npf_ruleset.c revision 1.38 1 /* $NetBSD: npf_ruleset.c,v 1.38 2014/11/26 21:25:35 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * NPF ruleset module.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.38 2014/11/26 21:25:35 rmind Exp $");
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/atomic.h>
43 #include <sys/kmem.h>
44 #include <sys/queue.h>
45 #include <sys/mbuf.h>
46 #include <sys/types.h>
47
48 #include <net/bpf.h>
49 #include <net/bpfjit.h>
50 #include <net/pfil.h>
51 #include <net/if.h>
52
53 #include "npf_impl.h"
54
55 struct npf_ruleset {
56 /*
57 * - List of all rules.
58 * - Dynamic (i.e. named) rules.
59 * - G/C list for convenience.
60 */
61 LIST_HEAD(, npf_rule) rs_all;
62 LIST_HEAD(, npf_rule) rs_dynamic;
63 LIST_HEAD(, npf_rule) rs_gc;
64
65 /* Unique ID counter. */
66 uint64_t rs_idcnt;
67
68 /* Number of array slots and active rules. */
69 u_int rs_slots;
70 u_int rs_nitems;
71
72 /* Array of ordered rules. */
73 npf_rule_t * rs_rules[];
74 };
75
76 struct npf_rule {
77 /* Attributes, interface and skip slot. */
78 uint32_t r_attr;
79 u_int r_ifid;
80 u_int r_skip_to;
81
82 /* Code to process, if any. */
83 int r_type;
84 bpfjit_func_t r_jcode;
85 void * r_code;
86 u_int r_clen;
87
88 /* NAT policy (optional), rule procedure and subset. */
89 npf_natpolicy_t * r_natp;
90 npf_rproc_t * r_rproc;
91
92 /* Rule priority: (highest) 1, 2 ... n (lowest). */
93 pri_t r_priority;
94
95 /*
96 * Dynamic group: subset queue and a dynamic group list entry.
97 * Dynamic rule: entry and the parent rule (the group).
98 */
99 union {
100 TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
101 TAILQ_ENTRY(npf_rule) r_entry;
102 } /* C11 */;
103 union {
104 LIST_ENTRY(npf_rule) r_dentry;
105 npf_rule_t * r_parent;
106 } /* C11 */;
107
108 /* Rule ID, name and the optional key. */
109 uint64_t r_id;
110 char r_name[NPF_RULE_MAXNAMELEN];
111 uint8_t r_key[NPF_RULE_MAXKEYLEN];
112
113 /* All-list entry and the auxiliary info. */
114 LIST_ENTRY(npf_rule) r_aentry;
115 prop_data_t r_info;
116 };
117
118 #define SKIPTO_ADJ_FLAG (1U << 31)
119 #define SKIPTO_MASK (SKIPTO_ADJ_FLAG - 1)
120
121 static int npf_rule_export(const npf_ruleset_t *,
122 const npf_rule_t *, prop_dictionary_t);
123
124 /*
125 * Private attributes - must be in the NPF_RULE_PRIVMASK range.
126 */
127 #define NPF_RULE_KEEPNAT (0x01000000 & NPF_RULE_PRIVMASK)
128
129 #define NPF_DYNAMIC_GROUP_P(attr) \
130 (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
131
132 #define NPF_DYNAMIC_RULE_P(attr) \
133 (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
134
135 npf_ruleset_t *
136 npf_ruleset_create(size_t slots)
137 {
138 size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
139 npf_ruleset_t *rlset;
140
141 rlset = kmem_zalloc(len, KM_SLEEP);
142 LIST_INIT(&rlset->rs_dynamic);
143 LIST_INIT(&rlset->rs_all);
144 LIST_INIT(&rlset->rs_gc);
145 rlset->rs_slots = slots;
146
147 return rlset;
148 }
149
150 static void
151 npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
152 {
153 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
154 LIST_REMOVE(rl, r_dentry);
155 }
156 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
157 npf_rule_t *rg = rl->r_parent;
158 TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
159 }
160 LIST_REMOVE(rl, r_aentry);
161 }
162
163 void
164 npf_ruleset_destroy(npf_ruleset_t *rlset)
165 {
166 size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
167 npf_rule_t *rl;
168
169 while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
170 npf_ruleset_unlink(rlset, rl);
171 npf_rule_free(rl);
172 }
173 KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
174 KASSERT(LIST_EMPTY(&rlset->rs_gc));
175 kmem_free(rlset, len);
176 }
177
178 /*
179 * npf_ruleset_insert: insert the rule into the specified ruleset.
180 */
181 void
182 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
183 {
184 u_int n = rlset->rs_nitems;
185
186 KASSERT(n < rlset->rs_slots);
187
188 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
189 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
190 LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
191 } else {
192 KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
193 rl->r_attr &= ~NPF_RULE_DYNAMIC;
194 }
195
196 rlset->rs_rules[n] = rl;
197 rlset->rs_nitems++;
198
199 if (rl->r_skip_to < ++n) {
200 rl->r_skip_to = SKIPTO_ADJ_FLAG | n;
201 }
202 }
203
204 static npf_rule_t *
205 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
206 {
207 npf_rule_t *rl;
208
209 KASSERT(npf_config_locked_p());
210
211 LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
212 KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
213 if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
214 break;
215 }
216 return rl;
217 }
218
219 int
220 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
221 {
222 npf_rule_t *rg, *it;
223 pri_t priocmd;
224
225 rg = npf_ruleset_lookup(rlset, rname);
226 if (rg == NULL) {
227 return ESRCH;
228 }
229 if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
230 return EINVAL;
231 }
232
233 /* Dynamic rule - assign a unique ID and save the parent. */
234 rl->r_id = ++rlset->rs_idcnt;
235 rl->r_parent = rg;
236
237 /*
238 * Rule priority: (highest) 1, 2 ... n (lowest).
239 * Negative priority indicates an operation and is reset to zero.
240 */
241 if ((priocmd = rl->r_priority) < 0) {
242 rl->r_priority = 0;
243 }
244
245 switch (priocmd) {
246 case NPF_PRI_FIRST:
247 TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
248 if (rl->r_priority <= it->r_priority)
249 break;
250 }
251 if (it) {
252 TAILQ_INSERT_BEFORE(it, rl, r_entry);
253 } else {
254 TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
255 }
256 break;
257 case NPF_PRI_LAST:
258 default:
259 TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
260 if (rl->r_priority < it->r_priority)
261 break;
262 }
263 if (it) {
264 TAILQ_INSERT_BEFORE(it, rl, r_entry);
265 } else {
266 TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
267 }
268 break;
269 }
270
271 /* Finally, add into the all-list. */
272 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
273 return 0;
274 }
275
276 int
277 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
278 {
279 npf_rule_t *rg, *rl;
280
281 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
282 return ESRCH;
283 }
284 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
285 KASSERT(rl->r_parent == rg);
286
287 /* Compare ID. On match, remove and return. */
288 if (rl->r_id == id) {
289 npf_ruleset_unlink(rlset, rl);
290 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
291 return 0;
292 }
293 }
294 return ENOENT;
295 }
296
297 int
298 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
299 const void *key, size_t len)
300 {
301 npf_rule_t *rg, *rl;
302
303 KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
304
305 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
306 return ESRCH;
307 }
308
309 /* Find the last in the list. */
310 TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
311 KASSERT(rl->r_parent == rg);
312
313 /* Compare the key. On match, remove and return. */
314 if (memcmp(rl->r_key, key, len) == 0) {
315 npf_ruleset_unlink(rlset, rl);
316 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
317 return 0;
318 }
319 }
320 return ENOENT;
321 }
322
323 prop_dictionary_t
324 npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
325 {
326 prop_dictionary_t rgdict;
327 prop_array_t rules;
328 npf_rule_t *rg, *rl;
329
330 KASSERT(npf_config_locked_p());
331
332 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
333 return NULL;
334 }
335 if ((rgdict = prop_dictionary_create()) == NULL) {
336 return NULL;
337 }
338 if ((rules = prop_array_create()) == NULL) {
339 prop_object_release(rgdict);
340 return NULL;
341 }
342
343 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
344 prop_dictionary_t rldict;
345
346 rldict = prop_dictionary_create();
347 KASSERT(rl->r_parent == rg);
348
349 if (npf_rule_export(rlset, rl, rldict)) {
350 prop_object_release(rldict);
351 prop_object_release(rules);
352 return NULL;
353 }
354 prop_array_add(rules, rldict);
355 prop_object_release(rldict);
356 }
357
358 if (!prop_dictionary_set(rgdict, "rules", rules)) {
359 prop_object_release(rgdict);
360 rgdict = NULL;
361 }
362 prop_object_release(rules);
363 return rgdict;
364 }
365
366 int
367 npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
368 {
369 npf_rule_t *rg, *rl;
370
371 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
372 return ESRCH;
373 }
374 while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
375 KASSERT(rl->r_parent == rg);
376 npf_ruleset_unlink(rlset, rl);
377 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
378 }
379 return 0;
380 }
381
382 int
383 npf_ruleset_export(const npf_ruleset_t *rlset, prop_array_t rules)
384 {
385 const u_int nitems = rlset->rs_nitems;
386 int error = 0;
387 u_int n = 0;
388
389 KASSERT(npf_config_locked_p());
390
391 while (n < nitems) {
392 const npf_rule_t *rl = rlset->rs_rules[n];
393 const npf_natpolicy_t *natp = rl->r_natp;
394 prop_dictionary_t rldict;
395
396 rldict = prop_dictionary_create();
397 if ((error = npf_rule_export(rlset, rl, rldict)) != 0) {
398 prop_object_release(rldict);
399 break;
400 }
401 if (natp && (error = npf_nat_policyexport(natp, rldict)) != 0) {
402 prop_object_release(rldict);
403 break;
404 }
405 prop_array_add(rules, rldict);
406 prop_object_release(rldict);
407 n++;
408 }
409 return error;
410 }
411
412 void
413 npf_ruleset_gc(npf_ruleset_t *rlset)
414 {
415 npf_rule_t *rl;
416
417 while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
418 LIST_REMOVE(rl, r_aentry);
419 npf_rule_free(rl);
420 }
421 }
422
423 /*
424 * npf_ruleset_reload: prepare the new ruleset by scanning the active
425 * ruleset and 1) sharing the dynamic rules 2) sharing NAT policies.
426 *
427 * => The active (old) ruleset should be exclusively locked.
428 */
429 void
430 npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset)
431 {
432 npf_rule_t *rg, *rl;
433 uint64_t nid = 0;
434
435 KASSERT(npf_config_locked_p());
436
437 /*
438 * Scan the dynamic rules and share (migrate) if needed.
439 */
440 LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
441 npf_rule_t *actrg;
442
443 /* Look for a dynamic ruleset group with such name. */
444 actrg = npf_ruleset_lookup(oldset, rg->r_name);
445 if (actrg == NULL) {
446 continue;
447 }
448
449 /*
450 * Copy the list-head structure. This is necessary because
451 * the rules are still active and therefore accessible for
452 * inspection via the old ruleset.
453 */
454 memcpy(&rg->r_subset, &actrg->r_subset, sizeof(rg->r_subset));
455 TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
456 /*
457 * We can safely migrate to the new all-rule list
458 * and re-set the parent rule, though.
459 */
460 LIST_REMOVE(rl, r_aentry);
461 LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
462 rl->r_parent = rg;
463 }
464 }
465
466 /*
467 * Scan all rules in the new ruleset and share NAT policies.
468 * Also, assign a unique ID for each policy here.
469 */
470 LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
471 npf_natpolicy_t *np;
472 npf_rule_t *actrl;
473
474 /* Does the rule have a NAT policy associated? */
475 if ((np = rl->r_natp) == NULL) {
476 continue;
477 }
478
479 /*
480 * First, try to share the active port map. If this
481 * policy will be unused, npf_nat_freepolicy() will
482 * drop the reference.
483 */
484 npf_ruleset_sharepm(oldset, np);
485
486 /* Does it match with any policy in the active ruleset? */
487 LIST_FOREACH(actrl, &oldset->rs_all, r_aentry) {
488 if (!actrl->r_natp)
489 continue;
490 if ((actrl->r_attr & NPF_RULE_KEEPNAT) != 0)
491 continue;
492 if (npf_nat_cmppolicy(actrl->r_natp, np))
493 break;
494 }
495 if (!actrl) {
496 /* No: just set the ID and continue. */
497 npf_nat_setid(np, ++nid);
498 continue;
499 }
500
501 /* Yes: inherit the matching NAT policy. */
502 rl->r_natp = actrl->r_natp;
503 npf_nat_setid(rl->r_natp, ++nid);
504
505 /*
506 * Finally, mark the active rule to not destroy its NAT
507 * policy later as we inherited it (but the rule must be
508 * kept active for now). Destroy the new/unused policy.
509 */
510 actrl->r_attr |= NPF_RULE_KEEPNAT;
511 npf_nat_freepolicy(np);
512 }
513
514 /* Inherit the ID counter. */
515 newset->rs_idcnt = oldset->rs_idcnt;
516 }
517
518 npf_rule_t *
519 npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
520 {
521 npf_natpolicy_t *np;
522 npf_rule_t *rl;
523
524 /* Find a matching NAT policy in the old ruleset; skip the self. */
525 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
526 np = rl->r_natp;
527 if (np == NULL || np == mnp)
528 continue;
529 if (npf_nat_sharepm(np, mnp))
530 break;
531 }
532 return rl;
533 }
534
535 npf_natpolicy_t *
536 npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id)
537 {
538 npf_rule_t *rl;
539
540 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
541 npf_natpolicy_t *np = rl->r_natp;
542 if (np && npf_nat_getid(np) == id) {
543 return np;
544 }
545 }
546 return NULL;
547 }
548
549 /*
550 * npf_ruleset_freealg: inspect the ruleset and disassociate specified
551 * ALG from all NAT entries using it.
552 */
553 void
554 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
555 {
556 npf_rule_t *rl;
557 npf_natpolicy_t *np;
558
559 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
560 if ((np = rl->r_natp) != NULL) {
561 npf_nat_freealg(np, alg);
562 }
563 }
564 }
565
566 /*
567 * npf_rule_alloc: allocate a rule and initialise it.
568 */
569 npf_rule_t *
570 npf_rule_alloc(prop_dictionary_t rldict)
571 {
572 npf_rule_t *rl;
573 const char *rname;
574 prop_data_t d;
575
576 /* Allocate a rule structure. */
577 rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
578 TAILQ_INIT(&rl->r_subset);
579 rl->r_natp = NULL;
580
581 /* Name (optional) */
582 if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
583 strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
584 } else {
585 rl->r_name[0] = '\0';
586 }
587
588 /* Attributes, priority and interface ID (optional). */
589 prop_dictionary_get_uint32(rldict, "attr", &rl->r_attr);
590 prop_dictionary_get_int32(rldict, "prio", &rl->r_priority);
591 rl->r_attr &= ~NPF_RULE_PRIVMASK;
592
593 if (prop_dictionary_get_cstring_nocopy(rldict, "ifname", &rname)) {
594 if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
595 kmem_free(rl, sizeof(npf_rule_t));
596 return NULL;
597 }
598 } else {
599 rl->r_ifid = 0;
600 }
601
602 /* Get the skip-to index. No need to validate it. */
603 prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
604
605 /* Key (optional). */
606 prop_object_t obj = prop_dictionary_get(rldict, "key");
607 const void *key = prop_data_data_nocopy(obj);
608
609 if (key) {
610 size_t len = prop_data_size(obj);
611 if (len > NPF_RULE_MAXKEYLEN) {
612 kmem_free(rl, sizeof(npf_rule_t));
613 return NULL;
614 }
615 memcpy(rl->r_key, key, len);
616 }
617
618 if ((d = prop_dictionary_get(rldict, "info")) != NULL) {
619 rl->r_info = prop_data_copy(d);
620 }
621 return rl;
622 }
623
624 static int
625 npf_rule_export(const npf_ruleset_t *rlset, const npf_rule_t *rl,
626 prop_dictionary_t rldict)
627 {
628 u_int skip_to = 0;
629 prop_data_t d;
630
631 prop_dictionary_set_uint32(rldict, "attr", rl->r_attr);
632 prop_dictionary_set_int32(rldict, "prio", rl->r_priority);
633 if ((rl->r_skip_to & SKIPTO_ADJ_FLAG) == 0) {
634 skip_to = rl->r_skip_to & SKIPTO_MASK;
635 }
636 prop_dictionary_set_uint32(rldict, "skip-to", skip_to);
637 prop_dictionary_set_int32(rldict, "code-type", rl->r_type);
638 if (rl->r_code) {
639 d = prop_data_create_data(rl->r_code, rl->r_clen);
640 prop_dictionary_set_and_rel(rldict, "code", d);
641 }
642
643 if (rl->r_ifid) {
644 const char *ifname = npf_ifmap_getname(rl->r_ifid);
645 prop_dictionary_set_cstring(rldict, "ifname", ifname);
646 }
647 prop_dictionary_set_uint64(rldict, "id", rl->r_id);
648
649 if (rl->r_name[0]) {
650 prop_dictionary_set_cstring(rldict, "name", rl->r_name);
651 }
652 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
653 d = prop_data_create_data(rl->r_key, NPF_RULE_MAXKEYLEN);
654 prop_dictionary_set_and_rel(rldict, "key", d);
655 }
656 if (rl->r_info) {
657 prop_dictionary_set(rldict, "info", rl->r_info);
658 }
659 return 0;
660 }
661
662 /*
663 * npf_rule_setcode: assign filter code to the rule.
664 *
665 * => The code must be validated by the caller.
666 * => JIT compilation may be performed here.
667 */
668 void
669 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
670 {
671 KASSERT(type == NPF_CODE_BPF);
672
673 rl->r_type = type;
674 rl->r_code = code;
675 rl->r_clen = size;
676 rl->r_jcode = npf_bpf_compile(code, size);
677 }
678
679 /*
680 * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
681 */
682 void
683 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
684 {
685 npf_rproc_acquire(rp);
686 rl->r_rproc = rp;
687 }
688
689 /*
690 * npf_rule_free: free the specified rule.
691 */
692 void
693 npf_rule_free(npf_rule_t *rl)
694 {
695 npf_natpolicy_t *np = rl->r_natp;
696 npf_rproc_t *rp = rl->r_rproc;
697
698 if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
699 /* Free NAT policy. */
700 npf_nat_freepolicy(np);
701 }
702 if (rp) {
703 /* Release rule procedure. */
704 npf_rproc_release(rp);
705 }
706 if (rl->r_code) {
707 /* Free byte-code. */
708 kmem_free(rl->r_code, rl->r_clen);
709 }
710 if (rl->r_jcode) {
711 /* Free JIT code. */
712 bpf_jit_freecode(rl->r_jcode);
713 }
714 if (rl->r_info) {
715 prop_object_release(rl->r_info);
716 }
717 kmem_free(rl, sizeof(npf_rule_t));
718 }
719
720 /*
721 * npf_rule_getid: return the unique ID of a rule.
722 * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
723 * npf_rule_getnat: get NAT policy assigned to the rule.
724 */
725
726 uint64_t
727 npf_rule_getid(const npf_rule_t *rl)
728 {
729 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
730 return rl->r_id;
731 }
732
733 npf_rproc_t *
734 npf_rule_getrproc(const npf_rule_t *rl)
735 {
736 npf_rproc_t *rp = rl->r_rproc;
737
738 if (rp) {
739 npf_rproc_acquire(rp);
740 }
741 return rp;
742 }
743
744 npf_natpolicy_t *
745 npf_rule_getnat(const npf_rule_t *rl)
746 {
747 return rl->r_natp;
748 }
749
750 /*
751 * npf_rule_setnat: assign NAT policy to the rule and insert into the
752 * NAT policy list in the ruleset.
753 */
754 void
755 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
756 {
757 KASSERT(rl->r_natp == NULL);
758 rl->r_natp = np;
759 }
760
761 /*
762 * npf_rule_inspect: match the interface, direction and run the filter code.
763 * Returns true if rule matches and false otherwise.
764 */
765 static inline bool
766 npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
767 const int di_mask, const u_int ifid)
768 {
769 /* Match the interface. */
770 if (rl->r_ifid && rl->r_ifid != ifid) {
771 return false;
772 }
773
774 /* Match the direction. */
775 if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
776 if ((rl->r_attr & di_mask) == 0)
777 return false;
778 }
779
780 /* Any code? */
781 if (!rl->r_code) {
782 KASSERT(rl->r_jcode == NULL);
783 return true;
784 }
785 KASSERT(rl->r_type == NPF_CODE_BPF);
786 return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
787 }
788
789 /*
790 * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
791 * This is only for the dynamic rules. Subrules cannot have nested rules.
792 */
793 static npf_rule_t *
794 npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args,
795 const int di_mask, const u_int ifid)
796 {
797 npf_rule_t *final_rl = NULL, *rl;
798
799 KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
800
801 TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
802 if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
803 continue;
804 }
805 if (rl->r_attr & NPF_RULE_FINAL) {
806 return rl;
807 }
808 final_rl = rl;
809 }
810 return final_rl;
811 }
812
813 /*
814 * npf_ruleset_inspect: inspect the packet against the given ruleset.
815 *
816 * Loop through the rules in the set and run the byte-code of each rule
817 * against the packet (nbuf chain). If sub-ruleset is found, inspect it.
818 */
819 npf_rule_t *
820 npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
821 const int di, const int layer)
822 {
823 nbuf_t *nbuf = npc->npc_nbuf;
824 const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
825 const u_int nitems = rlset->rs_nitems;
826 const u_int ifid = nbuf->nb_ifid;
827 npf_rule_t *final_rl = NULL;
828 bpf_args_t bc_args;
829 u_int n = 0;
830
831 KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
832
833 /*
834 * Prepare the external memory store and the arguments for
835 * the BPF programs to be executed.
836 */
837 uint32_t bc_words[NPF_BPF_NWORDS];
838 npf_bpf_prepare(npc, &bc_args, bc_words);
839
840 while (n < nitems) {
841 npf_rule_t *rl = rlset->rs_rules[n];
842 const u_int skip_to = rl->r_skip_to & SKIPTO_MASK;
843 const uint32_t attr = rl->r_attr;
844
845 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
846 KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
847 KASSERT(n < skip_to);
848
849 /* Group is a barrier: return a matching if found any. */
850 if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
851 break;
852 }
853
854 /* Main inspection of the rule. */
855 if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
856 n = skip_to;
857 continue;
858 }
859
860 if (NPF_DYNAMIC_GROUP_P(attr)) {
861 /*
862 * If this is a dynamic rule, re-inspect the subrules.
863 * If it has any matching rule, then it is final.
864 */
865 rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
866 if (rl != NULL) {
867 final_rl = rl;
868 break;
869 }
870 } else if ((attr & NPF_RULE_GROUP) == 0) {
871 /*
872 * Groups themselves are not matching.
873 */
874 final_rl = rl;
875 }
876
877 /* Set the matching rule and check for "final". */
878 if (attr & NPF_RULE_FINAL) {
879 break;
880 }
881 n++;
882 }
883
884 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
885 return final_rl;
886 }
887
888 /*
889 * npf_rule_conclude: return decision and the flags for conclusion.
890 *
891 * => Returns ENETUNREACH if "block" and 0 if "pass".
892 */
893 int
894 npf_rule_conclude(const npf_rule_t *rl, int *retfl)
895 {
896 /* If not passing - drop the packet. */
897 *retfl = rl->r_attr;
898 return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
899 }
900