Home | History | Annotate | Line # | Download | only in npf
npf_ruleset.c revision 1.17
      1 /*	$NetBSD: npf_ruleset.c,v 1.17 2013/02/09 03:35:32 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This material is based upon work partially supported by The
      8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * NPF ruleset module.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.17 2013/02/09 03:35:32 rmind Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #include <sys/kmem.h>
     43 #include <sys/queue.h>
     44 #include <sys/mbuf.h>
     45 #include <sys/types.h>
     46 
     47 #include <net/bpf.h>
     48 #include <net/pfil.h>
     49 #include <net/if.h>
     50 
     51 #include "npf_ncode.h"
     52 #include "npf_impl.h"
     53 
     54 struct npf_ruleset {
     55 	/* List of all rules and dynamic (i.e. named) rules. */
     56 	LIST_HEAD(, npf_rule)	rs_all;
     57 	LIST_HEAD(, npf_rule)	rs_dynamic;
     58 
     59 	/* Number of array slots and active rules. */
     60 	u_int			rs_slots;
     61 	u_int			rs_nitems;
     62 
     63 	/* Array of ordered rules. */
     64 	npf_rule_t *		rs_rules[];
     65 };
     66 
     67 struct npf_rule {
     68 	/* Attributes, interface and skip slot. */
     69 	uint32_t		r_attr;
     70 	u_int			r_ifid;
     71 	u_int			r_skip_to;
     72 
     73 	/* Code to process, if any. */
     74 	int			r_type;
     75 	void *			r_code;
     76 	size_t			r_clen;
     77 
     78 	/* NAT policy (optional), rule procedure and subset. */
     79 	npf_natpolicy_t *	r_natp;
     80 	npf_rproc_t *		r_rproc;
     81 
     82 	/* Rule priority: (highest) 1, 2 ... n (lowest). */
     83 	pri_t			r_priority;
     84 
     85 	/*
     86 	 * Dynamic group: subset queue and a dynamic group list entry.
     87 	 * Dynamic rule: entry and the parent rule (the group).
     88 	 */
     89 	union {
     90 		TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
     91 		TAILQ_ENTRY(npf_rule)	r_entry;
     92 	} /* C11 */;
     93 	union {
     94 		LIST_ENTRY(npf_rule)	r_dentry;
     95 		npf_rule_t *		r_parent;
     96 	} /* C11 */;
     97 
     98 	/* Rule name and all-list entry. */
     99 	char			r_name[NPF_RULE_MAXNAMELEN];
    100 	LIST_ENTRY(npf_rule)	r_aentry;
    101 
    102 	/* Key (optional). */
    103 	uint8_t			r_key[NPF_RULE_MAXKEYLEN];
    104 };
    105 
    106 #define	NPF_DYNAMIC_GROUP_P(attr) \
    107     (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
    108 
    109 npf_ruleset_t *
    110 npf_ruleset_create(size_t slots)
    111 {
    112 	size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
    113 	npf_ruleset_t *rlset;
    114 
    115 	rlset = kmem_zalloc(len, KM_SLEEP);
    116 	rlset->rs_slots = slots;
    117 	LIST_INIT(&rlset->rs_dynamic);
    118 	LIST_INIT(&rlset->rs_all);
    119 	return rlset;
    120 }
    121 
    122 static void
    123 npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
    124 {
    125 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
    126 		LIST_REMOVE(rl, r_dentry);
    127 	}
    128 	if ((rl->r_attr & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC) {
    129 		npf_rule_t *rg = rl->r_parent;
    130 		TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
    131 	}
    132 	LIST_REMOVE(rl, r_aentry);
    133 }
    134 
    135 void
    136 npf_ruleset_destroy(npf_ruleset_t *rlset)
    137 {
    138 	size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
    139 	npf_rule_t *rl;
    140 
    141 	while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
    142 		npf_ruleset_unlink(rlset, rl);
    143 		npf_rule_free(rl);
    144 	}
    145 	KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
    146 	kmem_free(rlset, len);
    147 }
    148 
    149 /*
    150  * npf_ruleset_insert: insert the rule into the specified ruleset.
    151  */
    152 void
    153 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
    154 {
    155 	u_int n = rlset->rs_nitems;
    156 
    157 	KASSERT(n < rlset->rs_slots);
    158 
    159 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
    160 	if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
    161 		LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
    162 	}
    163 
    164 	rlset->rs_rules[n] = rl;
    165 	rlset->rs_nitems++;
    166 
    167 	if (rl->r_skip_to < ++n) {
    168 		rl->r_skip_to = n;
    169 	}
    170 }
    171 
    172 static npf_rule_t *
    173 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
    174 {
    175 	npf_rule_t *rl;
    176 
    177 	KASSERT(npf_config_locked_p());
    178 
    179 	LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
    180 		KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
    181 		if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
    182 			break;
    183 	}
    184 	return rl;
    185 }
    186 
    187 int
    188 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
    189 {
    190 	npf_rule_t *rg, *it;
    191 	pri_t priocmd;
    192 
    193 	rg = npf_ruleset_lookup(rlset, rname);
    194 	if (rg == NULL) {
    195 		return ENOENT;
    196 	}
    197 
    198 	/* Dynamic rule. */
    199 	rl->r_attr |= NPF_RULE_DYNAMIC;
    200 	rl->r_parent = rg;
    201 
    202 	/*
    203 	 * Rule priority: (highest) 1, 2 ... n (lowest).
    204 	 * Negative priority indicates an operation and is reset to zero.
    205 	 */
    206 	if ((priocmd = rl->r_priority) < 0) {
    207 		rl->r_priority = 0;
    208 	}
    209 
    210 	switch (priocmd) {
    211 	case NPF_PRI_FIRST:
    212 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
    213 			if (rl->r_priority <= it->r_priority)
    214 				break;
    215 		}
    216 		if (it) {
    217 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
    218 		} else {
    219 			TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
    220 		}
    221 		break;
    222 	case NPF_PRI_LAST:
    223 	default:
    224 		TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
    225 			if (rl->r_priority < it->r_priority)
    226 				break;
    227 		}
    228 		if (it) {
    229 			TAILQ_INSERT_BEFORE(it, rl, r_entry);
    230 		} else {
    231 			TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
    232 		}
    233 		break;
    234 	}
    235 
    236 	/* Finally, add into the all-list. */
    237 	LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
    238 	return 0;
    239 }
    240 
    241 npf_rule_t *
    242 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uintptr_t id)
    243 {
    244 	npf_rule_t *rg, *rl;
    245 
    246 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
    247 		return NULL;
    248 	}
    249 	TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
    250 		/* Compare ID.  On match, remove and return. */
    251 		if ((uintptr_t)rl == id) {
    252 			npf_ruleset_unlink(rlset, rl);
    253 			break;
    254 		}
    255 	}
    256 	return rl;
    257 }
    258 
    259 npf_rule_t *
    260 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
    261     const void *key, size_t len)
    262 {
    263 	npf_rule_t *rg, *rl;
    264 
    265 	KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
    266 
    267 	if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
    268 		return NULL;
    269 	}
    270 	/* Find the last in the list. */
    271 	TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
    272 		/* Compare the key.  On match, remove and return. */
    273 		if (memcmp(rl->r_key, key, len) == 0) {
    274 			npf_ruleset_unlink(rlset, rl);
    275 			break;
    276 		}
    277 	}
    278 	return rl;
    279 }
    280 
    281 /*
    282  * npf_ruleset_reload: share the dynamic rules.
    283  *
    284  * => Active ruleset should be exclusively locked.
    285  */
    286 void
    287 npf_ruleset_reload(npf_ruleset_t *nrlset, npf_ruleset_t *arlset)
    288 {
    289 	npf_rule_t *rl, *arl;
    290 
    291 	KASSERT(npf_config_locked_p());
    292 
    293 	LIST_FOREACH(rl, &nrlset->rs_dynamic, r_dentry) {
    294 		if ((arl = npf_ruleset_lookup(arlset, rl->r_name)) == NULL) {
    295 			continue;
    296 		}
    297 		memcpy(&rl->r_subset, &arl->r_subset, sizeof(rl->r_subset));
    298 	}
    299 }
    300 
    301 /*
    302  * npf_ruleset_matchnat: find a matching NAT policy in the ruleset.
    303  */
    304 npf_rule_t *
    305 npf_ruleset_matchnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
    306 {
    307 	npf_rule_t *rl;
    308 
    309 	/* Find a matching NAT policy in the old ruleset. */
    310 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
    311 		if (npf_nat_matchpolicy(rl->r_natp, mnp))
    312 			break;
    313 	}
    314 	return rl;
    315 }
    316 
    317 npf_rule_t *
    318 npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
    319 {
    320 	npf_natpolicy_t *np;
    321 	npf_rule_t *rl;
    322 
    323 	/* Find a matching NAT policy in the old ruleset. */
    324 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
    325 		/*
    326 		 * NAT policy might not yet be set during the creation of
    327 		 * the ruleset (in such case, rule is for our policy), or
    328 		 * policies might be equal due to rule exchange on reload.
    329 		 */
    330 		np = rl->r_natp;
    331 		if (np == NULL || np == mnp)
    332 			continue;
    333 		if (npf_nat_sharepm(np, mnp))
    334 			break;
    335 	}
    336 	return rl;
    337 }
    338 
    339 /*
    340  * npf_ruleset_freealg: inspect the ruleset and disassociate specified
    341  * ALG from all NAT entries using it.
    342  */
    343 void
    344 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
    345 {
    346 	npf_rule_t *rl;
    347 	npf_natpolicy_t *np;
    348 
    349 	LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
    350 		if ((np = rl->r_natp) != NULL) {
    351 			npf_nat_freealg(np, alg);
    352 		}
    353 	}
    354 }
    355 
    356 /*
    357  * npf_ruleset_natreload: minimum reload of NAT policies by maching
    358  * two (active and new) NAT rulesets.
    359  *
    360  * => Active ruleset should be exclusively locked.
    361  */
    362 void
    363 npf_ruleset_natreload(npf_ruleset_t *nrlset, npf_ruleset_t *arlset)
    364 {
    365 	npf_natpolicy_t *np, *anp;
    366 	npf_rule_t *rl, *arl;
    367 
    368 	/* Scan a new NAT ruleset against NAT policies in old ruleset. */
    369 	LIST_FOREACH(rl, &nrlset->rs_all, r_aentry) {
    370 		np = rl->r_natp;
    371 		arl = npf_ruleset_matchnat(arlset, np);
    372 		if (arl == NULL) {
    373 			continue;
    374 		}
    375 		/* On match - we exchange NAT policies. */
    376 		anp = arl->r_natp;
    377 		rl->r_natp = anp;
    378 		arl->r_natp = np;
    379 		/* Update other NAT policies to share portmap. */
    380 		(void)npf_ruleset_sharepm(nrlset, anp);
    381 	}
    382 }
    383 
    384 /*
    385  * npf_rule_alloc: allocate a rule and copy n-code from user-space.
    386  */
    387 npf_rule_t *
    388 npf_rule_alloc(prop_dictionary_t rldict)
    389 {
    390 	npf_rule_t *rl;
    391 	const char *rname;
    392 
    393 	/* Allocate a rule structure. */
    394 	rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
    395 	TAILQ_INIT(&rl->r_subset);
    396 	rl->r_natp = NULL;
    397 
    398 	/* Name (optional) */
    399 	if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
    400 		strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
    401 	} else {
    402 		rl->r_name[0] = '\0';
    403 	}
    404 
    405 	/* Attributes, priority and interface ID (optional). */
    406 	prop_dictionary_get_uint32(rldict, "attributes", &rl->r_attr);
    407 	prop_dictionary_get_int32(rldict, "priority", &rl->r_priority);
    408 	prop_dictionary_get_uint32(rldict, "interface", &rl->r_ifid);
    409 
    410 	/* Get the skip-to index.  No need to validate it. */
    411 	prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
    412 
    413 	/* Key (optional). */
    414 	prop_object_t obj = prop_dictionary_get(rldict, "key");
    415 	const void *key = prop_data_data_nocopy(obj);
    416 
    417 	if (key) {
    418 		size_t len = prop_data_size(obj);
    419 		if (len > NPF_RULE_MAXKEYLEN) {
    420 			kmem_free(rl, sizeof(npf_rule_t));
    421 			return NULL;
    422 		}
    423 		memcpy(rl->r_key, key, len);
    424 	}
    425 	return rl;
    426 }
    427 
    428 /*
    429  * npf_rule_setcode: assign filter code to the rule.
    430  *
    431  * => The code should be validated by the caller.
    432  */
    433 void
    434 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
    435 {
    436 	rl->r_type = type;
    437 	rl->r_code = code;
    438 	rl->r_clen = size;
    439 }
    440 
    441 /*
    442  * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
    443  */
    444 void
    445 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
    446 {
    447 	npf_rproc_acquire(rp);
    448 	rl->r_rproc = rp;
    449 }
    450 
    451 /*
    452  * npf_rule_free: free the specified rule.
    453  */
    454 void
    455 npf_rule_free(npf_rule_t *rl)
    456 {
    457 	npf_natpolicy_t *np = rl->r_natp;
    458 	npf_rproc_t *rp = rl->r_rproc;
    459 
    460 	if (np) {
    461 		/* Free NAT policy. */
    462 		npf_nat_freepolicy(np);
    463 	}
    464 	if (rp) {
    465 		/* Release rule procedure. */
    466 		npf_rproc_release(rp);
    467 	}
    468 	if (rl->r_code) {
    469 		/* Free n-code. */
    470 		kmem_free(rl->r_code, rl->r_clen);
    471 	}
    472 	kmem_free(rl, sizeof(npf_rule_t));
    473 }
    474 
    475 /*
    476  * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
    477  * npf_rule_getnat: get NAT policy assigned to the rule.
    478  */
    479 
    480 npf_rproc_t *
    481 npf_rule_getrproc(npf_rule_t *rl)
    482 {
    483 	npf_rproc_t *rp = rl->r_rproc;
    484 
    485 	if (rp) {
    486 		npf_rproc_acquire(rp);
    487 	}
    488 	return rp;
    489 }
    490 
    491 npf_natpolicy_t *
    492 npf_rule_getnat(const npf_rule_t *rl)
    493 {
    494 	return rl->r_natp;
    495 }
    496 
    497 /*
    498  * npf_rule_setnat: assign NAT policy to the rule and insert into the
    499  * NAT policy list in the ruleset.
    500  */
    501 void
    502 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
    503 {
    504 
    505 	KASSERT(rl->r_natp == NULL);
    506 	rl->r_natp = np;
    507 }
    508 
    509 /*
    510  * npf_rule_inspect: match the interface, direction and run the filter code.
    511  * Returns true if rule matches, false otherise.
    512  */
    513 static inline bool
    514 npf_rule_inspect(npf_cache_t *npc, nbuf_t *nbuf, const npf_rule_t *rl,
    515     const int di_mask, const int layer)
    516 {
    517 	const ifnet_t *ifp = nbuf->nb_ifp;
    518 	const void *code;
    519 
    520 	/* Match the interface. */
    521 	if (rl->r_ifid && rl->r_ifid != ifp->if_index) {
    522 		return false;
    523 	}
    524 
    525 	/* Match the direction. */
    526 	if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
    527 		if ((rl->r_attr & di_mask) == 0)
    528 			return false;
    529 	}
    530 
    531 	/* Execute the code, if any. */
    532 	if ((code = rl->r_code) == NULL) {
    533 		return true;
    534 	}
    535 
    536 	switch (rl->r_type) {
    537 	case NPF_CODE_NC:
    538 		return npf_ncode_process(npc, code, nbuf, layer) == 0;
    539 	case NPF_CODE_BPF: {
    540 		struct mbuf *m = nbuf_head_mbuf(nbuf);
    541 		size_t pktlen = m_length(m);
    542 		return bpf_filter(code, (unsigned char *)m, pktlen, 0) != 0;
    543 	}
    544 	default:
    545 		KASSERT(false);
    546 	}
    547 	return false;
    548 }
    549 
    550 /*
    551  * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
    552  * This is only for the dynamic rules.  Subrules cannot have nested rules.
    553  */
    554 static npf_rule_t *
    555 npf_rule_reinspect(npf_cache_t *npc, nbuf_t *nbuf, const npf_rule_t *drl,
    556     const int di_mask, const int layer)
    557 {
    558 	npf_rule_t *final_rl = NULL, *rl;
    559 
    560 	KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
    561 
    562 	TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
    563 		if (!npf_rule_inspect(npc, nbuf, rl, di_mask, layer)) {
    564 			continue;
    565 		}
    566 		if (rl->r_attr & NPF_RULE_FINAL) {
    567 			return rl;
    568 		}
    569 		final_rl = rl;
    570 	}
    571 	return final_rl;
    572 }
    573 
    574 /*
    575  * npf_ruleset_inspect: inspect the packet against the given ruleset.
    576  *
    577  * Loop through the rules in the set and run n-code processor of each rule
    578  * against the packet (nbuf chain).  If sub-ruleset is found, inspect it.
    579  *
    580  * => Caller is responsible for nbuf chain protection.
    581  */
    582 npf_rule_t *
    583 npf_ruleset_inspect(npf_cache_t *npc, nbuf_t *nbuf,
    584     const npf_ruleset_t *rlset, const int di, const int layer)
    585 {
    586 	const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
    587 	const u_int nitems = rlset->rs_nitems;
    588 	npf_rule_t *final_rl = NULL;
    589 	u_int n = 0;
    590 
    591 	KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
    592 
    593 	while (n < nitems) {
    594 		npf_rule_t *rl = rlset->rs_rules[n];
    595 		const u_int skip_to = rl->r_skip_to;
    596 		const uint32_t attr = rl->r_attr;
    597 
    598 		KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    599 		KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
    600 		KASSERT(n < skip_to);
    601 
    602 		/* Group is a barrier: return a matching if found any. */
    603 		if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
    604 			break;
    605 		}
    606 
    607 		/* Main inspection of the rule. */
    608 		if (!npf_rule_inspect(npc, nbuf, rl, di_mask, layer)) {
    609 			n = skip_to;
    610 			continue;
    611 		}
    612 
    613 		if (NPF_DYNAMIC_GROUP_P(attr)) {
    614 			/*
    615 			 * If this is a dynamic rule, re-inspect the subrules.
    616 			 * If it has any matching rule, then it is final.
    617 			 */
    618 			rl = npf_rule_reinspect(npc, nbuf, rl, di_mask, layer);
    619 			if (rl != NULL) {
    620 				final_rl = rl;
    621 				break;
    622 			}
    623 		} else if ((attr & NPF_RULE_GROUP) == 0) {
    624 			/*
    625 			 * Groups themselves are not matching.
    626 			 */
    627 			final_rl = rl;
    628 		}
    629 
    630 		/* Set the matching rule and check for "final". */
    631 		if (attr & NPF_RULE_FINAL) {
    632 			break;
    633 		}
    634 		n++;
    635 	}
    636 
    637 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    638 	return final_rl;
    639 }
    640 
    641 /*
    642  * npf_rule_conclude: return decision and the flags for conclusion.
    643  *
    644  * => Returns ENETUNREACH if "block" and 0 if "pass".
    645  */
    646 int
    647 npf_rule_conclude(const npf_rule_t *rl, int *retfl)
    648 {
    649 	/* If not passing - drop the packet. */
    650 	*retfl = rl->r_attr;
    651 	return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
    652 }
    653 
    654 #if defined(DDB) || defined(_NPF_TESTING)
    655 
    656 void
    657 npf_rulenc_dump(const npf_rule_t *rl)
    658 {
    659 	const uint32_t *op = rl->r_code;
    660 	size_t n = rl->r_clen;
    661 
    662 	while (n) {
    663 		printf("\t> |0x%02x|\n", (uint32_t)*op);
    664 		op++;
    665 		n -= sizeof(*op);
    666 	}
    667 	printf("-> %s\n", (rl->r_attr & NPF_RULE_PASS) ? "pass" : "block");
    668 }
    669 
    670 #endif
    671