Home | History | Annotate | Line # | Download | only in npf
npf_state_tcp.c revision 1.17
      1 /*	$NetBSD: npf_state_tcp.c,v 1.17 2016/12/26 23:05:06 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010-2012 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This material is based upon work partially supported by The
      8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * NPF TCP state engine for connection tracking.
     34  */
     35 
     36 #ifdef _KERNEL
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: npf_state_tcp.c,v 1.17 2016/12/26 23:05:06 christos Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/types.h>
     42 
     43 #include <netinet/in.h>
     44 #include <netinet/tcp.h>
     45 #endif
     46 
     47 #include "npf_impl.h"
     48 
     49 /*
     50  * NPF TCP states.  Note: these states are different from the TCP FSM
     51  * states of RFC 793.  The packet filter is a man-in-the-middle.
     52  */
     53 #define	NPF_TCPS_OK		255
     54 #define	NPF_TCPS_CLOSED		0
     55 #define	NPF_TCPS_SYN_SENT	1
     56 #define	NPF_TCPS_SIMSYN_SENT	2
     57 #define	NPF_TCPS_SYN_RECEIVED	3
     58 #define	NPF_TCPS_ESTABLISHED	4
     59 #define	NPF_TCPS_FIN_SENT	5
     60 #define	NPF_TCPS_FIN_RECEIVED	6
     61 #define	NPF_TCPS_CLOSE_WAIT	7
     62 #define	NPF_TCPS_FIN_WAIT	8
     63 #define	NPF_TCPS_CLOSING	9
     64 #define	NPF_TCPS_LAST_ACK	10
     65 #define	NPF_TCPS_TIME_WAIT	11
     66 
     67 #define	NPF_TCP_NSTATES		12
     68 
     69 /*
     70  * TCP connection timeout table (in seconds).
     71  */
     72 static u_int npf_tcp_timeouts[] __read_mostly = {
     73 	/* Closed, timeout nearly immediately. */
     74 	[NPF_TCPS_CLOSED]	= 10,
     75 	/* Unsynchronised states. */
     76 	[NPF_TCPS_SYN_SENT]	= 30,
     77 	[NPF_TCPS_SIMSYN_SENT]	= 30,
     78 	[NPF_TCPS_SYN_RECEIVED]	= 60,
     79 	/* Established: 24 hours. */
     80 	[NPF_TCPS_ESTABLISHED]	= 60 * 60 * 24,
     81 	/* FIN seen: 4 minutes (2 * MSL). */
     82 	[NPF_TCPS_FIN_SENT]	= 60 * 2 * 2,
     83 	[NPF_TCPS_FIN_RECEIVED]	= 60 * 2 * 2,
     84 	/* Half-closed cases: 6 hours. */
     85 	[NPF_TCPS_CLOSE_WAIT]	= 60 * 60 * 6,
     86 	[NPF_TCPS_FIN_WAIT]	= 60 * 60 * 6,
     87 	/* Full close cases: 30 sec and 2 * MSL. */
     88 	[NPF_TCPS_CLOSING]	= 30,
     89 	[NPF_TCPS_LAST_ACK]	= 30,
     90 	[NPF_TCPS_TIME_WAIT]	= 60 * 2 * 2,
     91 };
     92 
     93 static bool npf_strict_order_rst __read_mostly = true;
     94 
     95 #define	NPF_TCP_MAXACKWIN	66000
     96 
     97 #define	SEQ_LT(a,b)		((int)((a)-(b)) < 0)
     98 #define	SEQ_LEQ(a,b)		((int)((a)-(b)) <= 0)
     99 #define	SEQ_GT(a,b)		((int)((a)-(b)) > 0)
    100 #define	SEQ_GEQ(a,b)		((int)((a)-(b)) >= 0)
    101 
    102 /*
    103  * List of TCP flag cases and conversion of flags to a case (index).
    104  */
    105 
    106 #define	TCPFC_INVALID		0
    107 #define	TCPFC_SYN		1
    108 #define	TCPFC_SYNACK		2
    109 #define	TCPFC_ACK		3
    110 #define	TCPFC_FIN		4
    111 #define	TCPFC_COUNT		5
    112 
    113 static inline u_int
    114 npf_tcpfl2case(const u_int tcpfl)
    115 {
    116 	u_int i, c;
    117 
    118 	CTASSERT(TH_FIN == 0x01);
    119 	CTASSERT(TH_SYN == 0x02);
    120 	CTASSERT(TH_ACK == 0x10);
    121 
    122 	/*
    123 	 * Flags are shifted to use three least significant bits, thus each
    124 	 * flag combination has a unique number ranging from 0 to 7, e.g.
    125 	 * TH_SYN | TH_ACK has number 6, since (0x02 | (0x10 >> 2)) == 6.
    126 	 * However, the requirement is to have number 0 for invalid cases,
    127 	 * such as TH_SYN | TH_FIN, and to have the same number for TH_FIN
    128 	 * and TH_FIN|TH_ACK cases.  Thus, we generate a mask assigning 3
    129 	 * bits for each number, which contains the actual case numbers:
    130 	 *
    131 	 * TCPFC_SYNACK	<< (6 << 2) == 0x2000000 (6 - SYN,ACK)
    132 	 * TCPFC_FIN	<< (5 << 2) == 0x0400000 (5 - FIN,ACK)
    133 	 * ...
    134 	 *
    135 	 * Hence, OR'ed mask value is 0x2430140.
    136 	 */
    137 	i = (tcpfl & (TH_SYN | TH_FIN)) | ((tcpfl & TH_ACK) >> 2);
    138 	c = (0x2430140 >> (i << 2)) & 7;
    139 
    140 	KASSERT(c < TCPFC_COUNT);
    141 	return c;
    142 }
    143 
    144 /*
    145  * NPF transition table of a tracked TCP connection.
    146  *
    147  * There is a single state, which is changed in the following way:
    148  *
    149  * new_state = npf_tcp_fsm[old_state][direction][npf_tcpfl2case(tcp_flags)];
    150  *
    151  * Note that this state is different from the state in each end (host).
    152  */
    153 
    154 static const uint8_t npf_tcp_fsm[NPF_TCP_NSTATES][2][TCPFC_COUNT] = {
    155 	[NPF_TCPS_CLOSED] = {
    156 		[NPF_FLOW_FORW] = {
    157 			/* Handshake (1): initial SYN. */
    158 			[TCPFC_SYN]	= NPF_TCPS_SYN_SENT,
    159 		},
    160 	},
    161 	[NPF_TCPS_SYN_SENT] = {
    162 		[NPF_FLOW_FORW] = {
    163 			/* SYN may be retransmitted. */
    164 			[TCPFC_SYN]	= NPF_TCPS_OK,
    165 		},
    166 		[NPF_FLOW_BACK] = {
    167 			/* Handshake (2): SYN-ACK is expected. */
    168 			[TCPFC_SYNACK]	= NPF_TCPS_SYN_RECEIVED,
    169 			/* Simultaneous initiation - SYN. */
    170 			[TCPFC_SYN]	= NPF_TCPS_SIMSYN_SENT,
    171 		},
    172 	},
    173 	[NPF_TCPS_SIMSYN_SENT] = {
    174 		[NPF_FLOW_FORW] = {
    175 			/* Original SYN re-transmission. */
    176 			[TCPFC_SYN]	= NPF_TCPS_OK,
    177 			/* SYN-ACK response to simultaneous SYN. */
    178 			[TCPFC_SYNACK]	= NPF_TCPS_SYN_RECEIVED,
    179 		},
    180 		[NPF_FLOW_BACK] = {
    181 			/* Simultaneous SYN re-transmission.*/
    182 			[TCPFC_SYN]	= NPF_TCPS_OK,
    183 			/* SYN-ACK response to original SYN. */
    184 			[TCPFC_SYNACK]	= NPF_TCPS_SYN_RECEIVED,
    185 			/* FIN may occur early. */
    186 			[TCPFC_FIN]	= NPF_TCPS_FIN_RECEIVED,
    187 		},
    188 	},
    189 	[NPF_TCPS_SYN_RECEIVED] = {
    190 		[NPF_FLOW_FORW] = {
    191 			/* Handshake (3): ACK is expected. */
    192 			[TCPFC_ACK]	= NPF_TCPS_ESTABLISHED,
    193 			/* FIN may be sent early. */
    194 			[TCPFC_FIN]	= NPF_TCPS_FIN_SENT,
    195 		},
    196 		[NPF_FLOW_BACK] = {
    197 			/* SYN-ACK may be retransmitted. */
    198 			[TCPFC_SYNACK]	= NPF_TCPS_OK,
    199 			/* XXX: ACK of late SYN in simultaneous case? */
    200 			[TCPFC_ACK]	= NPF_TCPS_OK,
    201 			/* FIN may occur early. */
    202 			[TCPFC_FIN]	= NPF_TCPS_FIN_RECEIVED,
    203 		},
    204 	},
    205 	[NPF_TCPS_ESTABLISHED] = {
    206 		/*
    207 		 * Regular ACKs (data exchange) or FIN.
    208 		 * FIN packets may have ACK set.
    209 		 */
    210 		[NPF_FLOW_FORW] = {
    211 			[TCPFC_ACK]	= NPF_TCPS_OK,
    212 			/* FIN by the sender. */
    213 			[TCPFC_FIN]	= NPF_TCPS_FIN_SENT,
    214 		},
    215 		[NPF_FLOW_BACK] = {
    216 			[TCPFC_ACK]	= NPF_TCPS_OK,
    217 			/* FIN by the receiver. */
    218 			[TCPFC_FIN]	= NPF_TCPS_FIN_RECEIVED,
    219 		},
    220 	},
    221 	[NPF_TCPS_FIN_SENT] = {
    222 		[NPF_FLOW_FORW] = {
    223 			/* FIN may be re-transmitted.  Late ACK as well. */
    224 			[TCPFC_ACK]	= NPF_TCPS_OK,
    225 			[TCPFC_FIN]	= NPF_TCPS_OK,
    226 		},
    227 		[NPF_FLOW_BACK] = {
    228 			/* If ACK, connection is half-closed now. */
    229 			[TCPFC_ACK]	= NPF_TCPS_FIN_WAIT,
    230 			/* FIN or FIN-ACK race - immediate closing. */
    231 			[TCPFC_FIN]	= NPF_TCPS_CLOSING,
    232 		},
    233 	},
    234 	[NPF_TCPS_FIN_RECEIVED] = {
    235 		/*
    236 		 * FIN was received.  Equivalent scenario to sent FIN.
    237 		 */
    238 		[NPF_FLOW_FORW] = {
    239 			[TCPFC_ACK]	= NPF_TCPS_CLOSE_WAIT,
    240 			[TCPFC_FIN]	= NPF_TCPS_CLOSING,
    241 		},
    242 		[NPF_FLOW_BACK] = {
    243 			[TCPFC_ACK]	= NPF_TCPS_OK,
    244 			[TCPFC_FIN]	= NPF_TCPS_OK,
    245 		},
    246 	},
    247 	[NPF_TCPS_CLOSE_WAIT] = {
    248 		/* Sender has sent the FIN and closed its end. */
    249 		[NPF_FLOW_FORW] = {
    250 			[TCPFC_ACK]	= NPF_TCPS_OK,
    251 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    252 		},
    253 		[NPF_FLOW_BACK] = {
    254 			[TCPFC_ACK]	= NPF_TCPS_OK,
    255 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    256 		},
    257 	},
    258 	[NPF_TCPS_FIN_WAIT] = {
    259 		/* Receiver has closed its end. */
    260 		[NPF_FLOW_FORW] = {
    261 			[TCPFC_ACK]	= NPF_TCPS_OK,
    262 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    263 		},
    264 		[NPF_FLOW_BACK] = {
    265 			[TCPFC_ACK]	= NPF_TCPS_OK,
    266 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    267 		},
    268 	},
    269 	[NPF_TCPS_CLOSING] = {
    270 		/* Race of FINs - expecting ACK. */
    271 		[NPF_FLOW_FORW] = {
    272 			[TCPFC_ACK]	= NPF_TCPS_LAST_ACK,
    273 		},
    274 		[NPF_FLOW_BACK] = {
    275 			[TCPFC_ACK]	= NPF_TCPS_LAST_ACK,
    276 		},
    277 	},
    278 	[NPF_TCPS_LAST_ACK] = {
    279 		/* FINs exchanged - expecting last ACK. */
    280 		[NPF_FLOW_FORW] = {
    281 			[TCPFC_ACK]	= NPF_TCPS_TIME_WAIT,
    282 		},
    283 		[NPF_FLOW_BACK] = {
    284 			[TCPFC_ACK]	= NPF_TCPS_TIME_WAIT,
    285 		},
    286 	},
    287 	[NPF_TCPS_TIME_WAIT] = {
    288 		/* May re-open the connection as per RFC 1122. */
    289 		[NPF_FLOW_FORW] = {
    290 			[TCPFC_SYN]	= NPF_TCPS_SYN_SENT,
    291 		},
    292 	},
    293 };
    294 
    295 /*
    296  * npf_tcp_inwindow: determine whether the packet is in the TCP window
    297  * and thus part of the connection we are tracking.
    298  */
    299 static bool
    300 npf_tcp_inwindow(npf_cache_t *npc, npf_state_t *nst, const int di)
    301 {
    302 	const struct tcphdr * const th = npc->npc_l4.tcp;
    303 	const int tcpfl = th->th_flags;
    304 	npf_tcpstate_t *fstate, *tstate;
    305 	int tcpdlen, ackskew;
    306 	tcp_seq seq, ack, end;
    307 	uint32_t win;
    308 
    309 	KASSERT(npf_iscached(npc, NPC_TCP));
    310 	KASSERT(di == NPF_FLOW_FORW || di == NPF_FLOW_BACK);
    311 
    312 	/*
    313 	 * Perform SEQ/ACK numbers check against boundaries.  Reference:
    314 	 *
    315 	 *	Rooij G., "Real stateful TCP packet filtering in IP Filter",
    316 	 *	10th USENIX Security Symposium invited talk, Aug. 2001.
    317 	 *
    318 	 * There are four boundaries defined as following:
    319 	 *	I)   SEQ + LEN	<= MAX { SND.ACK + MAX(SND.WIN, 1) }
    320 	 *	II)  SEQ	>= MAX { SND.SEQ + SND.LEN - MAX(RCV.WIN, 1) }
    321 	 *	III) ACK	<= MAX { RCV.SEQ + RCV.LEN }
    322 	 *	IV)  ACK	>= MAX { RCV.SEQ + RCV.LEN } - MAXACKWIN
    323 	 *
    324 	 * Let these members of npf_tcpstate_t be the maximum seen values of:
    325 	 *	nst_end		- SEQ + LEN
    326 	 *	nst_maxend	- ACK + MAX(WIN, 1)
    327 	 *	nst_maxwin	- MAX(WIN, 1)
    328 	 */
    329 
    330 	tcpdlen = npf_tcpsaw(__UNCONST(npc), &seq, &ack, &win);
    331 	end = seq + tcpdlen;
    332 	if (tcpfl & TH_SYN) {
    333 		end++;
    334 	}
    335 	if (tcpfl & TH_FIN) {
    336 		end++;
    337 	}
    338 
    339 	fstate = &nst->nst_tcpst[di];
    340 	tstate = &nst->nst_tcpst[!di];
    341 	win = win ? (win << fstate->nst_wscale) : 1;
    342 
    343 	/*
    344 	 * Initialise if the first packet.
    345 	 * Note: only case when nst_maxwin is zero.
    346 	 */
    347 	if (__predict_false(fstate->nst_maxwin == 0)) {
    348 		/*
    349 		 * Normally, it should be the first SYN or a re-transmission
    350 		 * of SYN.  The state of the other side will get set with a
    351 		 * SYN-ACK reply (see below).
    352 		 */
    353 		fstate->nst_end = end;
    354 		fstate->nst_maxend = end;
    355 		fstate->nst_maxwin = win;
    356 		tstate->nst_end = 0;
    357 		tstate->nst_maxend = 0;
    358 		tstate->nst_maxwin = 1;
    359 
    360 		/*
    361 		 * Handle TCP Window Scaling (RFC 1323).  Both sides may
    362 		 * send this option in their SYN packets.
    363 		 */
    364 		fstate->nst_wscale = 0;
    365 		(void)npf_fetch_tcpopts(npc, NULL, &fstate->nst_wscale);
    366 
    367 		tstate->nst_wscale = 0;
    368 
    369 		/* Done. */
    370 		return true;
    371 	}
    372 
    373 	if (fstate->nst_end == 0) {
    374 		/*
    375 		 * Should be a SYN-ACK reply to SYN.  If SYN is not set,
    376 		 * then we are in the middle of connection and lost tracking.
    377 		 */
    378 		fstate->nst_end = end;
    379 		fstate->nst_maxend = end + 1;
    380 		fstate->nst_maxwin = win;
    381 		fstate->nst_wscale = 0;
    382 
    383 		/* Handle TCP Window Scaling (must be ignored if no SYN). */
    384 		if (tcpfl & TH_SYN) {
    385 			(void)npf_fetch_tcpopts(npc, NULL, &fstate->nst_wscale);
    386 		}
    387 	}
    388 
    389 	if ((tcpfl & TH_ACK) == 0) {
    390 		/* Pretend that an ACK was sent. */
    391 		ack = tstate->nst_end;
    392 	} else if ((tcpfl & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST) && ack == 0) {
    393 		/* Workaround for some TCP stacks. */
    394 		ack = tstate->nst_end;
    395 	}
    396 
    397 	if (__predict_false(tcpfl & TH_RST)) {
    398 		/* RST to the initial SYN may have zero SEQ - fix it up. */
    399 		if (seq == 0 && nst->nst_state == NPF_TCPS_SYN_SENT) {
    400 			end = fstate->nst_end;
    401 			seq = end;
    402 		}
    403 
    404 		/* Strict in-order sequence for RST packets (RFC 5961). */
    405 		if (npf_strict_order_rst && (fstate->nst_end - seq) > 1) {
    406 			return false;
    407 		}
    408 	}
    409 
    410 	/*
    411 	 * Determine whether the data is within previously noted window,
    412 	 * that is, upper boundary for valid data (I).
    413 	 */
    414 	if (!SEQ_LEQ(end, fstate->nst_maxend)) {
    415 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE_TCP1);
    416 		return false;
    417 	}
    418 
    419 	/* Lower boundary (II), which is no more than one window back. */
    420 	if (!SEQ_GEQ(seq, fstate->nst_end - tstate->nst_maxwin)) {
    421 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE_TCP2);
    422 		return false;
    423 	}
    424 
    425 	/*
    426 	 * Boundaries for valid acknowledgments (III, IV) - one predicted
    427 	 * window up or down, since packets may be fragmented.
    428 	 */
    429 	ackskew = tstate->nst_end - ack;
    430 	if (ackskew < -NPF_TCP_MAXACKWIN ||
    431 	    ackskew > (NPF_TCP_MAXACKWIN << fstate->nst_wscale)) {
    432 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE_TCP3);
    433 		return false;
    434 	}
    435 
    436 	/*
    437 	 * Packet has been passed.
    438 	 *
    439 	 * Negative ackskew might be due to fragmented packets.  Since the
    440 	 * total length of the packet is unknown - bump the boundary.
    441 	 */
    442 
    443 	if (ackskew < 0) {
    444 		tstate->nst_end = ack;
    445 	}
    446 	/* Keep track of the maximum window seen. */
    447 	if (fstate->nst_maxwin < win) {
    448 		fstate->nst_maxwin = win;
    449 	}
    450 	if (SEQ_GT(end, fstate->nst_end)) {
    451 		fstate->nst_end = end;
    452 	}
    453 	/* Note the window for upper boundary. */
    454 	if (SEQ_GEQ(ack + win, tstate->nst_maxend)) {
    455 		tstate->nst_maxend = ack + win;
    456 	}
    457 	return true;
    458 }
    459 
    460 /*
    461  * npf_state_tcp: inspect TCP segment, determine whether it belongs to
    462  * the connection and track its state.
    463  */
    464 bool
    465 npf_state_tcp(npf_cache_t *npc, npf_state_t *nst, int di)
    466 {
    467 	const struct tcphdr * const th = npc->npc_l4.tcp;
    468 	const u_int tcpfl = th->th_flags, state = nst->nst_state;
    469 	u_int nstate;
    470 
    471 	KASSERT(nst->nst_state < NPF_TCP_NSTATES);
    472 
    473 	/* Look for a transition to a new state. */
    474 	if (__predict_true((tcpfl & TH_RST) == 0)) {
    475 		const u_int flagcase = npf_tcpfl2case(tcpfl);
    476 		nstate = npf_tcp_fsm[state][di][flagcase];
    477 	} else if (state == NPF_TCPS_TIME_WAIT) {
    478 		/* Prevent TIME-WAIT assassination (RFC 1337). */
    479 		nstate = NPF_TCPS_OK;
    480 	} else {
    481 		nstate = NPF_TCPS_CLOSED;
    482 	}
    483 
    484 	/* Determine whether TCP packet really belongs to this connection. */
    485 	if (!npf_tcp_inwindow(npc, nst, di)) {
    486 		return false;
    487 	}
    488 	if (__predict_true(nstate == NPF_TCPS_OK)) {
    489 		return true;
    490 	}
    491 
    492 	nst->nst_state = nstate;
    493 	return true;
    494 }
    495 
    496 int
    497 npf_state_tcp_timeout(const npf_state_t *nst)
    498 {
    499 	const u_int state = nst->nst_state;
    500 
    501 	KASSERT(state < NPF_TCP_NSTATES);
    502 	return npf_tcp_timeouts[state];
    503 }
    504