Home | History | Annotate | Line # | Download | only in npf
npf_state_tcp.c revision 1.7
      1 /*	$NetBSD: npf_state_tcp.c,v 1.7 2012/06/22 13:43:17 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010-2012 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This material is based upon work partially supported by The
      8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * NPF TCP state engine for connection tracking.
     34  */
     35 
     36 #include <sys/cdefs.h>
     37 __KERNEL_RCSID(0, "$NetBSD: npf_state_tcp.c,v 1.7 2012/06/22 13:43:17 rmind Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/types.h>
     41 
     42 #ifndef _KERNEL
     43 #include <stdio.h>
     44 #include <stdbool.h>
     45 #include <inttypes.h>
     46 #endif
     47 #include <netinet/in.h>
     48 #include <netinet/tcp.h>
     49 #include <netinet/tcp_seq.h>
     50 
     51 #include "npf_impl.h"
     52 
     53 /*
     54  * NPF TCP states.  Note: these states are different from the TCP FSM
     55  * states of RFC 793.  The packet filter is a man-in-the-middle.
     56  */
     57 #define	NPF_TCPS_OK		(-1)
     58 #define	NPF_TCPS_CLOSED		0
     59 #define	NPF_TCPS_SYN_SENT	1
     60 #define	NPF_TCPS_SIMSYN_SENT	2
     61 #define	NPF_TCPS_SYN_RECEIVED	3
     62 #define	NPF_TCPS_ESTABLISHED	4
     63 #define	NPF_TCPS_FIN_SEEN	5
     64 #define	NPF_TCPS_CLOSE_WAIT	6
     65 #define	NPF_TCPS_FIN_WAIT	7
     66 #define	NPF_TCPS_CLOSING	8
     67 #define	NPF_TCPS_LAST_ACK	9
     68 #define	NPF_TCPS_TIME_WAIT	10
     69 
     70 #define	NPF_TCP_NSTATES		11
     71 
     72 /*
     73  * TCP connection timeout table (in seconds).
     74  */
     75 static u_int npf_tcp_timeouts[] __read_mostly = {
     76 	/* Closed, timeout nearly immediately. */
     77 	[NPF_TCPS_CLOSED]	= 10,
     78 	/* Unsynchronised states. */
     79 	[NPF_TCPS_SYN_SENT]	= 30,
     80 	[NPF_TCPS_SIMSYN_SENT]	= 30,
     81 	[NPF_TCPS_SYN_RECEIVED]	= 60,
     82 	/* Established, timeout: 24 hours. */
     83 	[NPF_TCPS_ESTABLISHED]	= 60 * 60 * 24,
     84 	/* Closure cases, timeout: 4 minutes (2 * MSL). */
     85 	[NPF_TCPS_FIN_SEEN]	= 60 * 2 * 2,
     86 	[NPF_TCPS_CLOSE_WAIT]	= 60 * 2 * 2,
     87 	[NPF_TCPS_FIN_WAIT]	= 60 * 2 * 2,
     88 	[NPF_TCPS_CLOSING]	= 30,
     89 	[NPF_TCPS_LAST_ACK]	= 30,
     90 	[NPF_TCPS_TIME_WAIT]	= 60 * 2 * 2,
     91 };
     92 
     93 #define	NPF_TCP_MAXACKWIN	66000
     94 
     95 /*
     96  * List of TCP flag cases and conversion of flags to a case (index).
     97  */
     98 
     99 #define	TCPFC_INVALID		0
    100 #define	TCPFC_SYN		1
    101 #define	TCPFC_SYNACK		2
    102 #define	TCPFC_ACK		3
    103 #define	TCPFC_FIN		4
    104 #define	TCPFC_COUNT		5
    105 
    106 static inline u_int
    107 npf_tcpfl2case(const int tcpfl)
    108 {
    109 	u_int i, c;
    110 
    111 	CTASSERT(TH_FIN == 0x01);
    112 	CTASSERT(TH_SYN == 0x02);
    113 	CTASSERT(TH_ACK == 0x10);
    114 
    115 	/*
    116 	 * Flags are shifted to use three least significant bits, thus each
    117 	 * flag combination has a unique number ranging from 0 to 7, e.g.
    118 	 * TH_SYN | TH_ACK has number 6, since (0x02 | (0x10 >> 2)) == 6.
    119 	 * However, the requirement is to have number 0 for invalid cases,
    120 	 * such as TH_SYN | TH_FIN, and to have the same number for TH_FIN
    121 	 * and TH_FIN|TH_ACK cases.  Thus, we generate a mask assigning 3
    122 	 * bits for each number, which contains the actual case numbers:
    123 	 *
    124 	 * TCPFC_SYNACK	<< (6 << 2) == 0x2000000 (6 - SYN,ACK)
    125 	 * TCPFC_FIN	<< (5 << 2) == 0x0400000 (5 - FIN,ACK)
    126 	 * ...
    127 	 *
    128 	 * Hence, OR'ed mask value is 0x2430140.
    129 	 */
    130 	i = (tcpfl & (TH_SYN | TH_FIN)) | ((tcpfl & TH_ACK) >> 2);
    131 	c = (0x2430140 >> (i << 2)) & 7;
    132 
    133 	KASSERT(c < TCPFC_COUNT);
    134 	return c;
    135 }
    136 
    137 /*
    138  * NPF transition table of a tracked TCP connection.
    139  *
    140  * There is a single state, which is changed in the following way:
    141  *
    142  * new_state = npf_tcp_fsm[old_state][direction][npf_tcpfl2case(tcp_flags)];
    143  *
    144  * Note that this state is different from the state in each end (host).
    145  */
    146 
    147 static const int npf_tcp_fsm[NPF_TCP_NSTATES][2][TCPFC_COUNT] = {
    148 	[NPF_TCPS_CLOSED] = {
    149 		[NPF_FLOW_FORW] = {
    150 			/* Handshake (1): initial SYN. */
    151 			[TCPFC_SYN]	= NPF_TCPS_SYN_SENT,
    152 		},
    153 	},
    154 	[NPF_TCPS_SYN_SENT] = {
    155 		[NPF_FLOW_FORW] = {
    156 			/* SYN may be retransmitted. */
    157 			[TCPFC_SYN]	= NPF_TCPS_OK,
    158 		},
    159 		[NPF_FLOW_BACK] = {
    160 			/* Handshake (2): SYN-ACK is expected. */
    161 			[TCPFC_SYNACK]	= NPF_TCPS_SYN_RECEIVED,
    162 			/* Simultaneous initiation - SYN. */
    163 			[TCPFC_SYN]	= NPF_TCPS_SIMSYN_SENT,
    164 		},
    165 	},
    166 	[NPF_TCPS_SIMSYN_SENT] = {
    167 		[NPF_FLOW_FORW] = {
    168 			/* Original SYN re-transmission. */
    169 			[TCPFC_SYN]	= NPF_TCPS_OK,
    170 			/* SYN-ACK response to simultaneous SYN. */
    171 			[TCPFC_SYNACK]	= NPF_TCPS_SYN_RECEIVED,
    172 		},
    173 		[NPF_FLOW_BACK] = {
    174 			/* Simultaneous SYN re-transmission.*/
    175 			[TCPFC_SYN]	= NPF_TCPS_OK,
    176 			/* SYN-ACK response to original SYN. */
    177 			[TCPFC_SYNACK]	= NPF_TCPS_SYN_RECEIVED,
    178 			/* FIN may be sent early. */
    179 			[TCPFC_FIN]	= NPF_TCPS_FIN_SEEN,
    180 		},
    181 	},
    182 	[NPF_TCPS_SYN_RECEIVED] = {
    183 		[NPF_FLOW_FORW] = {
    184 			/* Handshake (3): ACK is expected. */
    185 			[TCPFC_ACK]	= NPF_TCPS_ESTABLISHED,
    186 			/* FIN may be sent early. */
    187 			[TCPFC_FIN]	= NPF_TCPS_FIN_SEEN,
    188 		},
    189 		[NPF_FLOW_BACK] = {
    190 			/* SYN-ACK may be retransmitted. */
    191 			[TCPFC_SYNACK]	= NPF_TCPS_OK,
    192 			/* XXX: ACK of late SYN in simultaneous case? */
    193 			[TCPFC_ACK]	= NPF_TCPS_OK,
    194 			/* FIN may be sent early. */
    195 			[TCPFC_FIN]	= NPF_TCPS_FIN_SEEN,
    196 		},
    197 	},
    198 	[NPF_TCPS_ESTABLISHED] = {
    199 		/*
    200 		 * Regular ACKs (data exchange) or FIN.
    201 		 * FIN packets may have ACK set.
    202 		 */
    203 		[NPF_FLOW_FORW] = {
    204 			[TCPFC_ACK]	= NPF_TCPS_OK,
    205 			/* FIN by the sender. */
    206 			[TCPFC_FIN]	= NPF_TCPS_FIN_SEEN,
    207 		},
    208 		[NPF_FLOW_BACK] = {
    209 			[TCPFC_ACK]	= NPF_TCPS_OK,
    210 			/* FIN by the receiver. */
    211 			[TCPFC_FIN]	= NPF_TCPS_FIN_SEEN,
    212 		},
    213 	},
    214 	[NPF_TCPS_FIN_SEEN] = {
    215 		/*
    216 		 * FIN was seen.  If ACK only, connection is half-closed now,
    217 		 * need to determine which end is closed (sender or receiver).
    218 		 * However, both FIN and FIN-ACK may race here - in which
    219 		 * case we are closing immediately.
    220 		 */
    221 		[NPF_FLOW_FORW] = {
    222 			[TCPFC_ACK]	= NPF_TCPS_CLOSE_WAIT,
    223 			[TCPFC_FIN]	= NPF_TCPS_CLOSING,
    224 		},
    225 		[NPF_FLOW_BACK] = {
    226 			[TCPFC_ACK]	= NPF_TCPS_FIN_WAIT,
    227 			[TCPFC_FIN]	= NPF_TCPS_CLOSING,
    228 		},
    229 	},
    230 	[NPF_TCPS_CLOSE_WAIT] = {
    231 		/* Sender has sent the FIN and closed its end. */
    232 		[NPF_FLOW_FORW] = {
    233 			[TCPFC_ACK]	= NPF_TCPS_OK,
    234 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    235 		},
    236 		[NPF_FLOW_BACK] = {
    237 			[TCPFC_ACK]	= NPF_TCPS_OK,
    238 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    239 		},
    240 	},
    241 	[NPF_TCPS_FIN_WAIT] = {
    242 		/* Receiver has closed its end. */
    243 		[NPF_FLOW_FORW] = {
    244 			[TCPFC_ACK]	= NPF_TCPS_OK,
    245 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    246 		},
    247 		[NPF_FLOW_BACK] = {
    248 			[TCPFC_ACK]	= NPF_TCPS_OK,
    249 			[TCPFC_FIN]	= NPF_TCPS_LAST_ACK,
    250 		},
    251 	},
    252 	[NPF_TCPS_CLOSING] = {
    253 		/* Race of FINs - expecting ACK. */
    254 		[NPF_FLOW_FORW] = {
    255 			[TCPFC_ACK]	= NPF_TCPS_LAST_ACK,
    256 		},
    257 		[NPF_FLOW_BACK] = {
    258 			[TCPFC_ACK]	= NPF_TCPS_LAST_ACK,
    259 		},
    260 	},
    261 	[NPF_TCPS_LAST_ACK] = {
    262 		/* FINs exchanged - expecting last ACK. */
    263 		[NPF_FLOW_FORW] = {
    264 			[TCPFC_ACK]	= NPF_TCPS_TIME_WAIT,
    265 		},
    266 		[NPF_FLOW_BACK] = {
    267 			[TCPFC_ACK]	= NPF_TCPS_TIME_WAIT,
    268 		},
    269 	},
    270 	[NPF_TCPS_TIME_WAIT] = {
    271 		/* May re-open the connection as per RFC 1122. */
    272 		[NPF_FLOW_FORW] = {
    273 			[TCPFC_SYN]	= NPF_TCPS_SYN_SENT,
    274 		},
    275 	},
    276 };
    277 
    278 /*
    279  * npf_tcp_inwindow: determine whether the packet is in the TCP window
    280  * and thus part of the connection we are tracking.
    281  */
    282 static bool
    283 npf_tcp_inwindow(const npf_cache_t *npc, nbuf_t *nbuf, npf_state_t *nst,
    284     const int di)
    285 {
    286 	const struct tcphdr * const th = &npc->npc_l4.tcp;
    287 	const int tcpfl = th->th_flags;
    288 	npf_tcpstate_t *fstate, *tstate;
    289 	int tcpdlen, wscale, ackskew;
    290 	tcp_seq seq, ack, end;
    291 	uint32_t win;
    292 
    293 	KASSERT(npf_iscached(npc, NPC_TCP));
    294 	KASSERT(di == NPF_FLOW_FORW || di == NPF_FLOW_BACK);
    295 
    296 	/*
    297 	 * Perform SEQ/ACK numbers check against boundaries.  Reference:
    298 	 *
    299 	 *	Rooij G., "Real stateful TCP packet filtering in IP Filter",
    300 	 *	10th USENIX Security Symposium invited talk, Aug. 2001.
    301 	 *
    302 	 * There are four boundaries defined as following:
    303 	 *	I)   SEQ + LEN	<= MAX { SND.ACK + MAX(SND.WIN, 1) }
    304 	 *	II)  SEQ	>= MAX { SND.SEQ + SND.LEN - MAX(RCV.WIN, 1) }
    305 	 *	III) ACK	<= MAX { RCV.SEQ + RCV.LEN }
    306 	 *	IV)  ACK	>= MAX { RCV.SEQ + RCV.LEN } - MAXACKWIN
    307 	 *
    308 	 * Let these members of npf_tcpstate_t be the maximum seen values of:
    309 	 *	nst_end		- SEQ + LEN
    310 	 *	nst_maxend	- ACK + MAX(WIN, 1)
    311 	 *	nst_maxwin	- MAX(WIN, 1)
    312 	 */
    313 
    314 	tcpdlen = npf_tcpsaw(__UNCONST(npc), &seq, &ack, &win);
    315 	end = seq + tcpdlen;
    316 	if (tcpfl & TH_SYN) {
    317 		end++;
    318 	}
    319 	if (tcpfl & TH_FIN) {
    320 		end++;
    321 	}
    322 
    323 	fstate = &nst->nst_tcpst[di];
    324 	tstate = &nst->nst_tcpst[!di];
    325 	win = win ? (win << fstate->nst_wscale) : 1;
    326 
    327 	/*
    328 	 * Initialise if the first packet.
    329 	 * Note: only case when nst_maxwin is zero.
    330 	 */
    331 	if (__predict_false(fstate->nst_maxwin == 0)) {
    332 		/*
    333 		 * Normally, it should be the first SYN or a re-transmission
    334 		 * of SYN.  The state of the other side will get set with a
    335 		 * SYN-ACK reply (see below).
    336 		 */
    337 		fstate->nst_end = end;
    338 		fstate->nst_maxend = end;
    339 		fstate->nst_maxwin = win;
    340 		tstate->nst_end = 0;
    341 		tstate->nst_maxend = 0;
    342 		tstate->nst_maxwin = 1;
    343 
    344 		/*
    345 		 * Handle TCP Window Scaling (RFC 1323).  Both sides may
    346 		 * send this option in their SYN packets.
    347 		 */
    348 		if (npf_fetch_tcpopts(npc, nbuf, NULL, &wscale)) {
    349 			fstate->nst_wscale = wscale;
    350 		} else {
    351 			fstate->nst_wscale = 0;
    352 		}
    353 		tstate->nst_wscale = 0;
    354 
    355 		/* Done. */
    356 		return true;
    357 	}
    358 	if (fstate->nst_end == 0) {
    359 		/*
    360 		 * Should be a SYN-ACK reply to SYN.  If SYN is not set,
    361 		 * then we are in the middle of connection and lost tracking.
    362 		 */
    363 		fstate->nst_end = end;
    364 		fstate->nst_maxend = end + 1;
    365 		fstate->nst_maxwin = win;
    366 
    367 		/* Handle TCP Window Scaling (must be ignored if no SYN). */
    368 		if (tcpfl & TH_SYN) {
    369 			fstate->nst_wscale =
    370 			    npf_fetch_tcpopts(npc, nbuf, NULL, &wscale) ?
    371 			    wscale : 0;
    372 		}
    373 	}
    374 
    375 	if ((tcpfl & TH_ACK) == 0) {
    376 		/* Pretend that an ACK was sent. */
    377 		ack = tstate->nst_end;
    378 	} else if ((tcpfl & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST) && ack == 0) {
    379 		/* Workaround for some TCP stacks. */
    380 		ack = tstate->nst_end;
    381 	}
    382 	if (seq == end) {
    383 		/* If packet contains no data - assume it is valid. */
    384 		end = fstate->nst_end;
    385 		seq = end;
    386 	}
    387 #if 0
    388 	/* Strict in-order sequence for RST packets. */
    389 	if ((tcpfl & TH_RST) != 0 && (fstate->nst_end - seq) > 1) {
    390 		return false;
    391 	}
    392 #endif
    393 	/*
    394 	 * Determine whether the data is within previously noted window,
    395 	 * that is, upper boundary for valid data (I).
    396 	 */
    397 	if (!SEQ_LEQ(end, fstate->nst_maxend)) {
    398 		npf_stats_inc(NPF_STAT_INVALID_STATE_TCP1);
    399 		return false;
    400 	}
    401 
    402 	/* Lower boundary (II), which is no more than one window back. */
    403 	if (!SEQ_GEQ(seq, fstate->nst_end - tstate->nst_maxwin)) {
    404 		npf_stats_inc(NPF_STAT_INVALID_STATE_TCP2);
    405 		return false;
    406 	}
    407 
    408 	/*
    409 	 * Boundaries for valid acknowledgments (III, IV) - one predicted
    410 	 * window up or down, since packets may be fragmented.
    411 	 */
    412 	ackskew = tstate->nst_end - ack;
    413 	if (ackskew < -NPF_TCP_MAXACKWIN ||
    414 	    ackskew > (NPF_TCP_MAXACKWIN << fstate->nst_wscale)) {
    415 		npf_stats_inc(NPF_STAT_INVALID_STATE_TCP3);
    416 		return false;
    417 	}
    418 
    419 	/*
    420 	 * Packet has been passed.
    421 	 *
    422 	 * Negative ackskew might be due to fragmented packets.  Since the
    423 	 * total length of the packet is unknown - bump the boundary.
    424 	 */
    425 
    426 	if (ackskew < 0) {
    427 		tstate->nst_end = ack;
    428 	}
    429 	/* Keep track of the maximum window seen. */
    430 	if (fstate->nst_maxwin < win) {
    431 		fstate->nst_maxwin = win;
    432 	}
    433 	if (SEQ_GT(end, fstate->nst_end)) {
    434 		fstate->nst_end = end;
    435 	}
    436 	/* Note the window for upper boundary. */
    437 	if (SEQ_GEQ(ack + win, tstate->nst_maxend)) {
    438 		tstate->nst_maxend = ack + win;
    439 	}
    440 	return true;
    441 }
    442 
    443 /*
    444  * npf_state_tcp: inspect TCP segment, determine whether it belongs to
    445  * the connection and track its state.
    446  */
    447 bool
    448 npf_state_tcp(const npf_cache_t *npc, nbuf_t *nbuf, npf_state_t *nst, int di)
    449 {
    450 	const struct tcphdr * const th = &npc->npc_l4.tcp;
    451 	const int tcpfl = th->th_flags, state = nst->nst_state;
    452 	int nstate;
    453 
    454 	KASSERT(nst->nst_state == 0 || mutex_owned(&nst->nst_lock));
    455 
    456 	/* Look for a transition to a new state. */
    457 	if (__predict_true((tcpfl & TH_RST) == 0)) {
    458 		const int flagcase = npf_tcpfl2case(tcpfl);
    459 		nstate = npf_tcp_fsm[state][di][flagcase];
    460 	} else if (state == NPF_TCPS_TIME_WAIT) {
    461 		/* Prevent TIME-WAIT assassination (RFC 1337). */
    462 		nstate = NPF_TCPS_OK;
    463 	} else {
    464 		nstate = NPF_TCPS_CLOSED;
    465 	}
    466 
    467 	/* Determine whether TCP packet really belongs to this connection. */
    468 	if (!npf_tcp_inwindow(npc, nbuf, nst, di)) {
    469 		return false;
    470 	}
    471 	if (__predict_true(nstate == NPF_TCPS_OK)) {
    472 		return true;
    473 	}
    474 
    475 	nst->nst_state = nstate;
    476 	return true;
    477 }
    478 
    479 int
    480 npf_state_tcp_timeout(const npf_state_t *nst)
    481 {
    482 	const u_int state = nst->nst_state;
    483 
    484 	KASSERT(state < NPF_TCP_NSTATES);
    485 	return npf_tcp_timeouts[state];
    486 }
    487