npf_ruleset.c revision 1.30.2.1 1 /* $NetBSD: npf_ruleset.c,v 1.30.2.1 2014/08/10 06:56:16 tls Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * NPF ruleset module.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.30.2.1 2014/08/10 06:56:16 tls Exp $");
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/atomic.h>
43 #include <sys/kmem.h>
44 #include <sys/queue.h>
45 #include <sys/mbuf.h>
46 #include <sys/types.h>
47
48 #include <net/bpf.h>
49 #include <net/bpfjit.h>
50 #include <net/pfil.h>
51 #include <net/if.h>
52
53 #include "npf_impl.h"
54
55 struct npf_ruleset {
56 /*
57 * - List of all rules.
58 * - Dynamic (i.e. named) rules.
59 * - G/C list for convenience.
60 */
61 LIST_HEAD(, npf_rule) rs_all;
62 LIST_HEAD(, npf_rule) rs_dynamic;
63 LIST_HEAD(, npf_rule) rs_gc;
64
65 /* Unique ID counter. */
66 uint64_t rs_idcnt;
67
68 /* Number of array slots and active rules. */
69 u_int rs_slots;
70 u_int rs_nitems;
71
72 /* Array of ordered rules. */
73 npf_rule_t * rs_rules[];
74 };
75
76 struct npf_rule {
77 /* Attributes, interface and skip slot. */
78 uint32_t r_attr;
79 u_int r_ifid;
80 u_int r_skip_to;
81
82 /* Code to process, if any. */
83 int r_type;
84 bpfjit_func_t r_jcode;
85 void * r_code;
86 size_t r_clen;
87
88 /* NAT policy (optional), rule procedure and subset. */
89 npf_natpolicy_t * r_natp;
90 npf_rproc_t * r_rproc;
91
92 /* Rule priority: (highest) 1, 2 ... n (lowest). */
93 pri_t r_priority;
94
95 /*
96 * Dynamic group: subset queue and a dynamic group list entry.
97 * Dynamic rule: entry and the parent rule (the group).
98 */
99 union {
100 TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
101 TAILQ_ENTRY(npf_rule) r_entry;
102 } /* C11 */;
103 union {
104 LIST_ENTRY(npf_rule) r_dentry;
105 npf_rule_t * r_parent;
106 } /* C11 */;
107
108 /* Rule ID and the original dictionary. */
109 uint64_t r_id;
110 prop_dictionary_t r_dict;
111
112 /* Rule name and all-list entry. */
113 char r_name[NPF_RULE_MAXNAMELEN];
114 LIST_ENTRY(npf_rule) r_aentry;
115
116 /* Key (optional). */
117 uint8_t r_key[NPF_RULE_MAXKEYLEN];
118 };
119
120 /*
121 * Private attributes - must be in the NPF_RULE_PRIVMASK range.
122 */
123 #define NPF_RULE_KEEPNAT (0x01000000 & NPF_RULE_PRIVMASK)
124
125 #define NPF_DYNAMIC_GROUP_P(attr) \
126 (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
127
128 #define NPF_DYNAMIC_RULE_P(attr) \
129 (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
130
131 npf_ruleset_t *
132 npf_ruleset_create(size_t slots)
133 {
134 size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
135 npf_ruleset_t *rlset;
136
137 rlset = kmem_zalloc(len, KM_SLEEP);
138 LIST_INIT(&rlset->rs_dynamic);
139 LIST_INIT(&rlset->rs_all);
140 LIST_INIT(&rlset->rs_gc);
141 rlset->rs_slots = slots;
142
143 return rlset;
144 }
145
146 static void
147 npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
148 {
149 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
150 LIST_REMOVE(rl, r_dentry);
151 }
152 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
153 npf_rule_t *rg = rl->r_parent;
154 TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
155 }
156 LIST_REMOVE(rl, r_aentry);
157 }
158
159 void
160 npf_ruleset_destroy(npf_ruleset_t *rlset)
161 {
162 size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
163 npf_rule_t *rl;
164
165 while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
166 npf_ruleset_unlink(rlset, rl);
167 npf_rule_free(rl);
168 }
169 KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
170 KASSERT(LIST_EMPTY(&rlset->rs_gc));
171 kmem_free(rlset, len);
172 }
173
174 /*
175 * npf_ruleset_insert: insert the rule into the specified ruleset.
176 */
177 void
178 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
179 {
180 u_int n = rlset->rs_nitems;
181
182 KASSERT(n < rlset->rs_slots);
183
184 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
185 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
186 LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
187 } else {
188 KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
189 rl->r_attr &= ~NPF_RULE_DYNAMIC;
190 }
191
192 rlset->rs_rules[n] = rl;
193 rlset->rs_nitems++;
194
195 if (rl->r_skip_to < ++n) {
196 rl->r_skip_to = n;
197 }
198 }
199
200 static npf_rule_t *
201 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
202 {
203 npf_rule_t *rl;
204
205 KASSERT(npf_config_locked_p());
206
207 LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
208 KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
209 if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
210 break;
211 }
212 return rl;
213 }
214
215 int
216 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
217 {
218 npf_rule_t *rg, *it;
219 pri_t priocmd;
220
221 rg = npf_ruleset_lookup(rlset, rname);
222 if (rg == NULL) {
223 return ESRCH;
224 }
225 if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
226 return EINVAL;
227 }
228
229 /* Dynamic rule - assign a unique ID and save the parent. */
230 rl->r_id = ++rlset->rs_idcnt;
231 rl->r_parent = rg;
232
233 /*
234 * Rule priority: (highest) 1, 2 ... n (lowest).
235 * Negative priority indicates an operation and is reset to zero.
236 */
237 if ((priocmd = rl->r_priority) < 0) {
238 rl->r_priority = 0;
239 }
240
241 switch (priocmd) {
242 case NPF_PRI_FIRST:
243 TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
244 if (rl->r_priority <= it->r_priority)
245 break;
246 }
247 if (it) {
248 TAILQ_INSERT_BEFORE(it, rl, r_entry);
249 } else {
250 TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
251 }
252 break;
253 case NPF_PRI_LAST:
254 default:
255 TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
256 if (rl->r_priority < it->r_priority)
257 break;
258 }
259 if (it) {
260 TAILQ_INSERT_BEFORE(it, rl, r_entry);
261 } else {
262 TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
263 }
264 break;
265 }
266
267 /* Finally, add into the all-list. */
268 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
269 return 0;
270 }
271
272 int
273 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
274 {
275 npf_rule_t *rg, *rl;
276
277 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
278 return ESRCH;
279 }
280 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
281 KASSERT(rl->r_parent == rg);
282
283 /* Compare ID. On match, remove and return. */
284 if (rl->r_id == id) {
285 npf_ruleset_unlink(rlset, rl);
286 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
287 return 0;
288 }
289 }
290 return ENOENT;
291 }
292
293 int
294 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
295 const void *key, size_t len)
296 {
297 npf_rule_t *rg, *rl;
298
299 KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
300
301 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
302 return ESRCH;
303 }
304
305 /* Find the last in the list. */
306 TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
307 KASSERT(rl->r_parent == rg);
308
309 /* Compare the key. On match, remove and return. */
310 if (memcmp(rl->r_key, key, len) == 0) {
311 npf_ruleset_unlink(rlset, rl);
312 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
313 return 0;
314 }
315 }
316 return ENOENT;
317 }
318
319 prop_dictionary_t
320 npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
321 {
322 prop_dictionary_t rldict;
323 prop_array_t rules;
324 npf_rule_t *rg, *rl;
325
326 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
327 return NULL;
328 }
329 if ((rldict = prop_dictionary_create()) == NULL) {
330 return NULL;
331 }
332 if ((rules = prop_array_create()) == NULL) {
333 prop_object_release(rldict);
334 return NULL;
335 }
336
337 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
338 KASSERT(rl->r_parent == rg);
339 if (rl->r_dict && !prop_array_add(rules, rl->r_dict)) {
340 prop_object_release(rldict);
341 prop_object_release(rules);
342 return NULL;
343 }
344 }
345
346 if (!prop_dictionary_set(rldict, "rules", rules)) {
347 prop_object_release(rldict);
348 rldict = NULL;
349 }
350 prop_object_release(rules);
351 return rldict;
352 }
353
354 int
355 npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
356 {
357 npf_rule_t *rg, *rl;
358
359 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
360 return ESRCH;
361 }
362 while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
363 KASSERT(rl->r_parent == rg);
364 npf_ruleset_unlink(rlset, rl);
365 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
366 }
367 return 0;
368 }
369
370 void
371 npf_ruleset_gc(npf_ruleset_t *rlset)
372 {
373 npf_rule_t *rl;
374
375 while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
376 LIST_REMOVE(rl, r_aentry);
377 npf_rule_free(rl);
378 }
379 }
380
381 /*
382 * npf_ruleset_cmpnat: find a matching NAT policy in the ruleset.
383 */
384 static inline npf_rule_t *
385 npf_ruleset_cmpnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
386 {
387 npf_rule_t *rl;
388
389 /* Find a matching NAT policy in the old ruleset. */
390 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
391 if (rl->r_natp && npf_nat_cmppolicy(rl->r_natp, mnp))
392 break;
393 }
394 return rl;
395 }
396
397 /*
398 * npf_ruleset_reload: prepare the new ruleset by scanning the active
399 * ruleset and 1) sharing the dynamic rules 2) sharing NAT policies.
400 *
401 * => The active (old) ruleset should be exclusively locked.
402 */
403 void
404 npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset)
405 {
406 npf_rule_t *rg, *rl;
407 uint64_t nid = 0;
408
409 KASSERT(npf_config_locked_p());
410
411 /*
412 * Scan the dynamic rules and share (migrate) if needed.
413 */
414 LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
415 npf_rule_t *actrg;
416
417 /* Look for a dynamic ruleset group with such name. */
418 actrg = npf_ruleset_lookup(oldset, rg->r_name);
419 if (actrg == NULL) {
420 continue;
421 }
422
423 /*
424 * Copy the list-head structure. This is necessary because
425 * the rules are still active and therefore accessible for
426 * inspection via the old ruleset.
427 */
428 memcpy(&rg->r_subset, &actrg->r_subset, sizeof(rg->r_subset));
429 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
430 /*
431 * We can safely migrate to the new all-rule list
432 * and re-set the parent rule, though.
433 */
434 LIST_REMOVE(rl, r_aentry);
435 LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
436 rl->r_parent = rg;
437 }
438 }
439
440 /*
441 * Scan all rules in the new ruleset and share NAT policies.
442 * Also, assign a unique ID for each policy here.
443 */
444 LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
445 npf_natpolicy_t *np;
446 npf_rule_t *actrl;
447
448 /* Does the rule have a NAT policy associated? */
449 if ((np = rl->r_natp) == NULL) {
450 continue;
451 }
452
453 /* Does it match with any policy in the active ruleset? */
454 if ((actrl = npf_ruleset_cmpnat(oldset, np)) == NULL) {
455 npf_nat_setid(np, ++nid);
456 continue;
457 }
458
459 /*
460 * Inherit the matching NAT policy and check other ones
461 * in the new ruleset for sharing the portmap.
462 */
463 rl->r_natp = actrl->r_natp;
464 npf_ruleset_sharepm(newset, rl->r_natp);
465 npf_nat_setid(rl->r_natp, ++nid);
466
467 /*
468 * Finally, mark the active rule to not destroy its NAT
469 * policy later as we inherited it (but the rule must be
470 * kept active for now). Destroy the new/unused policy.
471 */
472 actrl->r_attr |= NPF_RULE_KEEPNAT;
473 npf_nat_freepolicy(np);
474 }
475
476 /* Inherit the ID counter. */
477 newset->rs_idcnt = oldset->rs_idcnt;
478 }
479
480 npf_rule_t *
481 npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
482 {
483 npf_natpolicy_t *np;
484 npf_rule_t *rl;
485
486 /* Find a matching NAT policy in the old ruleset. */
487 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
488 /*
489 * NAT policy might not yet be set during the creation of
490 * the ruleset (in such case, rule is for our policy), or
491 * policies might be equal due to rule exchange on reload.
492 */
493 np = rl->r_natp;
494 if (np == NULL || np == mnp)
495 continue;
496 if (npf_nat_sharepm(np, mnp))
497 break;
498 }
499 return rl;
500 }
501
502 npf_natpolicy_t *
503 npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id)
504 {
505 npf_rule_t *rl;
506
507 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
508 npf_natpolicy_t *np = rl->r_natp;
509 if (np && npf_nat_getid(np) == id) {
510 return np;
511 }
512 }
513 return NULL;
514 }
515
516 /*
517 * npf_ruleset_freealg: inspect the ruleset and disassociate specified
518 * ALG from all NAT entries using it.
519 */
520 void
521 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
522 {
523 npf_rule_t *rl;
524 npf_natpolicy_t *np;
525
526 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
527 if ((np = rl->r_natp) != NULL) {
528 npf_nat_freealg(np, alg);
529 }
530 }
531 }
532
533 /*
534 * npf_rule_alloc: allocate a rule and initialise it.
535 */
536 npf_rule_t *
537 npf_rule_alloc(prop_dictionary_t rldict)
538 {
539 npf_rule_t *rl;
540 const char *rname;
541
542 /* Allocate a rule structure. */
543 rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
544 TAILQ_INIT(&rl->r_subset);
545 rl->r_natp = NULL;
546
547 /* Name (optional) */
548 if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
549 strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
550 } else {
551 rl->r_name[0] = '\0';
552 }
553
554 /* Attributes, priority and interface ID (optional). */
555 prop_dictionary_get_uint32(rldict, "attributes", &rl->r_attr);
556 prop_dictionary_get_int32(rldict, "priority", &rl->r_priority);
557 rl->r_attr &= ~NPF_RULE_PRIVMASK;
558
559 if (prop_dictionary_get_cstring_nocopy(rldict, "interface", &rname)) {
560 if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
561 kmem_free(rl, sizeof(npf_rule_t));
562 return NULL;
563 }
564 } else {
565 rl->r_ifid = 0;
566 }
567
568 /* Get the skip-to index. No need to validate it. */
569 prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
570
571 /* Key (optional). */
572 prop_object_t obj = prop_dictionary_get(rldict, "key");
573 const void *key = prop_data_data_nocopy(obj);
574
575 if (key) {
576 size_t len = prop_data_size(obj);
577 if (len > NPF_RULE_MAXKEYLEN) {
578 kmem_free(rl, sizeof(npf_rule_t));
579 return NULL;
580 }
581 memcpy(rl->r_key, key, len);
582 }
583
584 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
585 rl->r_dict = prop_dictionary_copy(rldict);
586 }
587
588 return rl;
589 }
590
591 /*
592 * npf_rule_setcode: assign filter code to the rule.
593 *
594 * => The code must be validated by the caller.
595 * => JIT compilation may be performed here.
596 */
597 void
598 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
599 {
600 KASSERT(type == NPF_CODE_BPF);
601
602 if ((rl->r_jcode = npf_bpf_compile(code, size)) == NULL) {
603 rl->r_code = code;
604 rl->r_clen = size;
605 } else {
606 rl->r_code = NULL;
607 }
608 rl->r_type = type;
609 }
610
611 /*
612 * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
613 */
614 void
615 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
616 {
617 npf_rproc_acquire(rp);
618 rl->r_rproc = rp;
619 }
620
621 /*
622 * npf_rule_free: free the specified rule.
623 */
624 void
625 npf_rule_free(npf_rule_t *rl)
626 {
627 npf_natpolicy_t *np = rl->r_natp;
628 npf_rproc_t *rp = rl->r_rproc;
629
630 if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
631 /* Free NAT policy. */
632 npf_nat_freepolicy(np);
633 }
634 if (rp) {
635 /* Release rule procedure. */
636 npf_rproc_release(rp);
637 }
638 if (rl->r_code) {
639 /* Free byte-code. */
640 kmem_free(rl->r_code, rl->r_clen);
641 }
642 if (rl->r_jcode) {
643 /* Free JIT code. */
644 bpf_jit_freecode(rl->r_jcode);
645 }
646 if (rl->r_dict) {
647 /* Destroy the dictionary. */
648 prop_object_release(rl->r_dict);
649 }
650 kmem_free(rl, sizeof(npf_rule_t));
651 }
652
653 /*
654 * npf_rule_getid: return the unique ID of a rule.
655 * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
656 * npf_rule_getnat: get NAT policy assigned to the rule.
657 */
658
659 uint64_t
660 npf_rule_getid(const npf_rule_t *rl)
661 {
662 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
663 return rl->r_id;
664 }
665
666 npf_rproc_t *
667 npf_rule_getrproc(const npf_rule_t *rl)
668 {
669 npf_rproc_t *rp = rl->r_rproc;
670
671 if (rp) {
672 npf_rproc_acquire(rp);
673 }
674 return rp;
675 }
676
677 npf_natpolicy_t *
678 npf_rule_getnat(const npf_rule_t *rl)
679 {
680 return rl->r_natp;
681 }
682
683 /*
684 * npf_rule_setnat: assign NAT policy to the rule and insert into the
685 * NAT policy list in the ruleset.
686 */
687 void
688 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
689 {
690 KASSERT(rl->r_natp == NULL);
691 rl->r_natp = np;
692 }
693
694 /*
695 * npf_rule_inspect: match the interface, direction and run the filter code.
696 * Returns true if rule matches and false otherwise.
697 */
698 static inline bool
699 npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
700 const int di_mask, const u_int ifid)
701 {
702 /* Match the interface. */
703 if (rl->r_ifid && rl->r_ifid != ifid) {
704 return false;
705 }
706
707 /* Match the direction. */
708 if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
709 if ((rl->r_attr & di_mask) == 0)
710 return false;
711 }
712
713 /* Any code? */
714 if (rl->r_jcode == rl->r_code) {
715 KASSERT(rl->r_jcode == NULL);
716 KASSERT(rl->r_code == NULL);
717 return true;
718 }
719 KASSERT(rl->r_type == NPF_CODE_BPF);
720 return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
721 }
722
723 /*
724 * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
725 * This is only for the dynamic rules. Subrules cannot have nested rules.
726 */
727 static npf_rule_t *
728 npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args,
729 const int di_mask, const u_int ifid)
730 {
731 npf_rule_t *final_rl = NULL, *rl;
732
733 KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
734
735 TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
736 if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
737 continue;
738 }
739 if (rl->r_attr & NPF_RULE_FINAL) {
740 return rl;
741 }
742 final_rl = rl;
743 }
744 return final_rl;
745 }
746
747 /*
748 * npf_ruleset_inspect: inspect the packet against the given ruleset.
749 *
750 * Loop through the rules in the set and run the byte-code of each rule
751 * against the packet (nbuf chain). If sub-ruleset is found, inspect it.
752 */
753 npf_rule_t *
754 npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
755 const int di, const int layer)
756 {
757 nbuf_t *nbuf = npc->npc_nbuf;
758 const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
759 const u_int nitems = rlset->rs_nitems;
760 const u_int ifid = nbuf->nb_ifid;
761 npf_rule_t *final_rl = NULL;
762 bpf_args_t bc_args;
763 u_int n = 0;
764
765 KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
766
767 /*
768 * Prepare the external memory store and the arguments for
769 * the BPF programs to be executed.
770 */
771 uint32_t bc_words[NPF_BPF_NWORDS];
772 npf_bpf_prepare(npc, &bc_args, bc_words);
773
774 while (n < nitems) {
775 npf_rule_t *rl = rlset->rs_rules[n];
776 const u_int skip_to = rl->r_skip_to;
777 const uint32_t attr = rl->r_attr;
778
779 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
780 KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
781 KASSERT(n < skip_to);
782
783 /* Group is a barrier: return a matching if found any. */
784 if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
785 break;
786 }
787
788 /* Main inspection of the rule. */
789 if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
790 n = skip_to;
791 continue;
792 }
793
794 if (NPF_DYNAMIC_GROUP_P(attr)) {
795 /*
796 * If this is a dynamic rule, re-inspect the subrules.
797 * If it has any matching rule, then it is final.
798 */
799 rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
800 if (rl != NULL) {
801 final_rl = rl;
802 break;
803 }
804 } else if ((attr & NPF_RULE_GROUP) == 0) {
805 /*
806 * Groups themselves are not matching.
807 */
808 final_rl = rl;
809 }
810
811 /* Set the matching rule and check for "final". */
812 if (attr & NPF_RULE_FINAL) {
813 break;
814 }
815 n++;
816 }
817
818 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
819 return final_rl;
820 }
821
822 /*
823 * npf_rule_conclude: return decision and the flags for conclusion.
824 *
825 * => Returns ENETUNREACH if "block" and 0 if "pass".
826 */
827 int
828 npf_rule_conclude(const npf_rule_t *rl, int *retfl)
829 {
830 /* If not passing - drop the packet. */
831 *retfl = rl->r_attr;
832 return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
833 }
834