rmind 			continue;
    421      1.17  rmind 		}
    422      1.18  rmind 
    423      1.18  rmind 		/*
    424      1.24  rmind 		 * Copy the list-head structure.  This is necessary because
    425      1.24  rmind 		 * the rules are still active and therefore accessible for
    426      1.24  rmind 		 * inspection via the old ruleset.
    427      1.18  rmind 		 */
    428  1.30.2.1    tls 		memcpy(&rg->r_subset, &actrg->r_subset, sizeof(rg->r_subset));
    429      1.19  rmind 		TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
    430      1.24  rmind 			/*
    431      1.24  rmind 			 * We can safely migrate to the new all-rule list
    432      1.24  rmind 			 * and re-set the parent rule, though.
    433      1.24  rmind 			 */
    434      1.18  rmind 			LIST_REMOVE(rl, r_aentry);
    435  1.30.2.1    tls 			LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
    436      1.19  rmind 			rl->r_parent = rg;
    437      1.18  rmind 		}
    438       1.1  rmind 	}
    439      1.19  rmind 
    440  1.30.2.1    tls 	/*
    441  1.30.2.1    tls 	 * Scan all rules in the new ruleset and share NAT policies.
    442  1.30.2.1    tls 	 * Also, assign a unique ID for each policy here.
    443  1.30.2.1    tls 	 */
    444  1.30.2.1    tls 	LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
    445  1.30.2.1    tls 		npf_natpolicy_t *np;
    446  1.30.2.1    tls 		npf_rule_t *actrl;
    447       1.1  rmind 
    448  1.30.2.1    tls 		/* Does the rule have a NAT policy associated? */
    449  1.30.2.1    tls 		if ((np = rl->r_natp) == NULL) {
    450  1.30.2.1    tls 			continue;
    451  1.30.2.1    tls 		}
    452       1.1  rmind 
    453  1.30.2.1    tls 		/* Does it match with any policy in the active ruleset? */
    454  1.30.2.1    tls 		if ((actrl = npf_ruleset_cmpnat(oldset, np)) == NULL) {
    455  1.30.2.1    tls 			npf_nat_setid(np, ++nid);
    456  1.30.2.1    tls 			continue;
    457  1.30.2.1    tls 		}
    458  1.30.2.1    tls 
    459  1.30.2.1    tls 		/*
    460  1.30.2.1    tls 		 * Inherit the matching NAT policy and check other ones
    461  1.30.2.1    tls 		 * in the new ruleset for sharing the portmap.
    462  1.30.2.1    tls 		 */
    463  1.30.2.1    tls 		rl->r_natp = actrl->r_natp;
    464  1.30.2.1    tls 		npf_ruleset_sharepm(newset, rl->r_natp);
    465  1.30.2.1    tls 		npf_nat_setid(rl->r_natp, ++nid);
    466  1.30.2.1    tls 
    467  1.30.2.1    tls 		/*
    468  1.30.2.1    tls 		 * Finally, mark the active rule to not destroy its NAT
    469  1.30.2.1    tls 		 * policy later as we inherited it (but the rule must be
    470  1.30.2.1    tls 		 * kept active for now).  Destroy the new/unused policy.
    471  1.30.2.1    tls 		 */
    472  1.30.2.1    tls 		actrl->r_attr |= NPF_RULE_KEEPNAT;
    473  1.30.2.1    tls 		npf_nat_freepolicy(np);
    474       1.4  rmind 	}
    475  1.30.2.1    tls 
    476  1.30.2.1    tls 	/* Inherit the ID counter. */
    477  1.30.2.1    tls 	newset->rs_idcnt = oldset->rs_idcnt;
    478       1.1  rmind }
    479       1.1  rmind 
    480       1.6  rmind npf_rule_t *
    481       1.6  rmind npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
    482       1.6  rmind {
    483       1.6  rmind 	npf_natpolicy_t *np;
    484       1.6  rmind 	npf_rule_t *rl;
    485       1.6  rmind 
    486       1.6  rmind 	/* Find a matching NAT policy in the old ruleset. */
    487      1.17  rmind 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
    488       1.6  rmind 		/*
    489       1.6  rmind 		 * NAT policy might not yet be set during the creation of
    490       1.6  rmind 		 * the ruleset (in such case, rule is for our policy), or
    491       1.6  rmind 		 * policies might be equal due to rule exchange on reload.
    492       1.6  rmind 		 */
    493       1.6  rmind 		np = rl->r_natp;
    494       1.6  rmind 		if (np == NULL || np == mnp)
    495       1.6  rmind 			continue;
    496       1.6  rmind 		if (npf_nat_sharepm(np, mnp))
    497       1.6  rmind 			break;
    498       1.6  rmind 	}
    499       1.6  rmind 	return rl;
    500       1.6  rmind }
    501       1.6  rmind 
    502  1.30.2.1    tls npf_natpolicy_t *
    503  1.30.2.1    tls npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id)
    504      1.13  rmind {
    505      1.13  rmind 	npf_rule_t *rl;
    506      1.13  rmind 
    507      1.17  rmind 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
    508  1.30.2.1    tls 		npf_natpolicy_t *np = rl->r_natp;
    509  1.30.2.1    tls 		if (np && npf_nat_getid(np) == id) {
    510  1.30.2.1    tls 			return np;
    511      1.13  rmind 		}
    512      1.13  rmind 	}
    513  1.30.2.1    tls 	return NULL;
    514      1.13  rmind }
    515      1.13  rmind 
    516      1.13  rmind /*
    517  1.30.2.1    tls  * npf_ruleset_freealg: inspect the ruleset and disassociate specified
    518  1.30.2.1    tls  * ALG from all NAT entries using it.
    519       1.1  rmind  */
    520       1.4  rmind void
    521  1.30.2.1    tls npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
    522       1.1  rmind {
    523  1.30.2.1    tls 	npf_rule_t *rl;
    524  1.30.2.1    tls 	npf_natpolicy_t *np;
    525      1.30  rmind 
    526  1.30.2.1    tls 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
    527  1.30.2.1    tls 		if ((np = rl->r_natp) != NULL) {
    528  1.30.2.1    tls 			npf_nat_freealg(np, alg);
    529       1.4  rmind 		}
    530       1.1  rmind 	}
    531       1.4  rmind }
    532       1.4  rmind 
    533       1.1  rmind /*
    534      1.25  rmind  * npf_rule_alloc: allocate a rule and initialise it.
    535       1.1  rmind  */
    536       1.4  rmind npf_rule_t *
    537      1.17  rmind npf_rule_alloc(prop_dictionary_t rldict)
    538       1.1  rmind {
    539       1.4  rmind 	npf_rule_t *rl;
    540       1.7  rmind 	const char *rname;
    541       1.1  rmind 
    542       1.4  rmind 	/* Allocate a rule structure. */
    543      1.11  rmind 	rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
    544      1.17  rmind 	TAILQ_INIT(&rl->r_subset);
    545       1.4  rmind 	rl->r_natp = NULL;
    546       1.4  rmind 
    547      1.11  rmind 	/* Name (optional) */
    548       1.7  rmind 	if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
    549      1.17  rmind 		strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
    550       1.7  rmind 	} else {
    551       1.7  rmind 		rl->r_name[0] = '\0';
    552       1.7  rmind 	}
    553       1.7  rmind 
    554      1.11  rmind 	/* Attributes, priority and interface ID (optional). */
    555       1.7  rmind 	prop_dictionary_get_uint32(rldict, "attributes", &rl->r_attr);
    556       1.7  rmind 	prop_dictionary_get_int32(rldict, "priority", &rl->r_priority);
    557  1.30.2.1    tls 	rl->r_attr &= ~NPF_RULE_PRIVMASK;
    558      1.26  rmind 
    559      1.26  rmind 	if (prop_dictionary_get_cstring_nocopy(rldict, "interface", &rname)) {
    560      1.26  rmind 		if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
    561      1.26  rmind 			kmem_free(rl, sizeof(npf_rule_t));
    562      1.26  rmind 			return NULL;
    563      1.26  rmind 		}
    564      1.26  rmind 	} else {
    565      1.26  rmind 		rl->r_ifid = 0;
    566      1.26  rmind 	}
    567       1.4  rmind 
    568      1.17  rmind 	/* Get the skip-to index.  No need to validate it. */
    569      1.17  rmind 	prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
    570      1.17  rmind 
    571      1.17  rmind 	/* Key (optional). */
    572      1.17  rmind 	prop_object_t obj = prop_dictionary_get(rldict, "key");
    573      1.17  rmind 	const void *key = prop_data_data_nocopy(obj);
    574      1.17  rmind 
    575      1.17  rmind 	if (key) {
    576      1.17  rmind 		size_t len = prop_data_size(obj);
    577      1.17  rmind 		if (len > NPF_RULE_MAXKEYLEN) {
    578      1.17  rmind 			kmem_free(rl, sizeof(npf_rule_t));
    579      1.17  rmind 			return NULL;
    580      1.17  rmind 		}
    581      1.17  rmind 		memcpy(rl->r_key, key, len);
    582       1.4  rmind 	}
    583      1.18  rmind 
    584      1.19  rmind 	if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
    585      1.18  rmind 		rl->r_dict = prop_dictionary_copy(rldict);
    586      1.18  rmind 	}
    587      1.18  rmind 
    588      1.17  rmind 	return rl;
    589      1.17  rmind }
    590      1.17  rmind 
    591      1.17  rmind /*
    592      1.17  rmind  * npf_rule_setcode: assign filter code to the rule.
    593      1.17  rmind  *
    594      1.20  rmind  * => The code must be validated by the caller.
    595      1.20  rmind  * => JIT compilation may be performed here.
    596      1.17  rmind  */
    597      1.17  rmind void
    598      1.17  rmind npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
    599      1.17  rmind {
    600      1.25  rmind 	KASSERT(type == NPF_CODE_BPF);
    601      1.28  rmind 
    602      1.28  rmind 	if ((rl->r_jcode = npf_bpf_compile(code, size)) == NULL) {
    603      1.28  rmind 		rl->r_code = code;
    604      1.28  rmind 		rl->r_clen = size;
    605      1.28  rmind 	} else {
    606      1.24  rmind 		rl->r_code = NULL;
    607      1.20  rmind 	}
    608      1.28  rmind 	rl->r_type = type;
    609      1.17  rmind }
    610      1.17  rmind 
    611      1.17  rmind /*
    612      1.17  rmind  * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
    613      1.17  rmind  */
    614      1.17  rmind void
    615      1.17  rmind npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
    616      1.17  rmind {
    617      1.17  rmind 	npf_rproc_acquire(rp);
    618       1.6  rmind 	rl->r_rproc = rp;
    619       1.1  rmind }
    620       1.1  rmind 
    621       1.1  rmind /*
    622       1.1  rmind  * npf_rule_free: free the specified rule.
    623       1.1  rmind  */
    624       1.1  rmind void
    625       1.1  rmind npf_rule_free(npf_rule_t *rl)
    626       1.1  rmind {
    627       1.4  rmind 	npf_natpolicy_t *np = rl->r_natp;
    628       1.4  rmind 	npf_rproc_t *rp = rl->r_rproc;
    629       1.1  rmind 
    630  1.30.2.1    tls 	if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
    631       1.4  rmind 		/* Free NAT policy. */
    632       1.4  rmind 		npf_nat_freepolicy(np);
    633       1.4  rmind 	}
    634       1.4  rmind 	if (rp) {
    635       1.6  rmind 		/* Release rule procedure. */
    636       1.4  rmind 		npf_rproc_release(rp);
    637       1.4  rmind 	}
    638      1.17  rmind 	if (rl->r_code) {
    639      1.20  rmind 		/* Free byte-code. */
    640      1.17  rmind 		kmem_free(rl->r_code, rl->r_clen);
    641       1.1  rmind 	}
    642      1.20  rmind 	if (rl->r_jcode) {
    643      1.20  rmind 		/* Free JIT code. */
    644      1.28  rmind 		bpf_jit_freecode(rl->r_jcode);
    645      1.20  rmind 	}
    646      1.18  rmind 	if (rl->r_dict) {
    647      1.18  rmind 		/* Destroy the dictionary. */
    648      1.18  rmind 		prop_object_release(rl->r_dict);
    649      1.18  rmind 	}
    650       1.4  rmind 	kmem_free(rl, sizeof(npf_rule_t));
    651       1.1  rmind }
    652       1.1  rmind 
    653       1.1  rmind /*
    654      1.19  rmind  * npf_rule_getid: return the unique ID of a rule.
    655      1.10  rmind  * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
    656       1.1  rmind  * npf_rule_getnat: get NAT policy assigned to the rule.
    657       1.1  rmind  */
    658       1.1  rmind 
    659      1.19  rmind uint64_t
    660      1.19  rmind npf_rule_getid(const npf_rule_t *rl)
    661      1.19  rmind {
    662      1.19  rmind 	KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
    663      1.19  rmind 	return rl->r_id;
    664      1.19  rmind }
    665      1.19  rmind 
    666      1.10  rmind npf_rproc_t *
    667      1.30  rmind npf_rule_getrproc(const npf_rule_t *rl)
    668      1.10  rmind {
    669      1.10  rmind 	npf_rproc_t *rp = rl->r_rproc;
    670      1.10  rmind 
    671      1.10  rmind 	if (rp) {
    672      1.10  rmind 		npf_rproc_acquire(rp);
    673      1.10  rmind 	}
    674      1.10  rmind 	return rp;
    675      1.10  rmind }
    676      1.10  rmind 
    677       1.1  rmind npf_natpolicy_t *
    678       1.1  rmind npf_rule_getnat(const npf_rule_t *rl)
    679       1.1  rmind {
    680       1.4  rmind 	return rl->r_natp;
    681       1.1  rmind }
    682       1.1  rmind 
    683       1.4  rmind /*
    684       1.4  rmind  * npf_rule_setnat: assign NAT policy to the rule and insert into the
    685       1.4  rmind  * NAT policy list in the ruleset.
    686       1.4  rmind  */
    687       1.1  rmind void
    688       1.1  rmind npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
    689       1.1  rmind {
    690       1.4  rmind 	KASSERT(rl->r_natp == NULL);
    691       1.4  rmind 	rl->r_natp = np;
    692       1.1  rmind }
    693       1.1  rmind 
    694      1.17  rmind /*
    695      1.17  rmind  * npf_rule_inspect: match the interface, direction and run the filter code.
    696      1.29  rmind  * Returns true if rule matches and false otherwise.
    697      1.17  rmind  */
    698      1.17  rmind static inline bool
    699      1.29  rmind npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
    700      1.29  rmind     const int di_mask, const u_int ifid)
    701      1.17  rmind {
    702      1.17  rmind 	/* Match the interface. */
    703      1.29  rmind 	if (rl->r_ifid && rl->r_ifid != ifid) {
    704      1.17  rmind 		return false;
    705      1.17  rmind 	}
    706      1.17  rmind 
    707      1.17  rmind 	/* Match the direction. */
    708      1.17  rmind 	if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
    709      1.17  rmind 		if ((rl->r_attr & di_mask) == 0)
    710      1.17  rmind 			return false;
    711      1.17  rmind 	}
    712      1.17  rmind 
    713      1.24  rmind 	/* Any code? */
    714      1.24  rmind 	if (rl->r_jcode == rl->r_code) {
    715      1.24  rmind 		KASSERT(rl->r_jcode == NULL);
    716      1.24  rmind 		KASSERT(rl->r_code == NULL);
    717      1.17  rmind 		return true;
    718      1.17  rmind 	}
    719      1.25  rmind 	KASSERT(rl->r_type == NPF_CODE_BPF);
    720      1.29  rmind 	return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
    721      1.17  rmind }
    722      1.17  rmind 
    723      1.17  rmind /*
    724      1.17  rmind  * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
    725      1.17  rmind  * This is only for the dynamic rules.  Subrules cannot have nested rules.
    726      1.17  rmind  */
    727      1.17  rmind static npf_rule_t *
    728      1.29  rmind npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args,
    729      1.29  rmind     const int di_mask, const u_int ifid)
    730       1.7  rmind {
    731      1.17  rmind 	npf_rule_t *final_rl = NULL, *rl;
    732      1.17  rmind 
    733      1.17  rmind 	KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
    734       1.7  rmind 
    735      1.17  rmind 	TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
    736      1.29  rmind 		if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
    737       1.7  rmind 			continue;
    738      1.17  rmind 		}
    739      1.17  rmind 		if (rl->r_attr & NPF_RULE_FINAL) {
    740      1.17  rmind 			return rl;
    741      1.17  rmind 		}
    742      1.17  rmind 		final_rl = rl;
    743       1.7  rmind 	}
    744      1.17  rmind 	return final_rl;
    745       1.7  rmind }
    746       1.1  rmind 
    747       1.1  rmind /*
    748       1.7  rmind  * npf_ruleset_inspect: inspect the packet against the given ruleset.
    749       1.1  rmind  *
    750      1.25  rmind  * Loop through the rules in the set and run the byte-code of each rule
    751       1.7  rmind  * against the packet (nbuf chain).  If sub-ruleset is found, inspect it.
    752       1.1  rmind  */
    753       1.1  rmind npf_rule_t *
    754  1.30.2.1    tls npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
    755  1.30.2.1    tls     const int di, const int layer)
    756       1.1  rmind {
    757  1.30.2.1    tls 	nbuf_t *nbuf = npc->npc_nbuf;
    758       1.7  rmind 	const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
    759      1.17  rmind 	const u_int nitems = rlset->rs_nitems;
    760      1.29  rmind 	const u_int ifid = nbuf->nb_ifid;
    761      1.17  rmind 	npf_rule_t *final_rl = NULL;
    762      1.29  rmind 	bpf_args_t bc_args;
    763      1.17  rmind 	u_int n = 0;
    764       1.1  rmind 
    765       1.1  rmind 	KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
    766      1.17  rmind 
    767  1.30.2.1    tls 	/*
    768  1.30.2.1    tls 	 * Prepare the external memory store and the arguments for
    769  1.30.2.1    tls 	 * the BPF programs to be executed.
    770  1.30.2.1    tls 	 */
    771  1.30.2.1    tls 	uint32_t bc_words[NPF_BPF_NWORDS];
    772  1.30.2.1    tls 	npf_bpf_prepare(npc, &bc_args, bc_words);
    773  1.30.2.1    tls 
    774      1.17  rmind 	while (n < nitems) {
    775      1.17  rmind 		npf_rule_t *rl = rlset->rs_rules[n];
    776      1.17  rmind 		const u_int skip_to = rl->r_skip_to;
    777      1.17  rmind 		const uint32_t attr = rl->r_attr;
    778      1.17  rmind 
    779      1.16  rmind 		KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    780       1.1  rmind 		KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
    781      1.17  rmind 		KASSERT(n < skip_to);
    782       1.1  rmind 
    783      1.17  rmind 		/* Group is a barrier: return a matching if found any. */
    784      1.17  rmind 		if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
    785      1.17  rmind 			break;
    786      1.17  rmind 		}
    787      1.17  rmind 
    788      1.17  rmind 		/* Main inspection of the rule. */
    789      1.29  rmind 		if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
    790      1.17  rmind 			n = skip_to;
    791       1.1  rmind 			continue;
    792       1.1  rmind 		}
    793      1.17  rmind 
    794      1.17  rmind 		if (NPF_DYNAMIC_GROUP_P(attr)) {
    795      1.17  rmind 			/*
    796      1.17  rmind 			 * If this is a dynamic rule, re-inspect the subrules.
    797      1.17  rmind 			 * If it has any matching rule, then it is final.
    798      1.17  rmind 			 */
    799      1.29  rmind 			rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
    800      1.17  rmind 			if (rl != NULL) {
    801      1.17  rmind 				final_rl = rl;
    802      1.17  rmind 				break;
    803      1.17  rmind 			}
    804      1.17  rmind 		} else if ((attr & NPF_RULE_GROUP) == 0) {
    805      1.17  rmind 			/*
    806      1.17  rmind 			 * Groups themselves are not matching.
    807      1.17  rmind 			 */
    808      1.17  rmind 			final_rl = rl;
    809       1.1  rmind 		}
    810      1.17  rmind 
    811       1.1  rmind 		/* Set the matching rule and check for "final". */
    812      1.17  rmind 		if (attr & NPF_RULE_FINAL) {
    813       1.2  rmind 			break;
    814       1.1  rmind 		}
    815      1.17  rmind 		n++;
    816       1.2  rmind 	}
    817      1.16  rmind 
    818      1.16  rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    819       1.7  rmind 	return final_rl;
    820       1.1  rmind }
    821       1.1  rmind 
    822       1.1  rmind /*
    823      1.17  rmind  * npf_rule_conclude: return decision and the flags for conclusion.
    824       1.1  rmind  *
    825       1.1  rmind  * => Returns ENETUNREACH if "block" and 0 if "pass".
    826       1.1  rmind  */
    827       1.1  rmind int
    828      1.17  rmind npf_rule_conclude(const npf_rule_t *rl, int *retfl)
    829       1.1  rmind {
    830       1.1  rmind 	/* If not passing - drop the packet. */
    831       1.4  rmind 	*retfl = rl->r_attr;
    832      1.17  rmind 	return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
    833       1.1  rmind }
    834