npf_ruleset.c revision 1.46 1 /* $NetBSD: npf_ruleset.c,v 1.46 2017/12/10 01:18:21 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2015 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * NPF ruleset module.
34 */
35
36 #ifdef _KERNEL
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.46 2017/12/10 01:18:21 rmind Exp $");
39
40 #include <sys/param.h>
41 #include <sys/types.h>
42
43 #include <sys/atomic.h>
44 #include <sys/kmem.h>
45 #include <sys/queue.h>
46 #include <sys/mbuf.h>
47 #include <sys/types.h>
48
49 #include <net/bpf.h>
50 #include <net/bpfjit.h>
51 #include <net/pfil.h>
52 #include <net/if.h>
53 #endif
54
55 #include "npf_impl.h"
56
57 struct npf_ruleset {
58 /*
59 * - List of all rules.
60 * - Dynamic (i.e. named) rules.
61 * - G/C list for convenience.
62 */
63 LIST_HEAD(, npf_rule) rs_all;
64 LIST_HEAD(, npf_rule) rs_dynamic;
65 LIST_HEAD(, npf_rule) rs_gc;
66
67 /* Unique ID counter. */
68 uint64_t rs_idcnt;
69
70 /* Number of array slots and active rules. */
71 u_int rs_slots;
72 u_int rs_nitems;
73
74 /* Array of ordered rules. */
75 npf_rule_t * rs_rules[];
76 };
77
78 struct npf_rule {
79 /* Attributes, interface and skip slot. */
80 uint32_t r_attr;
81 u_int r_ifid;
82 u_int r_skip_to;
83
84 /* Code to process, if any. */
85 int r_type;
86 bpfjit_func_t r_jcode;
87 void * r_code;
88 u_int r_clen;
89
90 /* NAT policy (optional), rule procedure and subset. */
91 npf_natpolicy_t * r_natp;
92 npf_rproc_t * r_rproc;
93
94 union {
95 /*
96 * Dynamic group: rule subset and a group list entry.
97 */
98 struct {
99 npf_rule_t * r_subset;
100 LIST_ENTRY(npf_rule) r_dentry;
101 };
102
103 /*
104 * Dynamic rule: priority, parent group and next rule.
105 */
106 struct {
107 int r_priority;
108 npf_rule_t * r_parent;
109 npf_rule_t * r_next;
110 };
111 };
112
113 /* Rule ID, name and the optional key. */
114 uint64_t r_id;
115 char r_name[NPF_RULE_MAXNAMELEN];
116 uint8_t r_key[NPF_RULE_MAXKEYLEN];
117
118 /* All-list entry and the auxiliary info. */
119 LIST_ENTRY(npf_rule) r_aentry;
120 prop_data_t r_info;
121 };
122
123 #define SKIPTO_ADJ_FLAG (1U << 31)
124 #define SKIPTO_MASK (SKIPTO_ADJ_FLAG - 1)
125
126 static int npf_rule_export(npf_t *, const npf_ruleset_t *,
127 const npf_rule_t *, prop_dictionary_t);
128
129 /*
130 * Private attributes - must be in the NPF_RULE_PRIVMASK range.
131 */
132 #define NPF_RULE_KEEPNAT (0x01000000 & NPF_RULE_PRIVMASK)
133
134 #define NPF_DYNAMIC_GROUP_P(attr) \
135 (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
136
137 #define NPF_DYNAMIC_RULE_P(attr) \
138 (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
139
140 npf_ruleset_t *
141 npf_ruleset_create(size_t slots)
142 {
143 size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
144 npf_ruleset_t *rlset;
145
146 rlset = kmem_zalloc(len, KM_SLEEP);
147 LIST_INIT(&rlset->rs_dynamic);
148 LIST_INIT(&rlset->rs_all);
149 LIST_INIT(&rlset->rs_gc);
150 rlset->rs_slots = slots;
151
152 return rlset;
153 }
154
155 void
156 npf_ruleset_destroy(npf_ruleset_t *rlset)
157 {
158 size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
159 npf_rule_t *rl;
160
161 while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
162 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
163 /*
164 * Note: r_subset may point to the rules which
165 * were inherited by a new ruleset.
166 */
167 rl->r_subset = NULL;
168 LIST_REMOVE(rl, r_dentry);
169 }
170 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
171 /* Not removing from r_subset, see above. */
172 KASSERT(rl->r_parent != NULL);
173 }
174 LIST_REMOVE(rl, r_aentry);
175 npf_rule_free(rl);
176 }
177 KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
178
179 npf_ruleset_gc(rlset);
180 KASSERT(LIST_EMPTY(&rlset->rs_gc));
181 kmem_free(rlset, len);
182 }
183
184 /*
185 * npf_ruleset_insert: insert the rule into the specified ruleset.
186 */
187 void
188 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
189 {
190 u_int n = rlset->rs_nitems;
191
192 KASSERT(n < rlset->rs_slots);
193
194 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
195 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
196 LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
197 } else {
198 KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
199 rl->r_attr &= ~NPF_RULE_DYNAMIC;
200 }
201
202 rlset->rs_rules[n] = rl;
203 rlset->rs_nitems++;
204 rl->r_id = ++rlset->rs_idcnt;
205
206 if (rl->r_skip_to < ++n) {
207 rl->r_skip_to = SKIPTO_ADJ_FLAG | n;
208 }
209 }
210
211 npf_rule_t *
212 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
213 {
214 npf_rule_t *rl;
215
216 LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
217 KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
218 if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
219 break;
220 }
221 return rl;
222 }
223
224 /*
225 * npf_ruleset_add: insert dynamic rule into the (active) ruleset.
226 */
227 int
228 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
229 {
230 npf_rule_t *rg, *it, *target;
231 int priocmd;
232
233 if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
234 return EINVAL;
235 }
236 rg = npf_ruleset_lookup(rlset, rname);
237 if (rg == NULL) {
238 return ESRCH;
239 }
240
241 /* Dynamic rule - assign a unique ID and save the parent. */
242 rl->r_id = ++rlset->rs_idcnt;
243 rl->r_parent = rg;
244
245 /*
246 * Rule priority: (highest) 1, 2 ... n (lowest).
247 * Negative priority indicates an operation and is reset to zero.
248 */
249 if ((priocmd = rl->r_priority) < 0) {
250 rl->r_priority = 0;
251 }
252
253 /*
254 * WARNING: once rg->subset or target->r_next of an *active*
255 * rule is set, then our rule becomes globally visible and active.
256 * Must issue a load fence to ensure rl->r_next visibility first.
257 */
258 switch (priocmd) {
259 case NPF_PRI_LAST:
260 default:
261 target = NULL;
262 it = rg->r_subset;
263 while (it && it->r_priority <= rl->r_priority) {
264 target = it;
265 it = it->r_next;
266 }
267 if (target) {
268 rl->r_next = target->r_next;
269 membar_producer();
270 target->r_next = rl;
271 break;
272 }
273 /* FALLTHROUGH */
274
275 case NPF_PRI_FIRST:
276 rl->r_next = rg->r_subset;
277 membar_producer();
278 rg->r_subset = rl;
279 break;
280 }
281
282 /* Finally, add into the all-list. */
283 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
284 return 0;
285 }
286
287 static void
288 npf_ruleset_unlink(npf_rule_t *rl, npf_rule_t *prev)
289 {
290 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
291 if (prev) {
292 prev->r_next = rl->r_next;
293 } else {
294 npf_rule_t *rg = rl->r_parent;
295 rg->r_subset = rl->r_next;
296 }
297 LIST_REMOVE(rl, r_aentry);
298 }
299
300 /*
301 * npf_ruleset_remove: remove the dynamic rule given the rule ID.
302 */
303 int
304 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
305 {
306 npf_rule_t *rg, *prev = NULL;
307
308 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
309 return ESRCH;
310 }
311 for (npf_rule_t *rl = rg->r_subset; rl; rl = rl->r_next) {
312 KASSERT(rl->r_parent == rg);
313 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
314
315 /* Compare ID. On match, remove and return. */
316 if (rl->r_id == id) {
317 npf_ruleset_unlink(rl, prev);
318 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
319 return 0;
320 }
321 prev = rl;
322 }
323 return ENOENT;
324 }
325
326 /*
327 * npf_ruleset_remkey: remove the dynamic rule given the rule key.
328 */
329 int
330 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
331 const void *key, size_t len)
332 {
333 npf_rule_t *rg, *rlast = NULL, *prev = NULL, *lastprev = NULL;
334
335 KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
336
337 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
338 return ESRCH;
339 }
340
341 /* Compare the key and find the last in the list. */
342 for (npf_rule_t *rl = rg->r_subset; rl; rl = rl->r_next) {
343 KASSERT(rl->r_parent == rg);
344 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
345 if (memcmp(rl->r_key, key, len) == 0) {
346 lastprev = prev;
347 rlast = rl;
348 }
349 prev = rl;
350 }
351 if (!rlast) {
352 return ENOENT;
353 }
354 npf_ruleset_unlink(rlast, lastprev);
355 LIST_INSERT_HEAD(&rlset->rs_gc, rlast, r_aentry);
356 return 0;
357 }
358
359 /*
360 * npf_ruleset_list: serialise and return the dynamic rules.
361 */
362 prop_dictionary_t
363 npf_ruleset_list(npf_t *npf, npf_ruleset_t *rlset, const char *rname)
364 {
365 prop_dictionary_t rgdict;
366 prop_array_t rules;
367 npf_rule_t *rg;
368
369 KASSERT(npf_config_locked_p(npf));
370
371 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
372 return NULL;
373 }
374 if ((rgdict = prop_dictionary_create()) == NULL) {
375 return NULL;
376 }
377 if ((rules = prop_array_create()) == NULL) {
378 prop_object_release(rgdict);
379 return NULL;
380 }
381
382 for (npf_rule_t *rl = rg->r_subset; rl; rl = rl->r_next) {
383 prop_dictionary_t rldict;
384
385 KASSERT(rl->r_parent == rg);
386 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
387
388 rldict = prop_dictionary_create();
389 if (npf_rule_export(npf, rlset, rl, rldict)) {
390 prop_object_release(rldict);
391 prop_object_release(rules);
392 return NULL;
393 }
394 prop_array_add(rules, rldict);
395 prop_object_release(rldict);
396 }
397
398 if (!prop_dictionary_set(rgdict, "rules", rules)) {
399 prop_object_release(rgdict);
400 rgdict = NULL;
401 }
402 prop_object_release(rules);
403 return rgdict;
404 }
405
406 /*
407 * npf_ruleset_flush: flush the dynamic rules in the ruleset by inserting
408 * them into the G/C list.
409 */
410 int
411 npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
412 {
413 npf_rule_t *rg, *rl;
414
415 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
416 return ESRCH;
417 }
418
419 rl = atomic_swap_ptr(&rg->r_subset, NULL);
420 membar_producer();
421
422 while (rl) {
423 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
424 KASSERT(rl->r_parent == rg);
425
426 LIST_REMOVE(rl, r_aentry);
427 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
428 rl = rl->r_next;
429 }
430 rlset->rs_idcnt = 0;
431 return 0;
432 }
433
434 /*
435 * npf_ruleset_gc: destroy the rules in G/C list.
436 */
437 void
438 npf_ruleset_gc(npf_ruleset_t *rlset)
439 {
440 npf_rule_t *rl;
441
442 while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
443 LIST_REMOVE(rl, r_aentry);
444 npf_rule_free(rl);
445 }
446 }
447
448 /*
449 * npf_ruleset_export: serialise and return the static rules.
450 */
451 int
452 npf_ruleset_export(npf_t *npf, const npf_ruleset_t *rlset, prop_array_t rules)
453 {
454 const u_int nitems = rlset->rs_nitems;
455 int error = 0;
456 u_int n = 0;
457
458 KASSERT(npf_config_locked_p(npf));
459
460 while (n < nitems) {
461 const npf_rule_t *rl = rlset->rs_rules[n];
462 const npf_natpolicy_t *natp = rl->r_natp;
463 prop_dictionary_t rldict;
464
465 rldict = prop_dictionary_create();
466 if ((error = npf_rule_export(npf, rlset, rl, rldict)) != 0) {
467 prop_object_release(rldict);
468 break;
469 }
470 if (natp && (error = npf_nat_policyexport(natp, rldict)) != 0) {
471 prop_object_release(rldict);
472 break;
473 }
474 prop_array_add(rules, rldict);
475 prop_object_release(rldict);
476 n++;
477 }
478 return error;
479 }
480
481 /*
482 * npf_ruleset_reload: prepare the new ruleset by scanning the active
483 * ruleset and: 1) sharing the dynamic rules 2) sharing NAT policies.
484 *
485 * => The active (old) ruleset should be exclusively locked.
486 */
487 void
488 npf_ruleset_reload(npf_t *npf, npf_ruleset_t *newset,
489 npf_ruleset_t *oldset, bool load)
490 {
491 npf_rule_t *rg, *rl;
492 uint64_t nid = 0;
493
494 KASSERT(npf_config_locked_p(npf));
495
496 /*
497 * Scan the dynamic rules and share (migrate) if needed.
498 */
499 LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
500 npf_rule_t *active_rgroup;
501
502 /* Look for a dynamic ruleset group with such name. */
503 active_rgroup = npf_ruleset_lookup(oldset, rg->r_name);
504 if (active_rgroup == NULL) {
505 continue;
506 }
507
508 /*
509 * ATOMICITY: Copy the head pointer of the linked-list,
510 * but do not remove the rules from the active r_subset.
511 * This is necessary because the rules are still active
512 * and therefore are accessible for inspection via the
513 * old ruleset.
514 */
515 rg->r_subset = active_rgroup->r_subset;
516
517 /*
518 * We can safely migrate to the new all-rule list and
519 * reset the parent rule, though.
520 */
521 for (rl = rg->r_subset; rl; rl = rl->r_next) {
522 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
523 LIST_REMOVE(rl, r_aentry);
524 LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
525
526 KASSERT(rl->r_parent == active_rgroup);
527 rl->r_parent = rg;
528 }
529 }
530
531 /*
532 * If performing the load of connections then NAT policies may
533 * already have translated connections associated with them and
534 * we should not share or inherit anything.
535 */
536 if (load)
537 return;
538
539 /*
540 * Scan all rules in the new ruleset and share NAT policies.
541 * Also, assign a unique ID for each policy here.
542 */
543 LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
544 npf_natpolicy_t *np;
545 npf_rule_t *actrl;
546
547 /* Does the rule have a NAT policy associated? */
548 if ((np = rl->r_natp) == NULL) {
549 continue;
550 }
551
552 /*
553 * First, try to share the active port map. If this
554 * policy will be unused, npf_nat_freepolicy() will
555 * drop the reference.
556 */
557 npf_ruleset_sharepm(oldset, np);
558
559 /* Does it match with any policy in the active ruleset? */
560 LIST_FOREACH(actrl, &oldset->rs_all, r_aentry) {
561 if (!actrl->r_natp)
562 continue;
563 if ((actrl->r_attr & NPF_RULE_KEEPNAT) != 0)
564 continue;
565 if (npf_nat_cmppolicy(actrl->r_natp, np))
566 break;
567 }
568 if (!actrl) {
569 /* No: just set the ID and continue. */
570 npf_nat_setid(np, ++nid);
571 continue;
572 }
573
574 /* Yes: inherit the matching NAT policy. */
575 rl->r_natp = actrl->r_natp;
576 npf_nat_setid(rl->r_natp, ++nid);
577
578 /*
579 * Finally, mark the active rule to not destroy its NAT
580 * policy later as we inherited it (but the rule must be
581 * kept active for now). Destroy the new/unused policy.
582 */
583 actrl->r_attr |= NPF_RULE_KEEPNAT;
584 npf_nat_freepolicy(np);
585 }
586
587 /* Inherit the ID counter. */
588 newset->rs_idcnt = oldset->rs_idcnt;
589 }
590
591 /*
592 * npf_ruleset_sharepm: attempt to share the active NAT portmap.
593 */
594 npf_rule_t *
595 npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
596 {
597 npf_natpolicy_t *np;
598 npf_rule_t *rl;
599
600 /*
601 * Scan the NAT policies in the ruleset and match with the
602 * given policy based on the translation IP address. If they
603 * match - adjust the given NAT policy to use the active NAT
604 * portmap. In such case the reference on the old portmap is
605 * dropped and acquired on the active one.
606 */
607 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
608 np = rl->r_natp;
609 if (np == NULL || np == mnp)
610 continue;
611 if (npf_nat_sharepm(np, mnp))
612 break;
613 }
614 return rl;
615 }
616
617 npf_natpolicy_t *
618 npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id)
619 {
620 npf_rule_t *rl;
621
622 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
623 npf_natpolicy_t *np = rl->r_natp;
624 if (np && npf_nat_getid(np) == id) {
625 return np;
626 }
627 }
628 return NULL;
629 }
630
631 /*
632 * npf_ruleset_freealg: inspect the ruleset and disassociate specified
633 * ALG from all NAT entries using it.
634 */
635 void
636 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
637 {
638 npf_rule_t *rl;
639 npf_natpolicy_t *np;
640
641 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
642 if ((np = rl->r_natp) != NULL) {
643 npf_nat_freealg(np, alg);
644 }
645 }
646 }
647
648 /*
649 * npf_rule_alloc: allocate a rule and initialise it.
650 */
651 npf_rule_t *
652 npf_rule_alloc(npf_t *npf, prop_dictionary_t rldict)
653 {
654 npf_rule_t *rl;
655 const char *rname;
656 prop_data_t d;
657
658 /* Allocate a rule structure. */
659 rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
660 rl->r_natp = NULL;
661
662 /* Name (optional) */
663 if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
664 strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
665 } else {
666 rl->r_name[0] = '\0';
667 }
668
669 /* Attributes, priority and interface ID (optional). */
670 prop_dictionary_get_uint32(rldict, "attr", &rl->r_attr);
671 rl->r_attr &= ~NPF_RULE_PRIVMASK;
672
673 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
674 /* Priority of the dynamic rule. */
675 prop_dictionary_get_int32(rldict, "prio", &rl->r_priority);
676 } else {
677 /* The skip-to index. No need to validate it. */
678 prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
679 }
680
681 /* Interface name; register and get the npf-if-id. */
682 if (prop_dictionary_get_cstring_nocopy(rldict, "ifname", &rname)) {
683 if ((rl->r_ifid = npf_ifmap_register(npf, rname)) == 0) {
684 kmem_free(rl, sizeof(npf_rule_t));
685 return NULL;
686 }
687 } else {
688 rl->r_ifid = 0;
689 }
690
691 /* Key (optional). */
692 prop_object_t obj = prop_dictionary_get(rldict, "key");
693 const void *key = prop_data_data_nocopy(obj);
694
695 if (key) {
696 size_t len = prop_data_size(obj);
697 if (len > NPF_RULE_MAXKEYLEN) {
698 kmem_free(rl, sizeof(npf_rule_t));
699 return NULL;
700 }
701 memcpy(rl->r_key, key, len);
702 }
703
704 if ((d = prop_dictionary_get(rldict, "info")) != NULL) {
705 rl->r_info = prop_data_copy(d);
706 }
707 return rl;
708 }
709
710 static int
711 npf_rule_export(npf_t *npf, const npf_ruleset_t *rlset,
712 const npf_rule_t *rl, prop_dictionary_t rldict)
713 {
714 u_int skip_to = 0;
715 prop_data_t d;
716
717 prop_dictionary_set_uint32(rldict, "attr", rl->r_attr);
718 prop_dictionary_set_int32(rldict, "prio", rl->r_priority);
719 if ((rl->r_skip_to & SKIPTO_ADJ_FLAG) == 0) {
720 skip_to = rl->r_skip_to & SKIPTO_MASK;
721 }
722 prop_dictionary_set_uint32(rldict, "skip-to", skip_to);
723 prop_dictionary_set_int32(rldict, "code-type", rl->r_type);
724 if (rl->r_code) {
725 d = prop_data_create_data(rl->r_code, rl->r_clen);
726 prop_dictionary_set_and_rel(rldict, "code", d);
727 }
728
729 if (rl->r_ifid) {
730 const char *ifname = npf_ifmap_getname(npf, rl->r_ifid);
731 prop_dictionary_set_cstring(rldict, "ifname", ifname);
732 }
733 prop_dictionary_set_uint64(rldict, "id", rl->r_id);
734
735 if (rl->r_name[0]) {
736 prop_dictionary_set_cstring(rldict, "name", rl->r_name);
737 }
738 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
739 d = prop_data_create_data(rl->r_key, NPF_RULE_MAXKEYLEN);
740 prop_dictionary_set_and_rel(rldict, "key", d);
741 }
742 if (rl->r_info) {
743 prop_dictionary_set(rldict, "info", rl->r_info);
744 }
745
746 npf_rproc_t *rp = npf_rule_getrproc(rl);
747 if (rp != NULL) {
748 prop_dictionary_set_cstring(rldict, "rproc",
749 npf_rproc_getname(rp));
750 npf_rproc_release(rp);
751 }
752
753 return 0;
754 }
755
756 /*
757 * npf_rule_setcode: assign filter code to the rule.
758 *
759 * => The code must be validated by the caller.
760 * => JIT compilation may be performed here.
761 */
762 void
763 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
764 {
765 KASSERT(type == NPF_CODE_BPF);
766
767 rl->r_type = type;
768 rl->r_code = code;
769 rl->r_clen = size;
770 rl->r_jcode = npf_bpf_compile(code, size);
771 }
772
773 /*
774 * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
775 */
776 void
777 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
778 {
779 npf_rproc_acquire(rp);
780 rl->r_rproc = rp;
781 }
782
783 /*
784 * npf_rule_free: free the specified rule.
785 */
786 void
787 npf_rule_free(npf_rule_t *rl)
788 {
789 npf_natpolicy_t *np = rl->r_natp;
790 npf_rproc_t *rp = rl->r_rproc;
791
792 if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
793 /* Free NAT policy. */
794 npf_nat_freepolicy(np);
795 }
796 if (rp) {
797 /* Release rule procedure. */
798 npf_rproc_release(rp);
799 }
800 if (rl->r_code) {
801 /* Free byte-code. */
802 kmem_free(rl->r_code, rl->r_clen);
803 }
804 if (rl->r_jcode) {
805 /* Free JIT code. */
806 bpf_jit_freecode(rl->r_jcode);
807 }
808 if (rl->r_info) {
809 prop_object_release(rl->r_info);
810 }
811 kmem_free(rl, sizeof(npf_rule_t));
812 }
813
814 /*
815 * npf_rule_getid: return the unique ID of a rule.
816 * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
817 * npf_rule_getnat: get NAT policy assigned to the rule.
818 */
819
820 uint64_t
821 npf_rule_getid(const npf_rule_t *rl)
822 {
823 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
824 return rl->r_id;
825 }
826
827 npf_rproc_t *
828 npf_rule_getrproc(const npf_rule_t *rl)
829 {
830 npf_rproc_t *rp = rl->r_rproc;
831
832 if (rp) {
833 npf_rproc_acquire(rp);
834 }
835 return rp;
836 }
837
838 npf_natpolicy_t *
839 npf_rule_getnat(const npf_rule_t *rl)
840 {
841 return rl->r_natp;
842 }
843
844 /*
845 * npf_rule_setnat: assign NAT policy to the rule and insert into the
846 * NAT policy list in the ruleset.
847 */
848 void
849 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
850 {
851 KASSERT(rl->r_natp == NULL);
852 rl->r_natp = np;
853 }
854
855 /*
856 * npf_rule_inspect: match the interface, direction and run the filter code.
857 * Returns true if rule matches and false otherwise.
858 */
859 static inline bool
860 npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
861 const int di_mask, const u_int ifid)
862 {
863 /* Match the interface. */
864 if (rl->r_ifid && rl->r_ifid != ifid) {
865 return false;
866 }
867
868 /* Match the direction. */
869 if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
870 if ((rl->r_attr & di_mask) == 0)
871 return false;
872 }
873
874 /* Any code? */
875 if (!rl->r_code) {
876 KASSERT(rl->r_jcode == NULL);
877 return true;
878 }
879 KASSERT(rl->r_type == NPF_CODE_BPF);
880 return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
881 }
882
883 /*
884 * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
885 * This is only for the dynamic rules. Subrules cannot have nested rules.
886 */
887 static inline npf_rule_t *
888 npf_rule_reinspect(const npf_rule_t *rg, bpf_args_t *bc_args,
889 const int di_mask, const u_int ifid)
890 {
891 npf_rule_t *final_rl = NULL, *rl;
892
893 KASSERT(NPF_DYNAMIC_GROUP_P(rg->r_attr));
894
895 for (rl = rg->r_subset; rl; rl = rl->r_next) {
896 KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
897 if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
898 continue;
899 }
900 if (rl->r_attr & NPF_RULE_FINAL) {
901 return rl;
902 }
903 final_rl = rl;
904 }
905 return final_rl;
906 }
907
908 /*
909 * npf_ruleset_inspect: inspect the packet against the given ruleset.
910 *
911 * Loop through the rules in the set and run the byte-code of each rule
912 * against the packet (nbuf chain). If sub-ruleset is found, inspect it.
913 */
914 npf_rule_t *
915 npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
916 const int di, const int layer)
917 {
918 nbuf_t *nbuf = npc->npc_nbuf;
919 const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
920 const u_int nitems = rlset->rs_nitems;
921 const u_int ifid = nbuf->nb_ifid;
922 npf_rule_t *final_rl = NULL;
923 bpf_args_t bc_args;
924 u_int n = 0;
925
926 KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
927
928 /*
929 * Prepare the external memory store and the arguments for
930 * the BPF programs to be executed. Reset mbuf before taking
931 * any pointers for the BPF.
932 */
933 uint32_t bc_words[NPF_BPF_NWORDS];
934
935 nbuf_reset(nbuf);
936 npf_bpf_prepare(npc, &bc_args, bc_words);
937
938 while (n < nitems) {
939 npf_rule_t *rl = rlset->rs_rules[n];
940 const u_int skip_to = rl->r_skip_to & SKIPTO_MASK;
941 const uint32_t attr = rl->r_attr;
942
943 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
944 KASSERT(n < skip_to);
945
946 /* Group is a barrier: return a matching if found any. */
947 if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
948 break;
949 }
950
951 /* Main inspection of the rule. */
952 if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
953 n = skip_to;
954 continue;
955 }
956
957 if (NPF_DYNAMIC_GROUP_P(attr)) {
958 /*
959 * If this is a dynamic rule, re-inspect the subrules.
960 * If it has any matching rule, then it is final.
961 */
962 rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
963 if (rl != NULL) {
964 final_rl = rl;
965 break;
966 }
967 } else if ((attr & NPF_RULE_GROUP) == 0) {
968 /*
969 * Groups themselves are not matching.
970 */
971 final_rl = rl;
972 }
973
974 /* Set the matching rule and check for "final". */
975 if (attr & NPF_RULE_FINAL) {
976 break;
977 }
978 n++;
979 }
980
981 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
982 return final_rl;
983 }
984
985 /*
986 * npf_rule_conclude: return decision and the flags for conclusion.
987 *
988 * => Returns ENETUNREACH if "block" and 0 if "pass".
989 */
990 int
991 npf_rule_conclude(const npf_rule_t *rl, npf_match_info_t *mi)
992 {
993 /* If not passing - drop the packet. */
994 mi->mi_retfl = rl->r_attr;
995 mi->mi_rid = rl->r_id;
996 return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
997 }
998
999
1000 #if defined(DDB) || defined(_NPF_TESTING)
1001
1002 void
1003 npf_ruleset_dump(npf_t *npf, const char *name)
1004 {
1005 npf_ruleset_t *rlset = npf_config_ruleset(npf);
1006 npf_rule_t *rg, *rl;
1007
1008 LIST_FOREACH(rg, &rlset->rs_dynamic, r_dentry) {
1009 printf("ruleset '%s':\n", rg->r_name);
1010 for (rl = rg->r_subset; rl; rl = rl->r_next) {
1011 printf("\tid %"PRIu64", key: ", rl->r_id);
1012 for (u_int i = 0; i < NPF_RULE_MAXKEYLEN; i++)
1013 printf("%x", rl->r_key[i]);
1014 printf("\n");
1015 }
1016 }
1017 }
1018
1019 #endif
1020