npf_ruleset.c revision 1.52.6.1 1 /*-
2 * Copyright (c) 2020 Mindaugas Rasiukevicius <rmind at noxt eu>
3 * Copyright (c) 2009-2025 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This material is based upon work partially supported by The
7 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * NPF ruleset module.
33 */
34
35 #ifdef _KERNEL
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.52.6.1 2025/08/02 05:57:48 perseant Exp $");
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #include <sys/atomic.h>
43 #include <sys/kmem.h>
44 #include <sys/queue.h>
45 #include <sys/mbuf.h>
46 #include <sys/types.h>
47 #include <sys/kauth.h>
48
49 #include <net/bpf.h>
50 #include <net/bpfjit.h>
51 #include <net/pfil.h>
52 #include <net/if.h>
53 #endif
54
55 #include "npf_impl.h"
56
57 struct npf_ruleset {
58 /*
59 * - List of all rules.
60 * - Dynamic (i.e. named) rules.
61 * - G/C list for convenience.
62 */
63 LIST_HEAD(, npf_rule) rs_all;
64 LIST_HEAD(, npf_rule) rs_dynamic;
65 LIST_HEAD(, npf_rule) rs_gc;
66
67 /* Unique ID counter. */
68 uint64_t rs_idcnt;
69
70 /* Number of array slots and active rules. */
71 unsigned rs_slots;
72 unsigned rs_nitems;
73
74 /* Array of ordered rules. */
75 npf_rule_t * rs_rules[];
76 };
77
78 struct npf_rule {
79 /* Attributes, interface and skip slot. */
80 uint32_t r_attr;
81 unsigned r_ifid;
82 unsigned r_skip_to;
83
84 /* Code to process, if any. */
85 int r_type;
86 bpfjit_func_t r_jcode;
87 void * r_code;
88 unsigned r_clen;
89
90 /* NAT policy (optional), rule procedure and subset. */
91 npf_natpolicy_t * r_natp;
92 npf_rproc_t * r_rproc;
93
94 union {
95 /*
96 * Dynamic group: rule subset and a group list entry.
97 */
98 struct {
99 npf_rule_t * r_subset;
100 LIST_ENTRY(npf_rule) r_dentry;
101 };
102
103 /*
104 * Dynamic rule: priority, parent group and next rule.
105 */
106 struct {
107 int r_priority;
108 npf_rule_t * r_parent;
109 npf_rule_t * r_next;
110 };
111 };
112
113 /* Rule ID, name and the optional key. */
114 uint64_t r_id;
115 char r_name[NPF_RULE_MAXNAMELEN];
116 uint8_t r_key[NPF_RULE_MAXKEYLEN];
117
118 /* All-list entry and the auxiliary info. */
119 LIST_ENTRY(npf_rule) r_aentry;
120 nvlist_t * r_info;
121 size_t r_info_len;
122
123 rid_t uid;
124 rid_t gid;
125 };
126
127 #define SKIPTO_ADJ_FLAG (1U << 31)
128 #define SKIPTO_MASK (SKIPTO_ADJ_FLAG - 1)
129
130 static nvlist_t * npf_rule_export(npf_t *, const npf_rule_t *);
131
132 /*
133 * Private attributes - must be in the NPF_RULE_PRIVMASK range.
134 */
135 #define NPF_RULE_KEEPNAT (0x01000000 & NPF_RULE_PRIVMASK)
136
137 #define NPF_DYNAMIC_GROUP_P(attr) \
138 (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
139
140 #define NPF_DYNAMIC_RULE_P(attr) \
141 (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
142
143 npf_ruleset_t *
144 npf_ruleset_create(size_t slots)
145 {
146 size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
147 npf_ruleset_t *rlset;
148
149 rlset = kmem_zalloc(len, KM_SLEEP);
150 LIST_INIT(&rlset->rs_dynamic);
151 LIST_INIT(&rlset->rs_all);
152 LIST_INIT(&rlset->rs_gc);
153 rlset->rs_slots = slots;
154
155 return rlset;
156 }
157
158 void
159 npf_ruleset_destroy(npf_ruleset_t *rlset)
160 {
161 size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
162 npf_rule_t *rl;
163
164 while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
165 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
166 /*
167 * Note: r_subset may point to the rules which
168 * were inherited by a new ruleset.
169 */
170 rl->r_subset = NULL;
171 LIST_REMOVE(rl, r_dentry);
172 }
173 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
174 /* Not removing from r_subset, see above. */
175 KASSERT(rl->r_parent != NULL);
176 }
177 LIST_REMOVE(rl, r_aentry);
178 npf_rule_free(rl);
179 }
180 KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
181
182 npf_ruleset_gc(rlset);
183 KASSERT(LIST_EMPTY(&rlset->rs_gc));
184 kmem_free(rlset, len);
185 }
186
187 /*
188 * npf_ruleset_insert: insert the rule into the specified ruleset.
189 */
190 void
191 npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
192 {
193 unsigned n = rlset->rs_nitems;
194
195 KASSERT(n < rlset->rs_slots);
196
197 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
198 if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
199 LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
200 } else {
201 KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
202 rl->r_attr &= ~NPF_RULE_DYNAMIC;
203 }
204
205 rlset->rs_rules[n] = rl;
206 rlset->rs_nitems++;
207 rl->r_id = ++rlset->rs_idcnt;
208
209 if (rl->r_skip_to < ++n) {
210 rl->r_skip_to = SKIPTO_ADJ_FLAG | n;
211 }
212 }
213
214 npf_rule_t *
215 npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
216 {
217 npf_rule_t *rl;
218
219 LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
220 KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
221 if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
222 break;
223 }
224 return rl;
225 }
226
227 /*
228 * npf_ruleset_add: insert dynamic rule into the (active) ruleset.
229 */
230 int
231 npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
232 {
233 npf_rule_t *rg, *it, *target;
234 int priocmd;
235
236 if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
237 return EINVAL;
238 }
239 rg = npf_ruleset_lookup(rlset, rname);
240 if (rg == NULL) {
241 return ESRCH;
242 }
243
244 /* Dynamic rule - assign a unique ID and save the parent. */
245 rl->r_id = ++rlset->rs_idcnt;
246 rl->r_parent = rg;
247
248 /*
249 * Rule priority: (highest) 1, 2 ... n (lowest).
250 * Negative priority indicates an operation and is reset to zero.
251 */
252 if ((priocmd = rl->r_priority) < 0) {
253 rl->r_priority = 0;
254 }
255
256 /*
257 * WARNING: once rg->subset or target->r_next of an *active*
258 * rule is set, then our rule becomes globally visible and active.
259 * Must issue a load fence to ensure rl->r_next visibility first.
260 */
261 switch (priocmd) {
262 case NPF_PRI_LAST:
263 default:
264 target = NULL;
265 it = rg->r_subset;
266 while (it && it->r_priority <= rl->r_priority) {
267 target = it;
268 it = it->r_next;
269 }
270 if (target) {
271 atomic_store_relaxed(&rl->r_next, target->r_next);
272 membar_producer();
273 atomic_store_relaxed(&target->r_next, rl);
274 break;
275 }
276 /* FALLTHROUGH */
277
278 case NPF_PRI_FIRST:
279 atomic_store_relaxed(&rl->r_next, rg->r_subset);
280 membar_producer();
281 atomic_store_relaxed(&rg->r_subset, rl);
282 break;
283 }
284
285 /* Finally, add into the all-list. */
286 LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
287 return 0;
288 }
289
290 static void
291 npf_ruleset_unlink(npf_rule_t *rl, npf_rule_t *prev)
292 {
293 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
294 if (prev) {
295 prev->r_next = rl->r_next;
296 } else {
297 npf_rule_t *rg = rl->r_parent;
298 rg->r_subset = rl->r_next;
299 }
300 LIST_REMOVE(rl, r_aentry);
301 }
302
303 /*
304 * npf_ruleset_remove: remove the dynamic rule given the rule ID.
305 */
306 int
307 npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
308 {
309 npf_rule_t *rg, *prev = NULL;
310
311 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
312 return ESRCH;
313 }
314 for (npf_rule_t *rl = rg->r_subset; rl; rl = rl->r_next) {
315 KASSERT(rl->r_parent == rg);
316 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
317
318 /* Compare ID. On match, remove and return. */
319 if (rl->r_id == id) {
320 npf_ruleset_unlink(rl, prev);
321 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
322 return 0;
323 }
324 prev = rl;
325 }
326 return ENOENT;
327 }
328
329 /*
330 * npf_ruleset_remkey: remove the dynamic rule given the rule key.
331 */
332 int
333 npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
334 const void *key, size_t len)
335 {
336 npf_rule_t *rg, *rlast = NULL, *prev = NULL, *lastprev = NULL;
337
338 KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
339
340 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
341 return ESRCH;
342 }
343
344 /* Compare the key and find the last in the list. */
345 for (npf_rule_t *rl = rg->r_subset; rl; rl = rl->r_next) {
346 KASSERT(rl->r_parent == rg);
347 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
348 if (memcmp(rl->r_key, key, len) == 0) {
349 lastprev = prev;
350 rlast = rl;
351 }
352 prev = rl;
353 }
354 if (!rlast) {
355 return ENOENT;
356 }
357 npf_ruleset_unlink(rlast, lastprev);
358 LIST_INSERT_HEAD(&rlset->rs_gc, rlast, r_aentry);
359 return 0;
360 }
361
362 /*
363 * npf_ruleset_list: serialise and return the dynamic rules.
364 */
365 int
366 npf_ruleset_list(npf_t *npf, npf_ruleset_t *rlset, const char *rname,
367 nvlist_t *rlset_nvl)
368 {
369 const npf_rule_t *rg;
370
371 KASSERT(npf_config_locked_p(npf));
372
373 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
374 return ESRCH;
375 }
376 for (const npf_rule_t *rl = rg->r_subset; rl; rl = rl->r_next) {
377 nvlist_t *rule;
378
379 KASSERT(rl->r_parent == rg);
380 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
381
382 if ((rule = npf_rule_export(npf, rl)) == NULL) {
383 return ENOMEM;
384 }
385 nvlist_append_nvlist_array(rlset_nvl, "rules", rule);
386 nvlist_destroy(rule);
387 }
388 return 0;
389 }
390
391 /*
392 * npf_ruleset_flush: flush the dynamic rules in the ruleset by inserting
393 * them into the G/C list.
394 */
395 int
396 npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
397 {
398 npf_rule_t *rg, *rl;
399
400 if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
401 return ESRCH;
402 }
403
404 rl = atomic_swap_ptr(&rg->r_subset, NULL);
405 membar_producer();
406
407 while (rl) {
408 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
409 KASSERT(rl->r_parent == rg);
410
411 LIST_REMOVE(rl, r_aentry);
412 LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
413 rl = rl->r_next;
414 }
415 rlset->rs_idcnt = 0;
416 return 0;
417 }
418
419 /*
420 * npf_ruleset_gc: destroy the rules in G/C list.
421 */
422 void
423 npf_ruleset_gc(npf_ruleset_t *rlset)
424 {
425 npf_rule_t *rl;
426
427 while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
428 LIST_REMOVE(rl, r_aentry);
429 npf_rule_free(rl);
430 }
431 }
432
433 /*
434 * npf_ruleset_export: serialise and return the static rules.
435 */
436 int
437 npf_ruleset_export(npf_t *npf, const npf_ruleset_t *rlset,
438 const char *key, nvlist_t *npf_nv)
439 {
440 const unsigned nitems = rlset->rs_nitems;
441 unsigned n = 0;
442 int error = 0;
443
444 KASSERT(npf_config_locked_p(npf));
445
446 while (n < nitems) {
447 const npf_rule_t *rl = rlset->rs_rules[n];
448 const npf_natpolicy_t *natp = rl->r_natp;
449 nvlist_t *rule;
450
451 rule = npf_rule_export(npf, rl);
452 if (!rule) {
453 error = ENOMEM;
454 break;
455 }
456 if (natp && (error = npf_natpolicy_export(natp, rule)) != 0) {
457 nvlist_destroy(rule);
458 break;
459 }
460 nvlist_append_nvlist_array(npf_nv, key, rule);
461 nvlist_destroy(rule);
462 n++;
463 }
464 return error;
465 }
466
467 /*
468 * npf_ruleset_reload: prepare the new ruleset by scanning the active
469 * ruleset and: 1) sharing the dynamic rules 2) sharing NAT policies.
470 *
471 * => The active (old) ruleset should be exclusively locked.
472 */
473 void
474 npf_ruleset_reload(npf_t *npf, npf_ruleset_t *newset,
475 npf_ruleset_t *oldset, bool load)
476 {
477 npf_rule_t *rg, *rl;
478 uint64_t nid = 0;
479
480 KASSERT(npf_config_locked_p(npf));
481
482 /*
483 * Scan the dynamic rules and share (migrate) if needed.
484 */
485 LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
486 npf_rule_t *active_rgroup;
487
488 /* Look for a dynamic ruleset group with such name. */
489 active_rgroup = npf_ruleset_lookup(oldset, rg->r_name);
490 if (active_rgroup == NULL) {
491 continue;
492 }
493
494 /*
495 * ATOMICITY: Copy the head pointer of the linked-list,
496 * but do not remove the rules from the active r_subset.
497 * This is necessary because the rules are still active
498 * and therefore are accessible for inspection via the
499 * old ruleset.
500 */
501 rg->r_subset = active_rgroup->r_subset;
502
503 /*
504 * We can safely migrate to the new all-rule list and
505 * reset the parent rule, though.
506 */
507 for (rl = rg->r_subset; rl; rl = rl->r_next) {
508 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
509 LIST_REMOVE(rl, r_aentry);
510 LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
511
512 KASSERT(rl->r_parent == active_rgroup);
513 rl->r_parent = rg;
514 }
515 }
516
517 /*
518 * If performing the load of connections then NAT policies might
519 * already have translated connections associated with them and
520 * we should not share or inherit anything.
521 */
522 if (load)
523 return;
524
525 /*
526 * Scan all rules in the new ruleset and inherit the active NAT
527 * policies if they are the same. Also, assign a unique ID for
528 * each policy here.
529 */
530 LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
531 npf_natpolicy_t *np;
532 npf_rule_t *actrl;
533
534 /* Does the rule have a NAT policy associated? */
535 if ((np = rl->r_natp) == NULL) {
536 continue;
537 }
538
539 /* Does it match with any policy in the active ruleset? */
540 LIST_FOREACH(actrl, &oldset->rs_all, r_aentry) {
541 if (!actrl->r_natp)
542 continue;
543 if ((actrl->r_attr & NPF_RULE_KEEPNAT) != 0)
544 continue;
545 if (npf_natpolicy_cmp(actrl->r_natp, np))
546 break;
547 }
548 if (!actrl) {
549 /* No: just set the ID and continue. */
550 npf_nat_setid(np, ++nid);
551 continue;
552 }
553
554 /* Yes: inherit the matching NAT policy. */
555 rl->r_natp = actrl->r_natp;
556 npf_nat_setid(rl->r_natp, ++nid);
557
558 /*
559 * Finally, mark the active rule to not destroy its NAT
560 * policy later as we inherited it (but the rule must be
561 * kept active for now). Destroy the new/unused policy.
562 */
563 actrl->r_attr |= NPF_RULE_KEEPNAT;
564 npf_natpolicy_destroy(np);
565 }
566
567 /* Inherit the ID counter. */
568 newset->rs_idcnt = oldset->rs_idcnt;
569 }
570
571 /*
572 * npf_ruleset_findnat: find a NAT policy in the ruleset by a given ID.
573 */
574 npf_natpolicy_t *
575 npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id)
576 {
577 npf_rule_t *rl;
578
579 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
580 npf_natpolicy_t *np = rl->r_natp;
581 if (np && npf_nat_getid(np) == id) {
582 return np;
583 }
584 }
585 return NULL;
586 }
587
588 /*
589 * npf_ruleset_freealg: inspect the ruleset and disassociate specified
590 * ALG from all NAT entries using it.
591 */
592 void
593 npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
594 {
595 npf_rule_t *rl;
596 npf_natpolicy_t *np;
597
598 LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
599 if ((np = rl->r_natp) != NULL) {
600 npf_nat_freealg(np, alg);
601 }
602 }
603 }
604
605 /*
606 * npf_rule_alloc: allocate a rule and initialise it.
607 */
608 npf_rule_t *
609 npf_rule_alloc(npf_t *npf, const nvlist_t *rule)
610 {
611 npf_rule_t *rl;
612 const char *rname;
613 const void *key, *info;
614 size_t len;
615
616 /* Allocate a rule structure and keep the information. */
617 rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
618 info = dnvlist_get_binary(rule, "info", &rl->r_info_len, NULL, 0);
619 if (info) {
620 rl->r_info = kmem_alloc(rl->r_info_len, KM_SLEEP);
621 memcpy(rl->r_info, info, rl->r_info_len);
622 }
623 rl->r_natp = NULL;
624
625 /* Name (optional) */
626 if ((rname = dnvlist_get_string(rule, "name", NULL)) != NULL) {
627 strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
628 } else {
629 rl->r_name[0] = '\0';
630 }
631
632 /* Attributes, priority and interface ID (optional). */
633 rl->r_attr = dnvlist_get_number(rule, "attr", 0);
634 rl->r_attr &= ~NPF_RULE_PRIVMASK;
635
636 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
637 /* Priority of the dynamic rule. */
638 rl->r_priority = (int)dnvlist_get_number(rule, "prio", 0);
639 } else {
640 /* The skip-to index. No need to validate it. */
641 rl->r_skip_to = dnvlist_get_number(rule, "skip-to", 0);
642 }
643
644 /* Interface name; register and get the npf-if-id. */
645 if ((rname = dnvlist_get_string(rule, "ifname", NULL)) != NULL) {
646 if ((rl->r_ifid = npf_ifmap_register(npf, rname)) == 0) {
647 kmem_free(rl, sizeof(npf_rule_t));
648 return NULL;
649 }
650 } else {
651 rl->r_ifid = 0;
652 }
653
654 /* Key (optional). */
655 if ((key = dnvlist_get_binary(rule, "key", &len, NULL, 0)) != NULL) {
656 if (len > NPF_RULE_MAXKEYLEN) {
657 kmem_free(rl, sizeof(npf_rule_t));
658 return NULL;
659 }
660 memcpy(rl->r_key, key, len);
661 }
662
663 /* no gid/uid set yet */
664 rl->gid.op = rl->uid.op = NPF_OP_NONE;
665 return rl;
666 }
667
668 static void
669 npf_rid_export(nvlist_t *rl, struct r_id rid, const char *name)
670 {
671 uint64_t uid_element[3] = { rid.id[0], rid.id[1], rid.op };
672 nvlist_add_number_array(rl, name, uid_element, 3);
673 }
674
675 static nvlist_t *
676 npf_rule_export(npf_t *npf, const npf_rule_t *rl)
677 {
678 nvlist_t *rule = nvlist_create(0);
679 unsigned skip_to = 0;
680 npf_rproc_t *rp;
681
682 nvlist_add_number(rule, "attr", rl->r_attr);
683 nvlist_add_number(rule, "prio", rl->r_priority);
684 if ((rl->r_skip_to & SKIPTO_ADJ_FLAG) == 0) {
685 skip_to = rl->r_skip_to & SKIPTO_MASK;
686 }
687 nvlist_add_number(rule, "skip-to", skip_to);
688 nvlist_add_number(rule, "code-type", rl->r_type);
689 if (rl->r_code) {
690 nvlist_add_binary(rule, "code", rl->r_code, rl->r_clen);
691 }
692 if (rl->r_ifid) {
693 char ifname[IFNAMSIZ];
694 npf_ifmap_copyname(npf, rl->r_ifid, ifname, sizeof(ifname));
695 nvlist_add_string(rule, "ifname", ifname);
696 }
697 nvlist_add_number(rule, "id", rl->r_id);
698
699 if (rl->r_name[0]) {
700 nvlist_add_string(rule, "name", rl->r_name);
701 }
702 if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
703 nvlist_add_binary(rule, "key", rl->r_key, NPF_RULE_MAXKEYLEN);
704 }
705 if (rl->r_info) {
706 nvlist_add_binary(rule, "info", rl->r_info, rl->r_info_len);
707 }
708 if (rl->uid.op != NPF_OP_NONE) {
709 npf_rid_export(rule, rl->uid, "r_user");
710 }
711 if (rl->gid.op != NPF_OP_NONE) {
712 npf_rid_export(rule, rl->gid, "r_group");
713 }
714 if ((rp = npf_rule_getrproc(rl)) != NULL) {
715 const char *rname = npf_rproc_getname(rp);
716 nvlist_add_string(rule, "rproc", rname);
717 npf_rproc_release(rp);
718 }
719 return rule;
720 }
721
722 /*
723 * npf_rule_setcode: assign filter code to the rule.
724 *
725 * => The code must be validated by the caller.
726 * => JIT compilation may be performed here.
727 */
728 void
729 npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
730 {
731 KASSERT(type == NPF_CODE_BPF);
732
733 rl->r_type = type;
734 rl->r_code = code;
735 rl->r_clen = size;
736 rl->r_jcode = npf_bpf_compile(code, size);
737 }
738
739 void
740 npf_rule_setrid(const nvlist_t *req, npf_rule_t *rl, const char *name)
741 {
742 size_t nitems;
743 rid_t id;
744 const uint64_t *rid = nvlist_get_number_array(req, name, &nitems);
745 KASSERT(nitems == 3);
746
747 id.id[0] = (uint32_t)rid[0];
748 id.id[1] = (uint32_t)rid[1];
749 id.op = (uint8_t)rid[2];
750
751 if (!strcmp(name, "r_user"))
752 rl->uid = id;
753 else if (!strcmp(name, "r_group"))
754 rl->gid = id;
755 }
756
757 /*
758 * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
759 */
760 void
761 npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
762 {
763 npf_rproc_acquire(rp);
764 rl->r_rproc = rp;
765 }
766
767 /*
768 * npf_rule_free: free the specified rule.
769 */
770 void
771 npf_rule_free(npf_rule_t *rl)
772 {
773 npf_natpolicy_t *np = rl->r_natp;
774 npf_rproc_t *rp = rl->r_rproc;
775
776 if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
777 /* Destroy the NAT policy. */
778 npf_natpolicy_destroy(np);
779 }
780 if (rp) {
781 /* Release rule procedure. */
782 npf_rproc_release(rp);
783 }
784 if (rl->r_code) {
785 /* Free byte-code. */
786 kmem_free(rl->r_code, rl->r_clen);
787 }
788 if (rl->r_jcode) {
789 /* Free JIT code. */
790 bpf_jit_freecode(rl->r_jcode);
791 }
792 if (rl->r_info) {
793 kmem_free(rl->r_info, rl->r_info_len);
794 }
795 kmem_free(rl, sizeof(npf_rule_t));
796 }
797
798 /*
799 * npf_rule_getid: return the unique ID of a rule.
800 * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
801 * npf_rule_getnat: get NAT policy assigned to the rule.
802 */
803
804 uint64_t
805 npf_rule_getid(const npf_rule_t *rl)
806 {
807 KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
808 return rl->r_id;
809 }
810
811 npf_rproc_t *
812 npf_rule_getrproc(const npf_rule_t *rl)
813 {
814 npf_rproc_t *rp = rl->r_rproc;
815
816 if (rp) {
817 npf_rproc_acquire(rp);
818 }
819 return rp;
820 }
821
822 npf_natpolicy_t *
823 npf_rule_getnat(const npf_rule_t *rl)
824 {
825 return rl->r_natp;
826 }
827
828 /*
829 * npf_rule_setnat: assign NAT policy to the rule and insert into the
830 * NAT policy list in the ruleset.
831 */
832 void
833 npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
834 {
835 KASSERT(rl->r_natp == NULL);
836 rl->r_natp = np;
837 }
838
839 /*
840 * npf_rule_inspect: match the interface, direction and run the filter code.
841 * Returns true if rule matches and false otherwise.
842 */
843 static inline bool
844 npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
845 const int di_mask, const unsigned ifid)
846 {
847 /* Match the interface. */
848 if (rl->r_ifid && rl->r_ifid != ifid) {
849 return false;
850 }
851
852 /* Match the direction. */
853 if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
854 if ((rl->r_attr & di_mask) == 0)
855 return false;
856 }
857
858 /* Any code? */
859 if (!rl->r_code) {
860 KASSERT(rl->r_jcode == NULL);
861 return true;
862 }
863 KASSERT(rl->r_type == NPF_CODE_BPF);
864 return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
865 }
866
867 /*
868 * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
869 * This is only for the dynamic rules. Subrules cannot have nested rules.
870 */
871 static inline npf_rule_t *
872 npf_rule_reinspect(const npf_rule_t *rg, bpf_args_t *bc_args,
873 const int di_mask, const unsigned ifid)
874 {
875 npf_rule_t *final_rl = NULL, *rl;
876
877 KASSERT(NPF_DYNAMIC_GROUP_P(rg->r_attr));
878
879 rl = atomic_load_relaxed(&rg->r_subset);
880 for (; rl; rl = atomic_load_relaxed(&rl->r_next)) {
881 KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
882 if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
883 continue;
884 }
885 if (rl->r_attr & NPF_RULE_FINAL) {
886 return rl;
887 }
888 final_rl = rl;
889 }
890 return final_rl;
891 }
892
893 /*
894 * npf_ruleset_inspect: inspect the packet against the given ruleset.
895 *
896 * Loop through the rules in the set and run the byte-code of each rule
897 * against the packet (nbuf chain). If sub-ruleset is found, inspect it.
898 */
899 npf_rule_t *
900 npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
901 const int di, const int layer)
902 {
903 nbuf_t *nbuf = npc->npc_nbuf;
904 const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
905 const unsigned nitems = rlset->rs_nitems;
906 const unsigned ifid = nbuf->nb_ifid;
907 npf_rule_t *final_rl = NULL;
908 bpf_args_t bc_args;
909 unsigned n = 0;
910
911 KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
912
913 /*
914 * Prepare the external memory store and the arguments for
915 * the BPF programs to be executed. Reset mbuf before taking
916 * any pointers for the BPF.
917 */
918 uint32_t bc_words[NPF_BPF_NWORDS];
919
920 nbuf_reset(nbuf);
921 npf_bpf_prepare(npc, &bc_args, bc_words);
922
923 while (n < nitems) {
924 npf_rule_t *rl = rlset->rs_rules[n];
925 const unsigned skip_to = rl->r_skip_to & SKIPTO_MASK;
926 const uint32_t attr = rl->r_attr;
927
928 if ((attr & layer) == 0) {
929 n = skip_to;
930 continue;
931 }
932
933 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
934 KASSERT(n < skip_to);
935
936 /* Group is a barrier: return a matching if found any. */
937 if ((attr & NPF_DYNAMIC_GROUP) == NPF_RULE_GROUP && final_rl) {
938 break;
939 }
940
941 /* Main inspection of the rule. */
942 if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
943 n = skip_to;
944 continue;
945 }
946
947 if (NPF_DYNAMIC_GROUP_P(attr)) {
948 /*
949 * If this is a dynamic rule, re-inspect the subrules.
950 * If it has any matching rule, then it is final.
951 */
952 rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
953 if (rl != NULL) {
954 final_rl = rl;
955 break;
956 }
957 } else if ((attr & NPF_RULE_GROUP) == 0) {
958 /*
959 * Groups themselves are not matching.
960 */
961 final_rl = rl;
962 }
963
964 /* Set the matching rule and check for "final". */
965 if (attr & NPF_RULE_FINAL) {
966 break;
967 }
968 n++;
969 }
970
971 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
972 return final_rl;
973 }
974
975 /*
976 * just exchange the flag attributes for pass/block for the diff protocols.
977 * for passing, we set the STATEFULNESS for TCP connection establishment
978 * if ret == 0, it is for a pass to be changed to block
979 * non-zero ret indicates a block to pass
980 * when we change to block, we assume the default RST rerturn for TCP
981 * when we change to pass, we ensure no bit field for RST for tcp and ICMP for udp
982 * finally change the ret condition too
983 */
984 int
985 npf_rule_reverse(npf_cache_t *npc, npf_match_info_t *mi, int ret)
986 {
987 KASSERT(npf_iscached(npc, NPC_LAYER4));
988 switch(npc->npc_proto) {
989 case IPPROTO_TCP:
990 if (ret == 0) /* switch pass to block */ {
991 mi->mi_retfl &= !(NPF_RULE_PASS | NPF_RULE_STATEFUL |
992 NPF_RULE_GSTATEFUL);
993 mi->mi_retfl |= NPF_RULE_RETRST;
994 }
995 else /* block to pass */ {
996 mi->mi_retfl &= !(NPF_RULE_RETRST);
997 mi->mi_retfl |= (NPF_RULE_PASS | NPF_RULE_STATEFUL |
998 NPF_RULE_GSTATEFUL);
999 }
1000 break;
1001 case IPPROTO_UDP:
1002 if (ret == 0) /* pass to block */ {
1003 mi->mi_retfl &= !(NPF_RULE_PASS);
1004 mi->mi_retfl |= NPF_RULE_RETICMP;
1005 }
1006 else /* block to pass */ {
1007 mi->mi_retfl &= !(NPF_RULE_RETICMP);
1008 mi->mi_retfl |= NPF_RULE_PASS;
1009 }
1010 break;
1011 }
1012
1013 return (ret == 0) ? ENETUNREACH : 0;
1014 }
1015
1016 /* only perform uid/gid checks when set */
1017 int
1018 npf_rule_match_rid(npf_rule_t *rl, npf_cache_t *npc, int dir)
1019 {
1020 uint32_t sock_gid, sock_uid;
1021 bool uid_matched = false, gid_matched = false;
1022
1023 if (rl->gid.op == NPF_OP_NONE && rl->uid.op == NPF_OP_NONE)
1024 return -1; /* quickly return if packet has nothing to do with rids */
1025
1026 KASSERT(npf_iscached(npc, NPC_IP46));
1027 KASSERT(npf_iscached(npc, NPC_LAYER4));
1028
1029 if (rl->gid.op != NPF_OP_NONE) {
1030 if (npf_socket_lookup_rid(npc, kauth_cred_getegid, &sock_gid, dir) == -1)
1031 return ENOTCONN;
1032
1033 gid_matched |= npf_match_rid(&rl->gid, sock_gid);
1034 }
1035 if (rl->uid.op != NPF_OP_NONE) {
1036 if (npf_socket_lookup_rid(npc, kauth_cred_geteuid, &sock_uid, dir) == -1)
1037 return ENOTCONN;
1038
1039 uid_matched |= npf_match_rid(&rl->uid, sock_uid);
1040 }
1041
1042 /* if both uid and gid are set on rule, both must be matching to agree */
1043 if (rl->gid.op && rl->uid.op)
1044 return gid_matched && uid_matched;
1045 else
1046 return gid_matched || uid_matched;
1047 }
1048
1049 /*
1050 * npf_rule_conclude: return decision and the flags for conclusion.
1051 *
1052 * => Returns ENETUNREACH if "block" and 0 if "pass".
1053 */
1054 int
1055 npf_rule_conclude(const npf_rule_t *rl, npf_match_info_t *mi)
1056 {
1057 /* If not passing - drop the packet. */
1058 mi->mi_retfl = rl->r_attr;
1059 mi->mi_rid = rl->r_id;
1060 return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
1061 }
1062
1063
1064 #if defined(DDB) || defined(_NPF_TESTING)
1065
1066 void
1067 npf_ruleset_dump(npf_t *npf, const char *name)
1068 {
1069 npf_ruleset_t *rlset = npf_config_ruleset(npf);
1070 npf_rule_t *rg, *rl;
1071
1072 LIST_FOREACH(rg, &rlset->rs_dynamic, r_dentry) {
1073 printf("ruleset '%s':\n", rg->r_name);
1074 for (rl = rg->r_subset; rl; rl = rl->r_next) {
1075 printf("\tid %"PRIu64", key: ", rl->r_id);
1076 for (unsigned i = 0; i < NPF_RULE_MAXKEYLEN; i++)
1077 printf("%x", rl->r_key[i]);
1078 printf("\n");
1079 }
1080 }
1081 }
1082
1083 #endif
1084