Home | History | Annotate | Line # | Download | only in npf
npf_state_tcp.c revision 1.16
      1 /*	$NetBSD: npf_state_tcp.c,v 1.16 2014/07/25 20:07:32 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010-2012 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This material is based upon work partially supported by The
      8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * NPF TCP state engine for connection tracking.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: npf_state_tcp.c,v 1.16 2014/07/25 20:07:32 rmind Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #include <netinet/in.h>
     43 #include <netinet/tcp.h>
     44 #include <netinet/tcp_seq.h>
     45 
     46 #include "npf_impl.h"
     47 
     48 /*
     49  * NPF TCP states.  Note: these states are different from the TCP FSM
     50  * states of RFC 793.  The packet filter is a man-in-the-middle.
     51  */
     52 #define	NPF_TCPS_OK		255
     53 #define	NPF_TCPS_CLOSED		0
     54 #define	NPF_TCPS_SYN_SENT	1
     55 #define	NPF_TCPS_SIMSYN_SENT	2
     56 #define	NPF_TCPS_SYN_RECEIVED	3
     57 #define	NPF_TCPS_ESTABLISHED	4
     58 #define	NPF_TCPS_FIN_SENT	5
     59 #define	NPF_TCPS_FIN_RECEIVED	6
     60 #define	NPF_TCPS_CLOSE_WAIT	7
     61 #define	NPF_TCPS_FIN_WAIT	8
     62 #define	NPF_TCPS_CLOSING	9
     63 #define	NPF_TCPS_LAST_ACK	10
     64 #define	NPF_TCPS_TIME_WAIT	11
     65 
     66 #define	NPF_TCP_NSTATES		12
     67 
     68 /*
     69  * TCP connection timeout table (in seconds).
     70  */
     71 static u_int npf_tcp_timeouts[] __read_mostly = {
     72 	/* Closed, timeout nearly immediately. */
     73 	[NPF_TCPS_CLOSED]	= 10,
     74 	/* Unsynchronised states. */
     75 	[NPF_TCPS_SYN_SENT]	= 30,
     76 	[NPF_TCPS_SIMSYN_SENT]	= 30,
     77 	[NPF_TCPS_SYN_RECEIVED]	= 60,
     78 	/* Established: 24 hours. */
     79 	[NPF_TCPS_ESTABLISHED]	= 60 * 60 * 24,
     80 	/* FIN seen: 4 minutes (2 * MSL). */
     81 	[NPF_TCPS_FIN_SENT]	= 60 * 2 * 2,
     82 	[NPF_TCPS_FIN_RECEIVED]	= 60 * 2 * 2,
     83 	/* Half-closed cases: 6 hours. */
     84 	[NPF_TCPS_CLOSE_WAIT]	= 60 * 60 * 6,
     85 	[NPF_TCPS_FIN_WAIT]	= 60 * 60 * 6,
     86 	/* Full close cases: 30 sec and 2 * MSL. */
     87 	[NPF_TCPS_CLOSING]	= 30,
     88 	[NPF_TCPS_LAST_ACK]	= 30,
     89 	[NPF_TCPS_TIME_WAIT]	= 60 * 2 * 2,
     90 };
     91 
     92 static bool npf_strict_order_rst __read_mostly = true;
     93 
     94 #define	NPF_TCP_MAXACKWIN	66000
     95 
     96 /*
     97  * List of TCP flag cases and conversion of flags to a case (index).
     98  */
     99 
    100 #define	TCPFC_INVALID		0
    101 #define	TCPFC_SYN		1
    102 #define	TCPFC_SYNACK		2
    103 #define	TCPFC_ACK		3
    104 #define	TCPFC_FIN		4
    105 #define	TCPFC_COUNT		5
    106 
    107 static inline u_int
    108 npf_tcpfl2case(const u_int tcpfl)
    109 {
    110 	u_int i, c;
    111 
    112 	CTASSERT(TH_FIN == 0x01);
    113 	CTASSERT(TH_SYN == 0x02);
    114 	CTASSERT(TH_ACK == 0x10);
    115 
    116 	/*
    117 	 * Flags are shifted to use three least significant bits, thus each
    118 	 * flag combination has a unique number ranging from 0 to 7, e.g.
    119 	 * TH_SYN | TH_ACK has number 6, since (0x02 | (0x10 >> 2)) == 6.
    120 	 * However, the requirement is to have number 0 for invalid cases,
    121 	 * such as TH_SYN | TH_FIN, and to have the same number for TH_FIN
    122 	 * and TH_FIN|TH_ACK cases.  Thus, we generate a mask assigning 3
    123 	 * bits for each number, which contains the actual case numbers:
    124 	 *
    125 	 * TCPFC_SYNACK	<< (6 << 2) == 0x2000000 (6 - SYN,ACK)
    126 	 * TCPFC_FIN	<< (5 << 2) == 0x0400000 (5 - FIN,ACK)
    127 	 * ...
    128 	 *
    129 	 * Hence, OR'ed mask value is 0x2430140.
    130 	 */
    131 	i = (tcpfl & (TH_SYN | TH_FIN)) | ((tcpfl & TH_ACK) >> 2);
    132 	c = (0x2430140 >> (i << 2)) & 7;
    133 
    134 	KASSERT(c < TCPFC_COUNT);
    135 	return c;
    136 }
    137 
    138 /*
    139  * NPF transition table of a tracked TCP connection.
    140  *
    141  * There is a single state, which is changed in the following way:
    142  *
    143  * new_state = npf_tcp_fsm[old_state][direction][npf_tcpfl2case(tcp_flags)];
    144  *
    145  * Note that this state is different from the state in each end (host).
    146  */
    147 
    148 static const uint8_t npf_tcp_fsm[NPF_TCP_NSTATES][2][TCPFC_COUNT] = {
    149 	[NPF_TCPS_CLOSED] = {
    150 		[NPF_FLOW_FORW] = {
    151 			/* Handshake (1): initial SYN. */
    152 			[TCPFC_SYN]	= NPF_TCPS_SYN_SENT,
    153 		},
    154 	},
    155 	[NPF_TCPS_SYN_SENT] = {
    156 		[NPF_FLOW_FORW] = {
    157 			/* SYN may be retransmitted. */
    158 			[TCPFC_SYN]	= NPF_TCPS_OK,
    159 		},
    160 		[NPF_FLOW_BACK] = {
    161 			/* Handshake (2): SYN-ACK is expected. */
    162 			[TCPFC_SYNACK]	= NPF_TCPS_SYN_RECEIVED,
    163 			/* Simultaneous initiation - SYN. */
    164 			[TCPFC_SYN]	= NPF_TCPS_SIMSYN_SENT,
    165 		},
    166 	},
    167 	[NPF_TCPS_SIMSYN_SENT] = {
    168 		[NPF_FLOW_FORW] = {
    169 			/* Original SYN re-transmission. */
    170 			[TCPFC_SYN]	= NPF_TCPS_OK,
    171 			/* SYN-ACK response to simultaneous SYN. */
    172 			[TCPFC_SYNACK]	= NPF_TCPS_SYN_RECEIVED,
    173 		},
    174 		[NPF_FLOW_BACK] = {
    175 			/* Simultaneous SYN re-transmission.*/
    176 			[TCPFC_SYN]	= NPF_TCPS_OK,
    177 			/* SYN-ACK response to original SYN. */
    178 			[TCPFC_SYNACK]	= NPF_TCPS_SYN_RECEIVED,
    179 			/* FIN may occur early. */
    180 			[TCPFC_FIN]	= NPF_TCPS_FIN_RECEIVED,
    181 		},
    182 	},
    183 	[NPF_TCPS_SYN_RECEIVED] = {
    184 		[NPF_FLOW_FORW] = {
    185 			/* Handshake (3): ACK is expected. */
    186 			[TCPFC_ACK]	= NPF_TCPS_ESTABLISHED,
    187 			/* FIN may be sent early. */
    188 			[TCPFC_FIN]	= NPF_TCPS_FIN_SENT,
    189 		},
    190 		[NPF_FLOW_BACK] = {
    191 			/* SYN-ACK may be retransmitted. */
    192 			[TCPFC_SYNACK]	= NPF_TCPS_OK,
    193 			/* XXX: ACK of late SYN in simultaneous case? */
    194 			[TCPFC_ACK]	= NPF_TCPS_OK,
    195 			/* FIN may occur early. */
    196 			[TCPFC_FIN]	= NPF_TCPS_FIN_RECEIVED,
    197 		},
    198 	},
    199 	[NPF_TCPS_ESTABLISHED] = {
    200 		/*
    201 		 * Regular ACKs (data exchange) or FIN.
    202 		 * FIN packets may have ACK set.
    203 		 */
    204 		[NPF_FLOW_FORW] = {
    205 			[TCPFC_ACK]	= NPF_TCPS_OK,
    206 			/* FIN by the sender. */
    207 			[TCPFC_FIN]	= NPF_TCPS_FIN_SENT,
    208 		},
    209 		[NPF_FLOW_BACK] = {
    210 			[TCPFC_ACK]	= NPF_TCPS_OK,
    211 			/* FIN by the receiver. */
    212 			[TCPFC_FIN]	= NPF_TCPS_FIN_RECEIVED,
    213 		},
    214 	},
    215 	[NPF_TCPS_FIN_SENT] = {
    216 		[NPF_FLOW_FORW] = {
    217 			/* FIN may be re-transmitted.  Late ACK as well. */
    218 			[TCPFC_ACK]	= NPF_TCPS_OK,
    219 			[TCPFC_FIN]	= NPF_TCPS_OK,
    220 		},
    221 		[NPF_FLOW_BACK] = {
    222 			/* If ACK, connection is half-closed now. */
    223 			[TCPFC_ACK]	= NPF_TCPS_FIN_WAIT,
    224 			/* FIN or FIN-ACK race - immediate closing. */
    225 			[TCPFC_FIN]	= NPF_TCPS_CLOSING,
    226 		},
    227 	},
    228 	[NPF_TCPS_FIN_RECEIVED] = {
    229 		/*
    230 		 * FIN was received.  Equivalent scenario to sent FIN.
    231 		 */
    232 		[NPF_FLOW_FORW] = {
    233 			[TCPFC_ACK]	= NPF_TCPS_CLOSE_WAIT,
    234 			[TCPFC_FIN]	= NPF_TCPS_CLOSING,
    235 		},
    236 		[NPF_FLOW_BACK] = {
    237 			[TCPFC_ACK]	= NPF_TCPS_OK,
    238 			[TCPFC_FIN]	= NPF_TCPS_OK,
    239 		},
    240 	},
    241 	[NPF_TCPS_CLOSE_WAIT] = {
    242 		/* Sender has sent the FIN and closed its end. */
    243 		[NPF_FLOW_FORW] = {
    244 			[TCPFC_ACK]	= NPF_TCPS_OK,
    245 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    246 		},
    247 		[NPF_FLOW_BACK] = {
    248 			[TCPFC_ACK]	= NPF_TCPS_OK,
    249 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    250 		},
    251 	},
    252 	[NPF_TCPS_FIN_WAIT] = {
    253 		/* Receiver has closed its end. */
    254 		[NPF_FLOW_FORW] = {
    255 			[TCPFC_ACK]	= NPF_TCPS_OK,
    256 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    257 		},
    258 		[NPF_FLOW_BACK] = {
    259 			[TCPFC_ACK]	= NPF_TCPS_OK,
    260 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    261 		},
    262 	},
    263 	[NPF_TCPS_CLOSING] = {
    264 		/* Race of FINs - expecting ACK. */
    265 		[NPF_FLOW_FORW] = {
    266 			[TCPFC_ACK]	= NPF_TCPS_LAST_ACK,
    267 		},
    268 		[NPF_FLOW_BACK] = {
    269 			[TCPFC_ACK]	= NPF_TCPS_LAST_ACK,
    270 		},
    271 	},
    272 	[NPF_TCPS_LAST_ACK] = {
    273 		/* FINs exchanged - expecting last ACK. */
    274 		[NPF_FLOW_FORW] = {
    275 			[TCPFC_ACK]	= NPF_TCPS_TIME_WAIT,
    276 		},
    277 		[NPF_FLOW_BACK] = {
    278 			[TCPFC_ACK]	= NPF_TCPS_TIME_WAIT,
    279 		},
    280 	},
    281 	[NPF_TCPS_TIME_WAIT] = {
    282 		/* May re-open the connection as per RFC 1122. */
    283 		[NPF_FLOW_FORW] = {
    284 			[TCPFC_SYN]	= NPF_TCPS_SYN_SENT,
    285 		},
    286 	},
    287 };
    288 
    289 /*
    290  * npf_tcp_inwindow: determine whether the packet is in the TCP window
    291  * and thus part of the connection we are tracking.
    292  */
    293 static bool
    294 npf_tcp_inwindow(npf_cache_t *npc, npf_state_t *nst, const int di)
    295 {
    296 	const struct tcphdr * const th = npc->npc_l4.tcp;
    297 	const int tcpfl = th->th_flags;
    298 	npf_tcpstate_t *fstate, *tstate;
    299 	int tcpdlen, ackskew;
    300 	tcp_seq seq, ack, end;
    301 	uint32_t win;
    302 
    303 	KASSERT(npf_iscached(npc, NPC_TCP));
    304 	KASSERT(di == NPF_FLOW_FORW || di == NPF_FLOW_BACK);
    305 
    306 	/*
    307 	 * Perform SEQ/ACK numbers check against boundaries.  Reference:
    308 	 *
    309 	 *	Rooij G., "Real stateful TCP packet filtering in IP Filter",
    310 	 *	10th USENIX Security Symposium invited talk, Aug. 2001.
    311 	 *
    312 	 * There are four boundaries defined as following:
    313 	 *	I)   SEQ + LEN	<= MAX { SND.ACK + MAX(SND.WIN, 1) }
    314 	 *	II)  SEQ	>= MAX { SND.SEQ + SND.LEN - MAX(RCV.WIN, 1) }
    315 	 *	III) ACK	<= MAX { RCV.SEQ + RCV.LEN }
    316 	 *	IV)  ACK	>= MAX { RCV.SEQ + RCV.LEN } - MAXACKWIN
    317 	 *
    318 	 * Let these members of npf_tcpstate_t be the maximum seen values of:
    319 	 *	nst_end		- SEQ + LEN
    320 	 *	nst_maxend	- ACK + MAX(WIN, 1)
    321 	 *	nst_maxwin	- MAX(WIN, 1)
    322 	 */
    323 
    324 	tcpdlen = npf_tcpsaw(__UNCONST(npc), &seq, &ack, &win);
    325 	end = seq + tcpdlen;
    326 	if (tcpfl & TH_SYN) {
    327 		end++;
    328 	}
    329 	if (tcpfl & TH_FIN) {
    330 		end++;
    331 	}
    332 
    333 	fstate = &nst->nst_tcpst[di];
    334 	tstate = &nst->nst_tcpst[!di];
    335 	win = win ? (win << fstate->nst_wscale) : 1;
    336 
    337 	/*
    338 	 * Initialise if the first packet.
    339 	 * Note: only case when nst_maxwin is zero.
    340 	 */
    341 	if (__predict_false(fstate->nst_maxwin == 0)) {
    342 		/*
    343 		 * Normally, it should be the first SYN or a re-transmission
    344 		 * of SYN.  The state of the other side will get set with a
    345 		 * SYN-ACK reply (see below).
    346 		 */
    347 		fstate->nst_end = end;
    348 		fstate->nst_maxend = end;
    349 		fstate->nst_maxwin = win;
    350 		tstate->nst_end = 0;
    351 		tstate->nst_maxend = 0;
    352 		tstate->nst_maxwin = 1;
    353 
    354 		/*
    355 		 * Handle TCP Window Scaling (RFC 1323).  Both sides may
    356 		 * send this option in their SYN packets.
    357 		 */
    358 		fstate->nst_wscale = 0;
    359 		(void)npf_fetch_tcpopts(npc, NULL, &fstate->nst_wscale);
    360 
    361 		tstate->nst_wscale = 0;
    362 
    363 		/* Done. */
    364 		return true;
    365 	}
    366 
    367 	if (fstate->nst_end == 0) {
    368 		/*
    369 		 * Should be a SYN-ACK reply to SYN.  If SYN is not set,
    370 		 * then we are in the middle of connection and lost tracking.
    371 		 */
    372 		fstate->nst_end = end;
    373 		fstate->nst_maxend = end + 1;
    374 		fstate->nst_maxwin = win;
    375 		fstate->nst_wscale = 0;
    376 
    377 		/* Handle TCP Window Scaling (must be ignored if no SYN). */
    378 		if (tcpfl & TH_SYN) {
    379 			(void)npf_fetch_tcpopts(npc, NULL, &fstate->nst_wscale);
    380 		}
    381 	}
    382 
    383 	if ((tcpfl & TH_ACK) == 0) {
    384 		/* Pretend that an ACK was sent. */
    385 		ack = tstate->nst_end;
    386 	} else if ((tcpfl & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST) && ack == 0) {
    387 		/* Workaround for some TCP stacks. */
    388 		ack = tstate->nst_end;
    389 	}
    390 
    391 	if (__predict_false(tcpfl & TH_RST)) {
    392 		/* RST to the initial SYN may have zero SEQ - fix it up. */
    393 		if (seq == 0 && nst->nst_state == NPF_TCPS_SYN_SENT) {
    394 			end = fstate->nst_end;
    395 			seq = end;
    396 		}
    397 
    398 		/* Strict in-order sequence for RST packets (RFC 5961). */
    399 		if (npf_strict_order_rst && (fstate->nst_end - seq) > 1) {
    400 			return false;
    401 		}
    402 	}
    403 
    404 	/*
    405 	 * Determine whether the data is within previously noted window,
    406 	 * that is, upper boundary for valid data (I).
    407 	 */
    408 	if (!SEQ_LEQ(end, fstate->nst_maxend)) {
    409 		npf_stats_inc(NPF_STAT_INVALID_STATE_TCP1);
    410 		return false;
    411 	}
    412 
    413 	/* Lower boundary (II), which is no more than one window back. */
    414 	if (!SEQ_GEQ(seq, fstate->nst_end - tstate->nst_maxwin)) {
    415 		npf_stats_inc(NPF_STAT_INVALID_STATE_TCP2);
    416 		return false;
    417 	}
    418 
    419 	/*
    420 	 * Boundaries for valid acknowledgments (III, IV) - one predicted
    421 	 * window up or down, since packets may be fragmented.
    422 	 */
    423 	ackskew = tstate->nst_end - ack;
    424 	if (ackskew < -NPF_TCP_MAXACKWIN ||
    425 	    ackskew > (NPF_TCP_MAXACKWIN << fstate->nst_wscale)) {
    426 		npf_stats_inc(NPF_STAT_INVALID_STATE_TCP3);
    427 		return false;
    428 	}
    429 
    430 	/*
    431 	 * Packet has been passed.
    432 	 *
    433 	 * Negative ackskew might be due to fragmented packets.  Since the
    434 	 * total length of the packet is unknown - bump the boundary.
    435 	 */
    436 
    437 	if (ackskew < 0) {
    438 		tstate->nst_end = ack;
    439 	}
    440 	/* Keep track of the maximum window seen. */
    441 	if (fstate->nst_maxwin < win) {
    442 		fstate->nst_maxwin = win;
    443 	}
    444 	if (SEQ_GT(end, fstate->nst_end)) {
    445 		fstate->nst_end = end;
    446 	}
    447 	/* Note the window for upper boundary. */
    448 	if (SEQ_GEQ(ack + win, tstate->nst_maxend)) {
    449 		tstate->nst_maxend = ack + win;
    450 	}
    451 	return true;
    452 }
    453 
    454 /*
    455  * npf_state_tcp: inspect TCP segment, determine whether it belongs to
    456  * the connection and track its state.
    457  */
    458 bool
    459 npf_state_tcp(npf_cache_t *npc, npf_state_t *nst, int di)
    460 {
    461 	const struct tcphdr * const th = npc->npc_l4.tcp;
    462 	const u_int tcpfl = th->th_flags, state = nst->nst_state;
    463 	u_int nstate;
    464 
    465 	KASSERT(nst->nst_state < NPF_TCP_NSTATES);
    466 
    467 	/* Look for a transition to a new state. */
    468 	if (__predict_true((tcpfl & TH_RST) == 0)) {
    469 		const u_int flagcase = npf_tcpfl2case(tcpfl);
    470 		nstate = npf_tcp_fsm[state][di][flagcase];
    471 	} else if (state == NPF_TCPS_TIME_WAIT) {
    472 		/* Prevent TIME-WAIT assassination (RFC 1337). */
    473 		nstate = NPF_TCPS_OK;
    474 	} else {
    475 		nstate = NPF_TCPS_CLOSED;
    476 	}
    477 
    478 	/* Determine whether TCP packet really belongs to this connection. */
    479 	if (!npf_tcp_inwindow(npc, nst, di)) {
    480 		return false;
    481 	}
    482 	if (__predict_true(nstate == NPF_TCPS_OK)) {
    483 		return true;
    484 	}
    485 
    486 	nst->nst_state = nstate;
    487 	return true;
    488 }
    489 
    490 int
    491 npf_state_tcp_timeout(const npf_state_t *nst)
    492 {
    493 	const u_int state = nst->nst_state;
    494 
    495 	KASSERT(state < NPF_TCP_NSTATES);
    496 	return npf_tcp_timeouts[state];
    497 }
    498