npf_state_tcp.c revision 1.1.2.1 1 /* $NetBSD: npf_state_tcp.c,v 1.1.2.1 2012/02/18 07:35:38 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 2010-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * NPF TCP state engine for connection tracking.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: npf_state_tcp.c,v 1.1.2.1 2012/02/18 07:35:38 mrg Exp $");
38
39 #include <sys/param.h>
40 #include <sys/types.h>
41
42 #ifndef _KERNEL
43 #include <stdio.h>
44 #include <stdbool.h>
45 #include <inttypes.h>
46 #endif
47 #include <netinet/in.h>
48 #include <netinet/tcp.h>
49 #include <netinet/tcp_seq.h>
50
51 #include "npf_impl.h"
52
53 #if defined(_NPF_TESTING)
54 void npf_state_sample(npf_state_t *);
55 #define NPF_TCP_STATE_SAMPLE(nst) npf_state_sample(nst)
56 #else
57 #define NPF_TCP_STATE_SAMPLE(nst)
58 #endif
59
60 /*
61 * NPF TCP states. Note: these states are different from the TCP FSM
62 * states of RFC 793. Mind that packet filter is a man-in-the-middle.
63 */
64 #define NPF_TCPS_OK (-1)
65 #define NPF_TCPS_CLOSED 0
66 #define NPF_TCPS_SYN_SENT 1
67 #define NPF_TCPS_SIMSYN_SENT 2
68 #define NPF_TCPS_SYN_RECEIVED 3
69 #define NPF_TCPS_ESTABLISHED 4
70 #define NPF_TCPS_FIN_SEEN 5
71 #define NPF_TCPS_CLOSE_WAIT 6
72 #define NPF_TCPS_FIN_WAIT 7
73 #define NPF_TCPS_CLOSING 8
74 #define NPF_TCPS_LAST_ACK 9
75 #define NPF_TCPS_TIME_WAIT 10
76
77 #define NPF_TCP_NSTATES 11
78
79 /*
80 * TCP connection timeout table (in seconds).
81 */
82 static u_int npf_tcp_timeouts[] __read_mostly = {
83 /* Closed, timeout nearly immediately. */
84 [NPF_TCPS_CLOSED] = 10,
85 /* Unsynchronised states. */
86 [NPF_TCPS_SYN_SENT] = 30,
87 [NPF_TCPS_SIMSYN_SENT] = 30,
88 [NPF_TCPS_SYN_RECEIVED] = 60,
89 /* Established, timeout: 24 hours. */
90 [NPF_TCPS_ESTABLISHED] = 60 * 60 * 24,
91 /* Closure cases, timeout: 4 minutes (2 * MSL). */
92 [NPF_TCPS_FIN_SEEN] = 60 * 2 * 2,
93 [NPF_TCPS_CLOSE_WAIT] = 60 * 2 * 2,
94 [NPF_TCPS_FIN_WAIT] = 60 * 2 * 2,
95 [NPF_TCPS_CLOSING] = 30,
96 [NPF_TCPS_LAST_ACK] = 30,
97 [NPF_TCPS_TIME_WAIT] = 60 * 2 * 2,
98 };
99
100 #define NPF_TCP_MAXACKWIN 66000
101
102 /*
103 * List of TCP flag cases and conversion of flags to a case (index).
104 */
105
106 #define TCPFC_INVALID 0
107 #define TCPFC_SYN 1
108 #define TCPFC_SYNACK 2
109 #define TCPFC_ACK 3
110 #define TCPFC_FIN 4
111 #define TCPFC_COUNT 5
112
113 static inline u_int
114 npf_tcpfl2case(const int tcpfl)
115 {
116 u_int i, c;
117
118 CTASSERT(TH_FIN == 0x01);
119 CTASSERT(TH_SYN == 0x02);
120 CTASSERT(TH_ACK == 0x10);
121
122 /*
123 * Flags are shifted to use three least significant bits, thus each
124 * flag combination has a unique number ranging from 0 to 7, e.g.
125 * TH_SYN | TH_ACK has number 6, since (0x02 | (0x10 >> 2)) == 6.
126 * However, the requirement is to have number 0 for invalid cases,
127 * such as TH_SYN | TH_FIN, and to have the same number for TH_FIN
128 * and TH_FIN|TH_ACK cases. Thus, we generate a mask assigning 3
129 * bits for each number, which contains the actual case numbers:
130 *
131 * TCPFC_SYNACK << (6 << 2) == 0x2000000 (6 - SYN,ACK)
132 * TCPFC_FIN << (5 << 2) == 0x0400000 (5 - FIN,ACK)
133 * ...
134 *
135 * Hence, OR'ed mask value is 0x2430140.
136 */
137 i = (tcpfl & (TH_SYN | TH_FIN)) | ((tcpfl & TH_ACK) >> 2);
138 c = (0x2430140 >> (i << 2)) & 7;
139
140 KASSERT(c < TCPFC_COUNT);
141 return c;
142 }
143
144 /*
145 * NPF transition table of a tracked TCP connection.
146 *
147 * There is a single state, which is changed in the following way:
148 *
149 * new_state = npf_tcp_fsm[old_state][direction][npf_tcpfl2case(tcp_flags)];
150 *
151 * Note that this state is different from the state in each end (host).
152 */
153
154 static const int npf_tcp_fsm[NPF_TCP_NSTATES][2][TCPFC_COUNT] = {
155 [NPF_TCPS_CLOSED] = {
156 [NPF_FLOW_FORW] = {
157 /* Handshake (1): initial SYN. */
158 [TCPFC_SYN] = NPF_TCPS_SYN_SENT,
159 },
160 },
161 [NPF_TCPS_SYN_SENT] = {
162 [NPF_FLOW_FORW] = {
163 /* SYN may be retransmitted. */
164 [TCPFC_SYN] = NPF_TCPS_OK,
165 },
166 [NPF_FLOW_BACK] = {
167 /* Handshake (2): SYN-ACK is expected. */
168 [TCPFC_SYNACK] = NPF_TCPS_SYN_RECEIVED,
169 /* Simultaneous initiation - SYN. */
170 [TCPFC_SYN] = NPF_TCPS_SIMSYN_SENT,
171 },
172 },
173 [NPF_TCPS_SIMSYN_SENT] = {
174 [NPF_FLOW_FORW] = {
175 /* Original SYN re-transmission. */
176 [TCPFC_SYN] = NPF_TCPS_OK,
177 /* SYN-ACK response to simultaneous SYN. */
178 [TCPFC_SYNACK] = NPF_TCPS_SYN_RECEIVED,
179 },
180 [NPF_FLOW_BACK] = {
181 /* Simultaneous SYN re-transmission.*/
182 [TCPFC_SYN] = NPF_TCPS_OK,
183 /* SYN-ACK response to original SYN. */
184 [TCPFC_SYNACK] = NPF_TCPS_SYN_RECEIVED,
185 /* FIN may be sent early. */
186 [TCPFC_FIN] = NPF_TCPS_FIN_SEEN,
187 },
188 },
189 [NPF_TCPS_SYN_RECEIVED] = {
190 [NPF_FLOW_FORW] = {
191 /* Handshake (3): ACK is expected. */
192 [TCPFC_ACK] = NPF_TCPS_ESTABLISHED,
193 /* FIN may be sent early. */
194 [TCPFC_FIN] = NPF_TCPS_FIN_SEEN,
195 },
196 [NPF_FLOW_BACK] = {
197 /* SYN-ACK may be retransmitted. */
198 [TCPFC_SYNACK] = NPF_TCPS_OK,
199 /* XXX: ACK of late SYN in simultaneous case? */
200 [TCPFC_ACK] = NPF_TCPS_OK,
201 /* FIN may be sent early. */
202 [TCPFC_FIN] = NPF_TCPS_FIN_SEEN,
203 },
204 },
205 [NPF_TCPS_ESTABLISHED] = {
206 /*
207 * Regular ACKs (data exchange) or FIN.
208 * FIN packets may have ACK set.
209 */
210 [NPF_FLOW_FORW] = {
211 [TCPFC_ACK] = NPF_TCPS_OK,
212 /* FIN by the sender. */
213 [TCPFC_FIN] = NPF_TCPS_FIN_SEEN,
214 },
215 [NPF_FLOW_BACK] = {
216 [TCPFC_ACK] = NPF_TCPS_OK,
217 /* FIN by the receiver. */
218 [TCPFC_FIN] = NPF_TCPS_FIN_SEEN,
219 },
220 },
221 [NPF_TCPS_FIN_SEEN] = {
222 /*
223 * FIN was seen. If ACK only, connection is half-closed now,
224 * need to determine which end is closed (sender or receiver).
225 * However, both FIN and FIN-ACK may race here - in which
226 * case we are closing immediately.
227 */
228 [NPF_FLOW_FORW] = {
229 [TCPFC_ACK] = NPF_TCPS_CLOSE_WAIT,
230 [TCPFC_FIN] = NPF_TCPS_CLOSING,
231 },
232 [NPF_FLOW_BACK] = {
233 [TCPFC_ACK] = NPF_TCPS_FIN_WAIT,
234 [TCPFC_FIN] = NPF_TCPS_CLOSING,
235 },
236 },
237 [NPF_TCPS_CLOSE_WAIT] = {
238 /* Sender has sent the FIN and closed its end. */
239 [NPF_FLOW_FORW] = {
240 [TCPFC_ACK] = NPF_TCPS_OK,
241 [TCPFC_FIN] = NPF_TCPS_LAST_ACK,
242 },
243 [NPF_FLOW_BACK] = {
244 [TCPFC_ACK] = NPF_TCPS_OK,
245 [TCPFC_FIN] = NPF_TCPS_LAST_ACK,
246 },
247 },
248 [NPF_TCPS_FIN_WAIT] = {
249 /* Receiver has closed its end. */
250 [NPF_FLOW_FORW] = {
251 [TCPFC_ACK] = NPF_TCPS_OK,
252 [TCPFC_FIN] = NPF_TCPS_LAST_ACK,
253 },
254 [NPF_FLOW_BACK] = {
255 [TCPFC_ACK] = NPF_TCPS_OK,
256 [TCPFC_FIN] = NPF_TCPS_LAST_ACK,
257 },
258 },
259 [NPF_TCPS_CLOSING] = {
260 /* Race of FINs - expecting ACK. */
261 [NPF_FLOW_FORW] = {
262 [TCPFC_ACK] = NPF_TCPS_LAST_ACK,
263 },
264 [NPF_FLOW_BACK] = {
265 [TCPFC_ACK] = NPF_TCPS_LAST_ACK,
266 },
267 },
268 [NPF_TCPS_LAST_ACK] = {
269 /* FINs exchanged - expecting last ACK. */
270 [NPF_FLOW_FORW] = {
271 [TCPFC_ACK] = NPF_TCPS_TIME_WAIT,
272 },
273 [NPF_FLOW_BACK] = {
274 [TCPFC_ACK] = NPF_TCPS_TIME_WAIT,
275 },
276 },
277 [NPF_TCPS_TIME_WAIT] = {
278 /* May re-open the connection as per RFC 1122. */
279 [NPF_FLOW_FORW] = {
280 [TCPFC_SYN] = NPF_TCPS_SYN_SENT,
281 },
282 },
283 };
284
285 /*
286 * npf_tcp_inwindow: determine whether the packet is in the TCP window
287 * and thus part of the connection we are tracking.
288 */
289 static bool
290 npf_tcp_inwindow(const npf_cache_t *npc, nbuf_t *nbuf, npf_state_t *nst,
291 const int di)
292 {
293 const struct tcphdr * const th = &npc->npc_l4.tcp;
294 const int tcpfl = th->th_flags;
295 npf_tcpstate_t *fstate, *tstate;
296 int tcpdlen, wscale, ackskew;
297 tcp_seq seq, ack, end;
298 uint32_t win;
299
300 KASSERT(npf_iscached(npc, NPC_TCP));
301 KASSERT(di == NPF_FLOW_FORW || di == NPF_FLOW_BACK);
302
303 /*
304 * Perform SEQ/ACK numbers check against boundaries. Reference:
305 *
306 * Rooij G., "Real stateful TCP packet filtering in IP Filter",
307 * 10th USENIX Security Symposium invited talk, Aug. 2001.
308 *
309 * There are four boundaries defined as following:
310 * I) SEQ + LEN <= MAX { SND.ACK + MAX(SND.WIN, 1) }
311 * II) SEQ >= MAX { SND.SEQ + SND.LEN - MAX(RCV.WIN, 1) }
312 * III) ACK <= MAX { RCV.SEQ + RCV.LEN }
313 * IV) ACK >= MAX { RCV.SEQ + RCV.LEN } - MAXACKWIN
314 *
315 * Let these members of npf_tcpstate_t be the maximum seen values of:
316 * nst_end - SEQ + LEN
317 * nst_maxend - ACK + MAX(WIN, 1)
318 * nst_maxwin - MAX(WIN, 1)
319 */
320
321 tcpdlen = npf_tcpsaw(__UNCONST(npc), &seq, &ack, &win);
322 end = seq + tcpdlen;
323 if (tcpfl & TH_SYN) {
324 end++;
325 }
326 if (tcpfl & TH_FIN) {
327 end++;
328 }
329
330 fstate = &nst->nst_tcpst[di];
331 tstate = &nst->nst_tcpst[!di];
332 win = win ? (win << fstate->nst_wscale) : 1;
333
334 /*
335 * Initialise if the first packet.
336 * Note: only case when nst_maxwin is zero.
337 */
338 if (__predict_false(fstate->nst_maxwin == 0)) {
339 /*
340 * Should be first SYN or re-transmission of SYN. State of
341 * other side will get set with a SYN-ACK reply (see below).
342 */
343 fstate->nst_end = end;
344 fstate->nst_maxend = end;
345 fstate->nst_maxwin = win;
346 tstate->nst_end = 0;
347 tstate->nst_maxend = 0;
348 tstate->nst_maxwin = 1;
349
350 /*
351 * Handle TCP Window Scaling (RFC 1323). Both sides may
352 * send this option in their SYN packets.
353 */
354 if (npf_fetch_tcpopts(npc, nbuf, NULL, &wscale)) {
355 fstate->nst_wscale = wscale;
356 } else {
357 fstate->nst_wscale = 0;
358 }
359 tstate->nst_wscale = 0;
360
361 /* Done. */
362 return true;
363 }
364 if (fstate->nst_end == 0) {
365 /*
366 * Should be a SYN-ACK reply to SYN. If SYN is not set,
367 * then we are in the middle of connection and lost tracking.
368 */
369 fstate->nst_end = end;
370 fstate->nst_maxend = end + 1;
371 fstate->nst_maxwin = win;
372
373 /* Handle TCP Window Scaling (must be ignored if no SYN). */
374 if (tcpfl & TH_SYN) {
375 fstate->nst_wscale =
376 npf_fetch_tcpopts(npc, nbuf, NULL, &wscale) ?
377 wscale : 0;
378 }
379 }
380 if ((tcpfl & TH_ACK) == 0) {
381 /* Pretend that an ACK was sent. */
382 ack = tstate->nst_end;
383 } else if ((tcpfl & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST) && ack == 0) {
384 /* Workaround for some TCP stacks. */
385 ack = tstate->nst_end;
386 }
387 if (seq == end) {
388 /* If packet contains no data - assume it is valid. */
389 end = fstate->nst_end;
390 seq = end;
391 }
392
393 NPF_TCP_STATE_SAMPLE(nst);
394 #if 0
395 /* Strict in-order sequence for RST packets. */
396 if (((tcpfl & TH_RST) != 0) && (fstate->nst_end - seq) > 1) {
397 return false;
398 }
399 #endif
400 /*
401 * Determine whether the data is within previously noted window,
402 * that is, upper boundary for valid data (I).
403 */
404 if (!SEQ_LEQ(end, fstate->nst_maxend)) {
405 npf_stats_inc(NPF_STAT_INVALID_STATE_TCP1);
406 return false;
407 }
408
409 /* Lower boundary (II), which is no more than one window back. */
410 if (!SEQ_GEQ(seq, fstate->nst_end - tstate->nst_maxwin)) {
411 npf_stats_inc(NPF_STAT_INVALID_STATE_TCP2);
412 return false;
413 }
414
415 /*
416 * Boundaries for valid acknowledgments (III, IV) - on predicted
417 * window up or down, since packets may be fragmented.
418 */
419 ackskew = tstate->nst_end - ack;
420 if (ackskew < -NPF_TCP_MAXACKWIN ||
421 ackskew > (NPF_TCP_MAXACKWIN << fstate->nst_wscale)) {
422 npf_stats_inc(NPF_STAT_INVALID_STATE_TCP3);
423 return false;
424 }
425
426 /*
427 * Packet has been passed.
428 *
429 * Negative ackskew might be due to fragmented packets. Since the
430 * total length of the packet is unknown - bump the boundary.
431 */
432 if (ackskew < 0) {
433 tstate->nst_end = end;
434 }
435 /* Keep track of the maximum window seen. */
436 if (fstate->nst_maxwin < win) {
437 fstate->nst_maxwin = win;
438 }
439 if (SEQ_GT(end, fstate->nst_end)) {
440 fstate->nst_end = end;
441 }
442 /* Note the window for upper boundary. */
443 if (SEQ_GEQ(ack + win, tstate->nst_maxend)) {
444 tstate->nst_maxend = ack + win;
445 }
446 return true;
447 }
448
449 bool
450 npf_state_tcp(const npf_cache_t *npc, nbuf_t *nbuf, npf_state_t *nst, int di)
451 {
452 const struct tcphdr * const th = &npc->npc_l4.tcp;
453 const int tcpfl = th->th_flags, state = nst->nst_state;
454 int nstate;
455
456 /* Look for a transition to a new state. */
457 if (__predict_true((tcpfl & TH_RST) == 0)) {
458 const int flagcase = npf_tcpfl2case(tcpfl);
459 nstate = npf_tcp_fsm[state][di][flagcase];
460 } else if (state == NPF_TCPS_TIME_WAIT) {
461 /* Prevent TIME-WAIT assassination (RFC 1337). */
462 nstate = NPF_TCPS_OK;
463 } else {
464 nstate = NPF_TCPS_CLOSED;
465 }
466 /* Determine whether TCP packet really belongs to this connection. */
467 if (!npf_tcp_inwindow(npc, nbuf, nst, di)) {
468 return false;
469 }
470 if (__predict_true(nstate == NPF_TCPS_OK)) {
471 return true;
472 }
473 nst->nst_state = nstate;
474 return true;
475 }
476
477 int
478 npf_state_tcp_timeout(const npf_state_t *nst)
479 {
480 const u_int state = nst->nst_state;
481
482 KASSERT(state < NPF_TCP_NSTATES);
483 return npf_tcp_timeouts[state];
484 }
485