npf_state_tcp.c revision 1.17 1 1.17 christos /* $NetBSD: npf_state_tcp.c,v 1.17 2016/12/26 23:05:06 christos Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.7 rmind * Copyright (c) 2010-2012 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This material is based upon work partially supported by The
8 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.1 rmind * NPF TCP state engine for connection tracking.
34 1.1 rmind */
35 1.1 rmind
36 1.17 christos #ifdef _KERNEL
37 1.1 rmind #include <sys/cdefs.h>
38 1.17 christos __KERNEL_RCSID(0, "$NetBSD: npf_state_tcp.c,v 1.17 2016/12/26 23:05:06 christos Exp $");
39 1.1 rmind
40 1.1 rmind #include <sys/param.h>
41 1.1 rmind #include <sys/types.h>
42 1.1 rmind
43 1.1 rmind #include <netinet/in.h>
44 1.1 rmind #include <netinet/tcp.h>
45 1.17 christos #endif
46 1.1 rmind
47 1.1 rmind #include "npf_impl.h"
48 1.1 rmind
49 1.1 rmind /*
50 1.1 rmind * NPF TCP states. Note: these states are different from the TCP FSM
51 1.4 rmind * states of RFC 793. The packet filter is a man-in-the-middle.
52 1.1 rmind */
53 1.13 rmind #define NPF_TCPS_OK 255
54 1.1 rmind #define NPF_TCPS_CLOSED 0
55 1.1 rmind #define NPF_TCPS_SYN_SENT 1
56 1.1 rmind #define NPF_TCPS_SIMSYN_SENT 2
57 1.1 rmind #define NPF_TCPS_SYN_RECEIVED 3
58 1.1 rmind #define NPF_TCPS_ESTABLISHED 4
59 1.8 rmind #define NPF_TCPS_FIN_SENT 5
60 1.8 rmind #define NPF_TCPS_FIN_RECEIVED 6
61 1.8 rmind #define NPF_TCPS_CLOSE_WAIT 7
62 1.8 rmind #define NPF_TCPS_FIN_WAIT 8
63 1.8 rmind #define NPF_TCPS_CLOSING 9
64 1.8 rmind #define NPF_TCPS_LAST_ACK 10
65 1.8 rmind #define NPF_TCPS_TIME_WAIT 11
66 1.1 rmind
67 1.8 rmind #define NPF_TCP_NSTATES 12
68 1.1 rmind
69 1.1 rmind /*
70 1.1 rmind * TCP connection timeout table (in seconds).
71 1.1 rmind */
72 1.2 rmind static u_int npf_tcp_timeouts[] __read_mostly = {
73 1.1 rmind /* Closed, timeout nearly immediately. */
74 1.1 rmind [NPF_TCPS_CLOSED] = 10,
75 1.1 rmind /* Unsynchronised states. */
76 1.1 rmind [NPF_TCPS_SYN_SENT] = 30,
77 1.1 rmind [NPF_TCPS_SIMSYN_SENT] = 30,
78 1.1 rmind [NPF_TCPS_SYN_RECEIVED] = 60,
79 1.8 rmind /* Established: 24 hours. */
80 1.1 rmind [NPF_TCPS_ESTABLISHED] = 60 * 60 * 24,
81 1.8 rmind /* FIN seen: 4 minutes (2 * MSL). */
82 1.8 rmind [NPF_TCPS_FIN_SENT] = 60 * 2 * 2,
83 1.8 rmind [NPF_TCPS_FIN_RECEIVED] = 60 * 2 * 2,
84 1.8 rmind /* Half-closed cases: 6 hours. */
85 1.8 rmind [NPF_TCPS_CLOSE_WAIT] = 60 * 60 * 6,
86 1.8 rmind [NPF_TCPS_FIN_WAIT] = 60 * 60 * 6,
87 1.8 rmind /* Full close cases: 30 sec and 2 * MSL. */
88 1.1 rmind [NPF_TCPS_CLOSING] = 30,
89 1.1 rmind [NPF_TCPS_LAST_ACK] = 30,
90 1.1 rmind [NPF_TCPS_TIME_WAIT] = 60 * 2 * 2,
91 1.1 rmind };
92 1.1 rmind
93 1.16 rmind static bool npf_strict_order_rst __read_mostly = true;
94 1.11 rmind
95 1.1 rmind #define NPF_TCP_MAXACKWIN 66000
96 1.1 rmind
97 1.17 christos #define SEQ_LT(a,b) ((int)((a)-(b)) < 0)
98 1.17 christos #define SEQ_LEQ(a,b) ((int)((a)-(b)) <= 0)
99 1.17 christos #define SEQ_GT(a,b) ((int)((a)-(b)) > 0)
100 1.17 christos #define SEQ_GEQ(a,b) ((int)((a)-(b)) >= 0)
101 1.17 christos
102 1.2 rmind /*
103 1.2 rmind * List of TCP flag cases and conversion of flags to a case (index).
104 1.2 rmind */
105 1.2 rmind
106 1.2 rmind #define TCPFC_INVALID 0
107 1.2 rmind #define TCPFC_SYN 1
108 1.2 rmind #define TCPFC_SYNACK 2
109 1.2 rmind #define TCPFC_ACK 3
110 1.2 rmind #define TCPFC_FIN 4
111 1.2 rmind #define TCPFC_COUNT 5
112 1.2 rmind
113 1.2 rmind static inline u_int
114 1.13 rmind npf_tcpfl2case(const u_int tcpfl)
115 1.2 rmind {
116 1.2 rmind u_int i, c;
117 1.2 rmind
118 1.3 rmind CTASSERT(TH_FIN == 0x01);
119 1.3 rmind CTASSERT(TH_SYN == 0x02);
120 1.3 rmind CTASSERT(TH_ACK == 0x10);
121 1.3 rmind
122 1.2 rmind /*
123 1.3 rmind * Flags are shifted to use three least significant bits, thus each
124 1.3 rmind * flag combination has a unique number ranging from 0 to 7, e.g.
125 1.3 rmind * TH_SYN | TH_ACK has number 6, since (0x02 | (0x10 >> 2)) == 6.
126 1.3 rmind * However, the requirement is to have number 0 for invalid cases,
127 1.3 rmind * such as TH_SYN | TH_FIN, and to have the same number for TH_FIN
128 1.3 rmind * and TH_FIN|TH_ACK cases. Thus, we generate a mask assigning 3
129 1.3 rmind * bits for each number, which contains the actual case numbers:
130 1.3 rmind *
131 1.3 rmind * TCPFC_SYNACK << (6 << 2) == 0x2000000 (6 - SYN,ACK)
132 1.3 rmind * TCPFC_FIN << (5 << 2) == 0x0400000 (5 - FIN,ACK)
133 1.3 rmind * ...
134 1.3 rmind *
135 1.3 rmind * Hence, OR'ed mask value is 0x2430140.
136 1.2 rmind */
137 1.2 rmind i = (tcpfl & (TH_SYN | TH_FIN)) | ((tcpfl & TH_ACK) >> 2);
138 1.2 rmind c = (0x2430140 >> (i << 2)) & 7;
139 1.2 rmind
140 1.2 rmind KASSERT(c < TCPFC_COUNT);
141 1.2 rmind return c;
142 1.2 rmind }
143 1.1 rmind
144 1.1 rmind /*
145 1.1 rmind * NPF transition table of a tracked TCP connection.
146 1.1 rmind *
147 1.1 rmind * There is a single state, which is changed in the following way:
148 1.1 rmind *
149 1.2 rmind * new_state = npf_tcp_fsm[old_state][direction][npf_tcpfl2case(tcp_flags)];
150 1.1 rmind *
151 1.1 rmind * Note that this state is different from the state in each end (host).
152 1.1 rmind */
153 1.1 rmind
154 1.13 rmind static const uint8_t npf_tcp_fsm[NPF_TCP_NSTATES][2][TCPFC_COUNT] = {
155 1.1 rmind [NPF_TCPS_CLOSED] = {
156 1.1 rmind [NPF_FLOW_FORW] = {
157 1.1 rmind /* Handshake (1): initial SYN. */
158 1.2 rmind [TCPFC_SYN] = NPF_TCPS_SYN_SENT,
159 1.1 rmind },
160 1.1 rmind },
161 1.1 rmind [NPF_TCPS_SYN_SENT] = {
162 1.1 rmind [NPF_FLOW_FORW] = {
163 1.1 rmind /* SYN may be retransmitted. */
164 1.2 rmind [TCPFC_SYN] = NPF_TCPS_OK,
165 1.1 rmind },
166 1.1 rmind [NPF_FLOW_BACK] = {
167 1.1 rmind /* Handshake (2): SYN-ACK is expected. */
168 1.2 rmind [TCPFC_SYNACK] = NPF_TCPS_SYN_RECEIVED,
169 1.1 rmind /* Simultaneous initiation - SYN. */
170 1.2 rmind [TCPFC_SYN] = NPF_TCPS_SIMSYN_SENT,
171 1.1 rmind },
172 1.1 rmind },
173 1.1 rmind [NPF_TCPS_SIMSYN_SENT] = {
174 1.1 rmind [NPF_FLOW_FORW] = {
175 1.1 rmind /* Original SYN re-transmission. */
176 1.2 rmind [TCPFC_SYN] = NPF_TCPS_OK,
177 1.1 rmind /* SYN-ACK response to simultaneous SYN. */
178 1.2 rmind [TCPFC_SYNACK] = NPF_TCPS_SYN_RECEIVED,
179 1.1 rmind },
180 1.1 rmind [NPF_FLOW_BACK] = {
181 1.1 rmind /* Simultaneous SYN re-transmission.*/
182 1.2 rmind [TCPFC_SYN] = NPF_TCPS_OK,
183 1.1 rmind /* SYN-ACK response to original SYN. */
184 1.2 rmind [TCPFC_SYNACK] = NPF_TCPS_SYN_RECEIVED,
185 1.9 rmind /* FIN may occur early. */
186 1.8 rmind [TCPFC_FIN] = NPF_TCPS_FIN_RECEIVED,
187 1.1 rmind },
188 1.1 rmind },
189 1.1 rmind [NPF_TCPS_SYN_RECEIVED] = {
190 1.1 rmind [NPF_FLOW_FORW] = {
191 1.1 rmind /* Handshake (3): ACK is expected. */
192 1.2 rmind [TCPFC_ACK] = NPF_TCPS_ESTABLISHED,
193 1.2 rmind /* FIN may be sent early. */
194 1.8 rmind [TCPFC_FIN] = NPF_TCPS_FIN_SENT,
195 1.1 rmind },
196 1.1 rmind [NPF_FLOW_BACK] = {
197 1.1 rmind /* SYN-ACK may be retransmitted. */
198 1.2 rmind [TCPFC_SYNACK] = NPF_TCPS_OK,
199 1.1 rmind /* XXX: ACK of late SYN in simultaneous case? */
200 1.2 rmind [TCPFC_ACK] = NPF_TCPS_OK,
201 1.9 rmind /* FIN may occur early. */
202 1.8 rmind [TCPFC_FIN] = NPF_TCPS_FIN_RECEIVED,
203 1.1 rmind },
204 1.1 rmind },
205 1.1 rmind [NPF_TCPS_ESTABLISHED] = {
206 1.1 rmind /*
207 1.1 rmind * Regular ACKs (data exchange) or FIN.
208 1.1 rmind * FIN packets may have ACK set.
209 1.1 rmind */
210 1.1 rmind [NPF_FLOW_FORW] = {
211 1.2 rmind [TCPFC_ACK] = NPF_TCPS_OK,
212 1.1 rmind /* FIN by the sender. */
213 1.8 rmind [TCPFC_FIN] = NPF_TCPS_FIN_SENT,
214 1.1 rmind },
215 1.1 rmind [NPF_FLOW_BACK] = {
216 1.2 rmind [TCPFC_ACK] = NPF_TCPS_OK,
217 1.1 rmind /* FIN by the receiver. */
218 1.8 rmind [TCPFC_FIN] = NPF_TCPS_FIN_RECEIVED,
219 1.1 rmind },
220 1.1 rmind },
221 1.8 rmind [NPF_TCPS_FIN_SENT] = {
222 1.8 rmind [NPF_FLOW_FORW] = {
223 1.8 rmind /* FIN may be re-transmitted. Late ACK as well. */
224 1.8 rmind [TCPFC_ACK] = NPF_TCPS_OK,
225 1.8 rmind [TCPFC_FIN] = NPF_TCPS_OK,
226 1.8 rmind },
227 1.8 rmind [NPF_FLOW_BACK] = {
228 1.8 rmind /* If ACK, connection is half-closed now. */
229 1.8 rmind [TCPFC_ACK] = NPF_TCPS_FIN_WAIT,
230 1.8 rmind /* FIN or FIN-ACK race - immediate closing. */
231 1.8 rmind [TCPFC_FIN] = NPF_TCPS_CLOSING,
232 1.8 rmind },
233 1.8 rmind },
234 1.8 rmind [NPF_TCPS_FIN_RECEIVED] = {
235 1.1 rmind /*
236 1.8 rmind * FIN was received. Equivalent scenario to sent FIN.
237 1.1 rmind */
238 1.1 rmind [NPF_FLOW_FORW] = {
239 1.2 rmind [TCPFC_ACK] = NPF_TCPS_CLOSE_WAIT,
240 1.2 rmind [TCPFC_FIN] = NPF_TCPS_CLOSING,
241 1.1 rmind },
242 1.1 rmind [NPF_FLOW_BACK] = {
243 1.8 rmind [TCPFC_ACK] = NPF_TCPS_OK,
244 1.8 rmind [TCPFC_FIN] = NPF_TCPS_OK,
245 1.1 rmind },
246 1.1 rmind },
247 1.1 rmind [NPF_TCPS_CLOSE_WAIT] = {
248 1.1 rmind /* Sender has sent the FIN and closed its end. */
249 1.1 rmind [NPF_FLOW_FORW] = {
250 1.2 rmind [TCPFC_ACK] = NPF_TCPS_OK,
251 1.2 rmind [TCPFC_FIN] = NPF_TCPS_LAST_ACK,
252 1.1 rmind },
253 1.1 rmind [NPF_FLOW_BACK] = {
254 1.2 rmind [TCPFC_ACK] = NPF_TCPS_OK,
255 1.2 rmind [TCPFC_FIN] = NPF_TCPS_LAST_ACK,
256 1.1 rmind },
257 1.1 rmind },
258 1.1 rmind [NPF_TCPS_FIN_WAIT] = {
259 1.1 rmind /* Receiver has closed its end. */
260 1.1 rmind [NPF_FLOW_FORW] = {
261 1.2 rmind [TCPFC_ACK] = NPF_TCPS_OK,
262 1.2 rmind [TCPFC_FIN] = NPF_TCPS_LAST_ACK,
263 1.1 rmind },
264 1.1 rmind [NPF_FLOW_BACK] = {
265 1.2 rmind [TCPFC_ACK] = NPF_TCPS_OK,
266 1.2 rmind [TCPFC_FIN] = NPF_TCPS_LAST_ACK,
267 1.1 rmind },
268 1.1 rmind },
269 1.1 rmind [NPF_TCPS_CLOSING] = {
270 1.1 rmind /* Race of FINs - expecting ACK. */
271 1.1 rmind [NPF_FLOW_FORW] = {
272 1.2 rmind [TCPFC_ACK] = NPF_TCPS_LAST_ACK,
273 1.1 rmind },
274 1.1 rmind [NPF_FLOW_BACK] = {
275 1.2 rmind [TCPFC_ACK] = NPF_TCPS_LAST_ACK,
276 1.1 rmind },
277 1.1 rmind },
278 1.1 rmind [NPF_TCPS_LAST_ACK] = {
279 1.1 rmind /* FINs exchanged - expecting last ACK. */
280 1.1 rmind [NPF_FLOW_FORW] = {
281 1.2 rmind [TCPFC_ACK] = NPF_TCPS_TIME_WAIT,
282 1.1 rmind },
283 1.1 rmind [NPF_FLOW_BACK] = {
284 1.2 rmind [TCPFC_ACK] = NPF_TCPS_TIME_WAIT,
285 1.1 rmind },
286 1.1 rmind },
287 1.1 rmind [NPF_TCPS_TIME_WAIT] = {
288 1.1 rmind /* May re-open the connection as per RFC 1122. */
289 1.1 rmind [NPF_FLOW_FORW] = {
290 1.2 rmind [TCPFC_SYN] = NPF_TCPS_SYN_SENT,
291 1.1 rmind },
292 1.1 rmind },
293 1.1 rmind };
294 1.1 rmind
295 1.1 rmind /*
296 1.1 rmind * npf_tcp_inwindow: determine whether the packet is in the TCP window
297 1.1 rmind * and thus part of the connection we are tracking.
298 1.1 rmind */
299 1.1 rmind static bool
300 1.15 rmind npf_tcp_inwindow(npf_cache_t *npc, npf_state_t *nst, const int di)
301 1.1 rmind {
302 1.12 rmind const struct tcphdr * const th = npc->npc_l4.tcp;
303 1.1 rmind const int tcpfl = th->th_flags;
304 1.1 rmind npf_tcpstate_t *fstate, *tstate;
305 1.10 rmind int tcpdlen, ackskew;
306 1.1 rmind tcp_seq seq, ack, end;
307 1.1 rmind uint32_t win;
308 1.1 rmind
309 1.1 rmind KASSERT(npf_iscached(npc, NPC_TCP));
310 1.1 rmind KASSERT(di == NPF_FLOW_FORW || di == NPF_FLOW_BACK);
311 1.1 rmind
312 1.1 rmind /*
313 1.1 rmind * Perform SEQ/ACK numbers check against boundaries. Reference:
314 1.1 rmind *
315 1.1 rmind * Rooij G., "Real stateful TCP packet filtering in IP Filter",
316 1.1 rmind * 10th USENIX Security Symposium invited talk, Aug. 2001.
317 1.1 rmind *
318 1.3 rmind * There are four boundaries defined as following:
319 1.1 rmind * I) SEQ + LEN <= MAX { SND.ACK + MAX(SND.WIN, 1) }
320 1.2 rmind * II) SEQ >= MAX { SND.SEQ + SND.LEN - MAX(RCV.WIN, 1) }
321 1.1 rmind * III) ACK <= MAX { RCV.SEQ + RCV.LEN }
322 1.1 rmind * IV) ACK >= MAX { RCV.SEQ + RCV.LEN } - MAXACKWIN
323 1.1 rmind *
324 1.1 rmind * Let these members of npf_tcpstate_t be the maximum seen values of:
325 1.1 rmind * nst_end - SEQ + LEN
326 1.1 rmind * nst_maxend - ACK + MAX(WIN, 1)
327 1.1 rmind * nst_maxwin - MAX(WIN, 1)
328 1.1 rmind */
329 1.1 rmind
330 1.1 rmind tcpdlen = npf_tcpsaw(__UNCONST(npc), &seq, &ack, &win);
331 1.1 rmind end = seq + tcpdlen;
332 1.1 rmind if (tcpfl & TH_SYN) {
333 1.1 rmind end++;
334 1.1 rmind }
335 1.1 rmind if (tcpfl & TH_FIN) {
336 1.1 rmind end++;
337 1.1 rmind }
338 1.1 rmind
339 1.1 rmind fstate = &nst->nst_tcpst[di];
340 1.1 rmind tstate = &nst->nst_tcpst[!di];
341 1.1 rmind win = win ? (win << fstate->nst_wscale) : 1;
342 1.1 rmind
343 1.1 rmind /*
344 1.1 rmind * Initialise if the first packet.
345 1.1 rmind * Note: only case when nst_maxwin is zero.
346 1.1 rmind */
347 1.1 rmind if (__predict_false(fstate->nst_maxwin == 0)) {
348 1.1 rmind /*
349 1.6 rmind * Normally, it should be the first SYN or a re-transmission
350 1.6 rmind * of SYN. The state of the other side will get set with a
351 1.6 rmind * SYN-ACK reply (see below).
352 1.1 rmind */
353 1.1 rmind fstate->nst_end = end;
354 1.1 rmind fstate->nst_maxend = end;
355 1.1 rmind fstate->nst_maxwin = win;
356 1.1 rmind tstate->nst_end = 0;
357 1.1 rmind tstate->nst_maxend = 0;
358 1.1 rmind tstate->nst_maxwin = 1;
359 1.1 rmind
360 1.1 rmind /*
361 1.1 rmind * Handle TCP Window Scaling (RFC 1323). Both sides may
362 1.1 rmind * send this option in their SYN packets.
363 1.1 rmind */
364 1.10 rmind fstate->nst_wscale = 0;
365 1.15 rmind (void)npf_fetch_tcpopts(npc, NULL, &fstate->nst_wscale);
366 1.10 rmind
367 1.1 rmind tstate->nst_wscale = 0;
368 1.1 rmind
369 1.1 rmind /* Done. */
370 1.1 rmind return true;
371 1.1 rmind }
372 1.13 rmind
373 1.1 rmind if (fstate->nst_end == 0) {
374 1.1 rmind /*
375 1.1 rmind * Should be a SYN-ACK reply to SYN. If SYN is not set,
376 1.1 rmind * then we are in the middle of connection and lost tracking.
377 1.1 rmind */
378 1.1 rmind fstate->nst_end = end;
379 1.1 rmind fstate->nst_maxend = end + 1;
380 1.1 rmind fstate->nst_maxwin = win;
381 1.10 rmind fstate->nst_wscale = 0;
382 1.1 rmind
383 1.1 rmind /* Handle TCP Window Scaling (must be ignored if no SYN). */
384 1.1 rmind if (tcpfl & TH_SYN) {
385 1.15 rmind (void)npf_fetch_tcpopts(npc, NULL, &fstate->nst_wscale);
386 1.1 rmind }
387 1.1 rmind }
388 1.6 rmind
389 1.1 rmind if ((tcpfl & TH_ACK) == 0) {
390 1.1 rmind /* Pretend that an ACK was sent. */
391 1.1 rmind ack = tstate->nst_end;
392 1.1 rmind } else if ((tcpfl & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST) && ack == 0) {
393 1.1 rmind /* Workaround for some TCP stacks. */
394 1.1 rmind ack = tstate->nst_end;
395 1.1 rmind }
396 1.11 rmind
397 1.11 rmind if (__predict_false(tcpfl & TH_RST)) {
398 1.11 rmind /* RST to the initial SYN may have zero SEQ - fix it up. */
399 1.11 rmind if (seq == 0 && nst->nst_state == NPF_TCPS_SYN_SENT) {
400 1.11 rmind end = fstate->nst_end;
401 1.11 rmind seq = end;
402 1.11 rmind }
403 1.11 rmind
404 1.16 rmind /* Strict in-order sequence for RST packets (RFC 5961). */
405 1.11 rmind if (npf_strict_order_rst && (fstate->nst_end - seq) > 1) {
406 1.11 rmind return false;
407 1.11 rmind }
408 1.1 rmind }
409 1.11 rmind
410 1.1 rmind /*
411 1.1 rmind * Determine whether the data is within previously noted window,
412 1.1 rmind * that is, upper boundary for valid data (I).
413 1.1 rmind */
414 1.1 rmind if (!SEQ_LEQ(end, fstate->nst_maxend)) {
415 1.17 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE_TCP1);
416 1.1 rmind return false;
417 1.1 rmind }
418 1.1 rmind
419 1.1 rmind /* Lower boundary (II), which is no more than one window back. */
420 1.1 rmind if (!SEQ_GEQ(seq, fstate->nst_end - tstate->nst_maxwin)) {
421 1.17 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE_TCP2);
422 1.1 rmind return false;
423 1.1 rmind }
424 1.1 rmind
425 1.1 rmind /*
426 1.6 rmind * Boundaries for valid acknowledgments (III, IV) - one predicted
427 1.1 rmind * window up or down, since packets may be fragmented.
428 1.1 rmind */
429 1.1 rmind ackskew = tstate->nst_end - ack;
430 1.1 rmind if (ackskew < -NPF_TCP_MAXACKWIN ||
431 1.1 rmind ackskew > (NPF_TCP_MAXACKWIN << fstate->nst_wscale)) {
432 1.17 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE_TCP3);
433 1.1 rmind return false;
434 1.1 rmind }
435 1.1 rmind
436 1.1 rmind /*
437 1.1 rmind * Packet has been passed.
438 1.1 rmind *
439 1.1 rmind * Negative ackskew might be due to fragmented packets. Since the
440 1.1 rmind * total length of the packet is unknown - bump the boundary.
441 1.1 rmind */
442 1.6 rmind
443 1.1 rmind if (ackskew < 0) {
444 1.4 rmind tstate->nst_end = ack;
445 1.1 rmind }
446 1.1 rmind /* Keep track of the maximum window seen. */
447 1.1 rmind if (fstate->nst_maxwin < win) {
448 1.1 rmind fstate->nst_maxwin = win;
449 1.1 rmind }
450 1.1 rmind if (SEQ_GT(end, fstate->nst_end)) {
451 1.1 rmind fstate->nst_end = end;
452 1.1 rmind }
453 1.1 rmind /* Note the window for upper boundary. */
454 1.1 rmind if (SEQ_GEQ(ack + win, tstate->nst_maxend)) {
455 1.1 rmind tstate->nst_maxend = ack + win;
456 1.1 rmind }
457 1.1 rmind return true;
458 1.1 rmind }
459 1.1 rmind
460 1.7 rmind /*
461 1.7 rmind * npf_state_tcp: inspect TCP segment, determine whether it belongs to
462 1.7 rmind * the connection and track its state.
463 1.7 rmind */
464 1.1 rmind bool
465 1.15 rmind npf_state_tcp(npf_cache_t *npc, npf_state_t *nst, int di)
466 1.1 rmind {
467 1.12 rmind const struct tcphdr * const th = npc->npc_l4.tcp;
468 1.13 rmind const u_int tcpfl = th->th_flags, state = nst->nst_state;
469 1.13 rmind u_int nstate;
470 1.1 rmind
471 1.13 rmind KASSERT(nst->nst_state < NPF_TCP_NSTATES);
472 1.6 rmind
473 1.1 rmind /* Look for a transition to a new state. */
474 1.1 rmind if (__predict_true((tcpfl & TH_RST) == 0)) {
475 1.13 rmind const u_int flagcase = npf_tcpfl2case(tcpfl);
476 1.2 rmind nstate = npf_tcp_fsm[state][di][flagcase];
477 1.1 rmind } else if (state == NPF_TCPS_TIME_WAIT) {
478 1.1 rmind /* Prevent TIME-WAIT assassination (RFC 1337). */
479 1.1 rmind nstate = NPF_TCPS_OK;
480 1.1 rmind } else {
481 1.1 rmind nstate = NPF_TCPS_CLOSED;
482 1.1 rmind }
483 1.5 rmind
484 1.1 rmind /* Determine whether TCP packet really belongs to this connection. */
485 1.15 rmind if (!npf_tcp_inwindow(npc, nst, di)) {
486 1.1 rmind return false;
487 1.1 rmind }
488 1.1 rmind if (__predict_true(nstate == NPF_TCPS_OK)) {
489 1.1 rmind return true;
490 1.1 rmind }
491 1.5 rmind
492 1.1 rmind nst->nst_state = nstate;
493 1.1 rmind return true;
494 1.1 rmind }
495 1.1 rmind
496 1.1 rmind int
497 1.1 rmind npf_state_tcp_timeout(const npf_state_t *nst)
498 1.1 rmind {
499 1.1 rmind const u_int state = nst->nst_state;
500 1.1 rmind
501 1.1 rmind KASSERT(state < NPF_TCP_NSTATES);
502 1.1 rmind return npf_tcp_timeouts[state];
503 1.1 rmind }
504