npf_ruleset.c revision 1.34 1 /* $NetBSD: npf_ruleset.c,v 1.34 2014/07/20 00:37:41 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * NPF ruleset module.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.34 2014/07/20 00:37:41 rmind Exp $");
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/atomic.h>
43 #include <sys/kmem.h>
44 #include <sys/queue.h>
45 #include <sys/mbuf.h>
46 #include <sys/types.h>
47
48 #include <net/bpf.h>
49 #include <net/bpfjit.h>
50 #include <net/pfil.h>
51 #include <net/if.h>
52
53 #include "npf_impl.h"
54
55 struct npf_ruleset {
56 /*
57 * - List of all rules.
58 * - Dynamic (i.e. named) rules.
59 * - G/C list for convenience.
60 */
61 LIST_HEAD(, npf_rule) rs_all;
62 LIST_HEAD(, npf_rule) rs_dynamic;
63 LIST_HEAD(, npf_rule) rs_gc;
64
65 /* Unique ID counter. */
66 uint64_t rs_idcnt;
67
68 /* Number of array slots and active rules. */
69 u_int rs_slots;
70 u_int rs_nitems;
71
72 /* Array of ordered rules. */
73 npf_rule_t * rs_rules[];
74 };
75
76 struct npf_rule {
77 /* Attributes, interface and skip slot. */
78 uint32_t r_attr;
79 u_int r_ifid;
80 u_int r_skip_to;
81
82 /* Code to process, if any. */
83 int r_type;
84 bpfjit_func_t r_jcode;
85 void * r_code;
86 size_t r_clen;
87
88 /* NAT policy (optional), rule procedure and subset. */
89 npf_natpolicy_t * r_natp;
90 npf_rproc_t * r_rproc;
91
92 /* Rule priority: (highest) 1, 2 ... n (lowest). */
93 pri_t r_priority;
94
95 /*
96 * Dynamic group: subset queue and a dynamic group list entry.
97 * Dynamic rule: entry and the parent rule (the group).
98 */
99 union {
100 TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
101 TAILQ_ENTRY(npf_rule) r_entry;
102 } /* C11 */;
103 union {
104 LIST_ENTRY(npf_rule) r_dentry;
105 npf_rule_t * r_parent;
106 } /* C11 */;
107
108 /* Rule ID and the original dictionary. */
109 uint64_t r_id;
110 prop_dictionary_t r_dict;
111
112 /* Rule name and all-list entry. */
113 char r_name[NPF_RULE_MAXNAMELEN];
114 LIST_ENTRY(npf_rule) r_aentry;
115
116 /* Key (optional). */
117 uint8_t r_key[NPF_RULE_MAXKEYLEN];
118 };
119
120 /*
121 * Private attributes - must be in the NPF_RULE_PRIVMASK range.
122 */
123 #define NPF_RULE_KEEPNAT (0x01000000 & NPF_RULE_PRIVMASK)
124
125 #define NPF_DYNAMIC_GROUP_P(attr) \
126 (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
127
128 #define NPF_DYNAMIC_RULE_P(attr) \
129 (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
130
131 npf_ruleset_t *
132 npf_ruleset_create(size_t slots)
133 {
134 size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
135 npf_ruleset_t *rlset;
136
137 rlset = kmem_zalloc(len, KM_SLEEP);
138 LIST_INIT(&rlset->rs_dynamic);
139 LIST_INIT(&rlset->rs_all);
140 LIST_INIT(&rlset->rs_gc);
141 rlset->rs_slots = slots;
142
143 return rlset;
144 }
145
146 static void
147 npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
148 {
149 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
150 LIST_REMOVE(rl, r_dentry);
151 }
152 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
153 npf_rule_t *rg = rl->r_parent;
154 TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
155 }
156 LIST_REMOVE(rl, r_aentry);
157 }
158
159 void
160 npf_ruleset_destroy(npf_ruleset_t *rlset)
161 {
162 size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
163 npf_rule_t *rl;
164
165 while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
166 npf_ruleset_unlink(rlset, rl);
167 npf_rule_free(rl);
168 }
169 KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
170 KASSERT(LIST_EMPTY(&rlset->rs_gc));
171 kmem_free(rlset, len);
172 }
173
174 /*
175 * npf_ruleset_insert: insert the rule into the specified ruleset.
176 */
177 void
178 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
179 {
180 u_int n = rlset->rs_nitems;
181
182 KASSERT(n < rlset->rs_slots);
183
184 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
185 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
186 LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
187 } else {
188 KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
189 rl->r_attr &= ~NPF_RULE_DYNAMIC;
190 }
191
192 rlset->rs_rules[n] = rl;
193 rlset->rs_nitems++;
194
195 if (rl->r_skip_to < ++n) {
196 rl->r_skip_to = n;
197 }
198 }
199
200 static npf_rule_t *
201 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
202 {
203 npf_rule_t *rl;
204
205 KASSERT(npf_config_locked_p());
206
207 LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
208 KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
209 if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
210 break;
211 }
212 return rl;
213 }
214
215 int
216 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
217 {
218 npf_rule_t *rg, *it;
219 pri_t priocmd;
220
221 rg = npf_ruleset_lookup(rlset, rname);
222 if (rg == NULL) {
223 return ESRCH;
224 }
225 if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
226 return EINVAL;
227 }
228
229 /* Dynamic rule - assign a unique ID and save the parent. */
230 rl->r_id = ++rlset->rs_idcnt;
231 rl->r_parent = rg;
232
233 /*
234 * Rule priority: (highest) 1, 2 ... n (lowest).
235 * Negative priority indicates an operation and is reset to zero.
236 */
237 if ((priocmd = rl->r_priority) < 0) {
238 rl->r_priority = 0;
239 }
240
241 switch (priocmd) {
242 case NPF_PRI_FIRST:
243 TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
244 if (rl->r_priority <= it->r_priority)
245 break;
246 }
247 if (it) {
248 TAILQ_INSERT_BEFORE(it, rl, r_entry);
249 } else {
250 TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
251 }
252 break;
253 case NPF_PRI_LAST:
254 default:
255 TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
256 if (rl->r_priority < it->r_priority)
257 break;
258 }
259 if (it) {
260 TAILQ_INSERT_BEFORE(it, rl, r_entry);
261 } else {
262 TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
263 }
264 break;
265 }
266
267 /* Finally, add into the all-list. */
268 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
269 return 0;
270 }
271
272 int
273 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
274 {
275 npf_rule_t *rg, *rl;
276
277 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
278 return ESRCH;
279 }
280 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
281 KASSERT(rl->r_parent == rg);
282
283 /* Compare ID. On match, remove and return. */
284 if (rl->r_id == id) {
285 npf_ruleset_unlink(rlset, rl);
286 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
287 return 0;
288 }
289 }
290 return ENOENT;
291 }
292
293 int
294 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
295 const void *key, size_t len)
296 {
297 npf_rule_t *rg, *rl;
298
299 KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
300
301 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
302 return ESRCH;
303 }
304
305 /* Find the last in the list. */
306 TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
307 KASSERT(rl->r_parent == rg);
308
309 /* Compare the key. On match, remove and return. */
310 if (memcmp(rl->r_key, key, len) == 0) {
311 npf_ruleset_unlink(rlset, rl);
312 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
313 return 0;
314 }
315 }
316 return ENOENT;
317 }
318
319 prop_dictionary_t
320 npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
321 {
322 prop_dictionary_t rldict;
323 prop_array_t rules;
324 npf_rule_t *rg, *rl;
325
326 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
327 return NULL;
328 }
329 if ((rldict = prop_dictionary_create()) == NULL) {
330 return NULL;
331 }
332 if ((rules = prop_array_create()) == NULL) {
333 prop_object_release(rldict);
334 return NULL;
335 }
336
337 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
338 KASSERT(rl->r_parent == rg);
339 if (rl->r_dict && !prop_array_add(rules, rl->r_dict)) {
340 prop_object_release(rldict);
341 prop_object_release(rules);
342 return NULL;
343 }
344 }
345
346 if (!prop_dictionary_set(rldict, "rules", rules)) {
347 prop_object_release(rldict);
348 rldict = NULL;
349 }
350 prop_object_release(rules);
351 return rldict;
352 }
353
354 int
355 npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
356 {
357 npf_rule_t *rg, *rl;
358
359 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
360 return ESRCH;
361 }
362 while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
363 KASSERT(rl->r_parent == rg);
364 npf_ruleset_unlink(rlset, rl);
365 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
366 }
367 return 0;
368 }
369
370 void
371 npf_ruleset_gc(npf_ruleset_t *rlset)
372 {
373 npf_rule_t *rl;
374
375 while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
376 LIST_REMOVE(rl, r_aentry);
377 npf_rule_free(rl);
378 }
379 }
380
381 /*
382 * npf_ruleset_reload: prepare the new ruleset by scanning the active
383 * ruleset and 1) sharing the dynamic rules 2) sharing NAT policies.
384 *
385 * => The active (old) ruleset should be exclusively locked.
386 */
387 void
388 npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset)
389 {
390 npf_rule_t *rg, *rl;
391
392 KASSERT(npf_config_locked_p());
393
394 /*
395 * Scan the dynamic rules and share (migrate) if needed.
396 */
397 LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
398 npf_rule_t *actrg;
399
400 /* Look for a dynamic ruleset group with such name. */
401 actrg = npf_ruleset_lookup(oldset, rg->r_name);
402 if (actrg == NULL) {
403 continue;
404 }
405
406 /*
407 * Copy the list-head structure. This is necessary because
408 * the rules are still active and therefore accessible for
409 * inspection via the old ruleset.
410 */
411 memcpy(&rg->r_subset, &actrg->r_subset, sizeof(rg->r_subset));
412 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
413 /*
414 * We can safely migrate to the new all-rule list
415 * and re-set the parent rule, though.
416 */
417 LIST_REMOVE(rl, r_aentry);
418 LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
419 rl->r_parent = rg;
420 }
421 }
422
423 /*
424 * Scan all rules in the new ruleset and share NAT policies.
425 */
426 LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
427 npf_natpolicy_t *np;
428 npf_rule_t *actrl;
429
430 /* Does the rule have a NAT policy associated? */
431 if ((np = rl->r_natp) == NULL) {
432 continue;
433 }
434 /* Does it match with any policy in the active ruleset? */
435 if ((actrl = npf_ruleset_matchnat(oldset, np)) == NULL) {
436 continue;
437 }
438
439 /*
440 * Inherit the matching NAT policy and check other ones
441 * in the new ruleset for sharing the portmap.
442 */
443 rl->r_natp = actrl->r_natp;
444 npf_ruleset_sharepm(newset, rl->r_natp);
445
446 /*
447 * Finally, mark the active rule to not destroy its NAT
448 * policy later as we inherited it (but the rule must be
449 * kept active for now). Destroy the new/unused policy.
450 */
451 actrl->r_attr |= NPF_RULE_KEEPNAT;
452 npf_nat_freepolicy(np);
453 }
454
455 /* Inherit the ID counter. */
456 newset->rs_idcnt = oldset->rs_idcnt;
457 }
458
459 /*
460 * npf_ruleset_matchnat: find a matching NAT policy in the ruleset.
461 */
462 npf_rule_t *
463 npf_ruleset_matchnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
464 {
465 npf_rule_t *rl;
466
467 /* Find a matching NAT policy in the old ruleset. */
468 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
469 if (rl->r_natp && npf_nat_matchpolicy(rl->r_natp, mnp))
470 break;
471 }
472 return rl;
473 }
474
475 npf_rule_t *
476 npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
477 {
478 npf_natpolicy_t *np;
479 npf_rule_t *rl;
480
481 /* Find a matching NAT policy in the old ruleset. */
482 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
483 /*
484 * NAT policy might not yet be set during the creation of
485 * the ruleset (in such case, rule is for our policy), or
486 * policies might be equal due to rule exchange on reload.
487 */
488 np = rl->r_natp;
489 if (np == NULL || np == mnp)
490 continue;
491 if (npf_nat_sharepm(np, mnp))
492 break;
493 }
494 return rl;
495 }
496
497 /*
498 * npf_ruleset_freealg: inspect the ruleset and disassociate specified
499 * ALG from all NAT entries using it.
500 */
501 void
502 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
503 {
504 npf_rule_t *rl;
505 npf_natpolicy_t *np;
506
507 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
508 if ((np = rl->r_natp) != NULL) {
509 npf_nat_freealg(np, alg);
510 }
511 }
512 }
513
514 /*
515 * npf_rule_alloc: allocate a rule and initialise it.
516 */
517 npf_rule_t *
518 npf_rule_alloc(prop_dictionary_t rldict)
519 {
520 npf_rule_t *rl;
521 const char *rname;
522
523 /* Allocate a rule structure. */
524 rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
525 TAILQ_INIT(&rl->r_subset);
526 rl->r_natp = NULL;
527
528 /* Name (optional) */
529 if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
530 strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
531 } else {
532 rl->r_name[0] = '\0';
533 }
534
535 /* Attributes, priority and interface ID (optional). */
536 prop_dictionary_get_uint32(rldict, "attributes", &rl->r_attr);
537 prop_dictionary_get_int32(rldict, "priority", &rl->r_priority);
538 rl->r_attr &= ~NPF_RULE_PRIVMASK;
539
540 if (prop_dictionary_get_cstring_nocopy(rldict, "interface", &rname)) {
541 if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
542 kmem_free(rl, sizeof(npf_rule_t));
543 return NULL;
544 }
545 } else {
546 rl->r_ifid = 0;
547 }
548
549 /* Get the skip-to index. No need to validate it. */
550 prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
551
552 /* Key (optional). */
553 prop_object_t obj = prop_dictionary_get(rldict, "key");
554 const void *key = prop_data_data_nocopy(obj);
555
556 if (key) {
557 size_t len = prop_data_size(obj);
558 if (len > NPF_RULE_MAXKEYLEN) {
559 kmem_free(rl, sizeof(npf_rule_t));
560 return NULL;
561 }
562 memcpy(rl->r_key, key, len);
563 }
564
565 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
566 rl->r_dict = prop_dictionary_copy(rldict);
567 }
568
569 return rl;
570 }
571
572 /*
573 * npf_rule_setcode: assign filter code to the rule.
574 *
575 * => The code must be validated by the caller.
576 * => JIT compilation may be performed here.
577 */
578 void
579 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
580 {
581 KASSERT(type == NPF_CODE_BPF);
582
583 if ((rl->r_jcode = npf_bpf_compile(code, size)) == NULL) {
584 rl->r_code = code;
585 rl->r_clen = size;
586 } else {
587 rl->r_code = NULL;
588 }
589 rl->r_type = type;
590 }
591
592 /*
593 * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
594 */
595 void
596 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
597 {
598 npf_rproc_acquire(rp);
599 rl->r_rproc = rp;
600 }
601
602 /*
603 * npf_rule_free: free the specified rule.
604 */
605 void
606 npf_rule_free(npf_rule_t *rl)
607 {
608 npf_natpolicy_t *np = rl->r_natp;
609 npf_rproc_t *rp = rl->r_rproc;
610
611 if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
612 /* Free NAT policy. */
613 npf_nat_freepolicy(np);
614 }
615 if (rp) {
616 /* Release rule procedure. */
617 npf_rproc_release(rp);
618 }
619 if (rl->r_code) {
620 /* Free byte-code. */
621 kmem_free(rl->r_code, rl->r_clen);
622 }
623 if (rl->r_jcode) {
624 /* Free JIT code. */
625 bpf_jit_freecode(rl->r_jcode);
626 }
627 if (rl->r_dict) {
628 /* Destroy the dictionary. */
629 prop_object_release(rl->r_dict);
630 }
631 kmem_free(rl, sizeof(npf_rule_t));
632 }
633
634 /*
635 * npf_rule_getid: return the unique ID of a rule.
636 * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
637 * npf_rule_getnat: get NAT policy assigned to the rule.
638 */
639
640 uint64_t
641 npf_rule_getid(const npf_rule_t *rl)
642 {
643 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
644 return rl->r_id;
645 }
646
647 npf_rproc_t *
648 npf_rule_getrproc(const npf_rule_t *rl)
649 {
650 npf_rproc_t *rp = rl->r_rproc;
651
652 if (rp) {
653 npf_rproc_acquire(rp);
654 }
655 return rp;
656 }
657
658 npf_natpolicy_t *
659 npf_rule_getnat(const npf_rule_t *rl)
660 {
661 return rl->r_natp;
662 }
663
664 /*
665 * npf_rule_setnat: assign NAT policy to the rule and insert into the
666 * NAT policy list in the ruleset.
667 */
668 void
669 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
670 {
671 KASSERT(rl->r_natp == NULL);
672 rl->r_natp = np;
673 }
674
675 /*
676 * npf_rule_inspect: match the interface, direction and run the filter code.
677 * Returns true if rule matches and false otherwise.
678 */
679 static inline bool
680 npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
681 const int di_mask, const u_int ifid)
682 {
683 /* Match the interface. */
684 if (rl->r_ifid && rl->r_ifid != ifid) {
685 return false;
686 }
687
688 /* Match the direction. */
689 if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
690 if ((rl->r_attr & di_mask) == 0)
691 return false;
692 }
693
694 /* Any code? */
695 if (rl->r_jcode == rl->r_code) {
696 KASSERT(rl->r_jcode == NULL);
697 KASSERT(rl->r_code == NULL);
698 return true;
699 }
700 KASSERT(rl->r_type == NPF_CODE_BPF);
701 return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
702 }
703
704 /*
705 * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
706 * This is only for the dynamic rules. Subrules cannot have nested rules.
707 */
708 static npf_rule_t *
709 npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args,
710 const int di_mask, const u_int ifid)
711 {
712 npf_rule_t *final_rl = NULL, *rl;
713
714 KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
715
716 TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
717 if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
718 continue;
719 }
720 if (rl->r_attr & NPF_RULE_FINAL) {
721 return rl;
722 }
723 final_rl = rl;
724 }
725 return final_rl;
726 }
727
728 /*
729 * npf_ruleset_inspect: inspect the packet against the given ruleset.
730 *
731 * Loop through the rules in the set and run the byte-code of each rule
732 * against the packet (nbuf chain). If sub-ruleset is found, inspect it.
733 */
734 npf_rule_t *
735 npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
736 const int di, const int layer)
737 {
738 nbuf_t *nbuf = npc->npc_nbuf;
739 const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
740 const u_int nitems = rlset->rs_nitems;
741 const u_int ifid = nbuf->nb_ifid;
742 npf_rule_t *final_rl = NULL;
743 bpf_args_t bc_args;
744 u_int n = 0;
745
746 KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
747
748 /*
749 * Prepare the external memory store and the arguments for
750 * the BPF programs to be executed.
751 */
752 uint32_t bc_words[NPF_BPF_NWORDS];
753 npf_bpf_prepare(npc, &bc_args, bc_words);
754
755 while (n < nitems) {
756 npf_rule_t *rl = rlset->rs_rules[n];
757 const u_int skip_to = rl->r_skip_to;
758 const uint32_t attr = rl->r_attr;
759
760 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
761 KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
762 KASSERT(n < skip_to);
763
764 /* Group is a barrier: return a matching if found any. */
765 if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
766 break;
767 }
768
769 /* Main inspection of the rule. */
770 if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
771 n = skip_to;
772 continue;
773 }
774
775 if (NPF_DYNAMIC_GROUP_P(attr)) {
776 /*
777 * If this is a dynamic rule, re-inspect the subrules.
778 * If it has any matching rule, then it is final.
779 */
780 rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
781 if (rl != NULL) {
782 final_rl = rl;
783 break;
784 }
785 } else if ((attr & NPF_RULE_GROUP) == 0) {
786 /*
787 * Groups themselves are not matching.
788 */
789 final_rl = rl;
790 }
791
792 /* Set the matching rule and check for "final". */
793 if (attr & NPF_RULE_FINAL) {
794 break;
795 }
796 n++;
797 }
798
799 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
800 return final_rl;
801 }
802
803 /*
804 * npf_rule_conclude: return decision and the flags for conclusion.
805 *
806 * => Returns ENETUNREACH if "block" and 0 if "pass".
807 */
808 int
809 npf_rule_conclude(const npf_rule_t *rl, int *retfl)
810 {
811 /* If not passing - drop the packet. */
812 *retfl = rl->r_attr;
813 return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
814 }
815