npf_tableset.c revision 1.11 1 1.11 rmind /* $NetBSD: npf_tableset.c,v 1.11 2012/06/22 13:43:17 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.9 rmind * Copyright (c) 2009-2012 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This material is based upon work partially supported by The
8 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.4 rmind * NPF tableset module.
34 1.1 rmind *
35 1.1 rmind * TODO:
36 1.1 rmind * - Currently, code is modeled to handle IPv4 CIDR blocks.
37 1.1 rmind * - Dynamic hash growing/shrinking (i.e. re-hash functionality), maybe?
38 1.1 rmind * - Dynamic array resize.
39 1.1 rmind */
40 1.1 rmind
41 1.1 rmind #include <sys/cdefs.h>
42 1.11 rmind __KERNEL_RCSID(0, "$NetBSD: npf_tableset.c,v 1.11 2012/06/22 13:43:17 rmind Exp $");
43 1.1 rmind
44 1.1 rmind #include <sys/param.h>
45 1.10 rmind #include <sys/types.h>
46 1.1 rmind
47 1.1 rmind #include <sys/atomic.h>
48 1.1 rmind #include <sys/hash.h>
49 1.1 rmind #include <sys/kmem.h>
50 1.1 rmind #include <sys/pool.h>
51 1.1 rmind #include <sys/queue.h>
52 1.1 rmind #include <sys/rwlock.h>
53 1.1 rmind #include <sys/systm.h>
54 1.1 rmind #include <sys/types.h>
55 1.1 rmind
56 1.1 rmind #include "npf_impl.h"
57 1.1 rmind
58 1.1 rmind /* Table entry structure. */
59 1.1 rmind struct npf_tblent {
60 1.2 rmind /* Hash/tree entry. */
61 1.1 rmind union {
62 1.1 rmind LIST_ENTRY(npf_tblent) hashq;
63 1.4 rmind rb_node_t rbnode;
64 1.1 rmind } te_entry;
65 1.2 rmind /* IPv4 CIDR block. */
66 1.6 zoltan npf_addr_t te_addr;
67 1.6 zoltan npf_netmask_t te_mask;
68 1.1 rmind };
69 1.1 rmind
70 1.1 rmind LIST_HEAD(npf_hashl, npf_tblent);
71 1.1 rmind
72 1.1 rmind /* Table structure. */
73 1.1 rmind struct npf_table {
74 1.1 rmind char t_name[16];
75 1.1 rmind /* Lock and reference count. */
76 1.1 rmind krwlock_t t_lock;
77 1.1 rmind u_int t_refcnt;
78 1.1 rmind /* Table ID. */
79 1.1 rmind u_int t_id;
80 1.1 rmind /* The storage type can be: 1. Hash 2. RB-tree. */
81 1.5 rmind int t_type;
82 1.1 rmind struct npf_hashl * t_hashl;
83 1.1 rmind u_long t_hashmask;
84 1.2 rmind rb_tree_t t_rbtree;
85 1.1 rmind };
86 1.1 rmind
87 1.4 rmind static pool_cache_t tblent_cache __read_mostly;
88 1.1 rmind
89 1.1 rmind /*
90 1.1 rmind * npf_table_sysinit: initialise tableset structures.
91 1.1 rmind */
92 1.4 rmind void
93 1.1 rmind npf_tableset_sysinit(void)
94 1.1 rmind {
95 1.1 rmind
96 1.1 rmind tblent_cache = pool_cache_init(sizeof(npf_tblent_t), coherency_unit,
97 1.1 rmind 0, 0, "npftenpl", NULL, IPL_NONE, NULL, NULL, NULL);
98 1.1 rmind }
99 1.1 rmind
100 1.1 rmind void
101 1.1 rmind npf_tableset_sysfini(void)
102 1.1 rmind {
103 1.1 rmind
104 1.1 rmind pool_cache_destroy(tblent_cache);
105 1.1 rmind }
106 1.1 rmind
107 1.1 rmind npf_tableset_t *
108 1.1 rmind npf_tableset_create(void)
109 1.1 rmind {
110 1.1 rmind const size_t sz = NPF_TABLE_SLOTS * sizeof(npf_table_t *);
111 1.1 rmind
112 1.1 rmind return kmem_zalloc(sz, KM_SLEEP);
113 1.1 rmind }
114 1.1 rmind
115 1.1 rmind void
116 1.1 rmind npf_tableset_destroy(npf_tableset_t *tblset)
117 1.1 rmind {
118 1.1 rmind const size_t sz = NPF_TABLE_SLOTS * sizeof(npf_table_t *);
119 1.1 rmind npf_table_t *t;
120 1.1 rmind u_int tid;
121 1.1 rmind
122 1.1 rmind /*
123 1.1 rmind * Destroy all tables (no references should be held, as ruleset
124 1.1 rmind * should be destroyed before).
125 1.1 rmind */
126 1.1 rmind for (tid = 0; tid < NPF_TABLE_SLOTS; tid++) {
127 1.1 rmind t = tblset[tid];
128 1.1 rmind if (t != NULL) {
129 1.1 rmind npf_table_destroy(t);
130 1.1 rmind }
131 1.1 rmind }
132 1.1 rmind kmem_free(tblset, sz);
133 1.1 rmind }
134 1.1 rmind
135 1.1 rmind /*
136 1.1 rmind * npf_tableset_insert: insert the table into the specified tableset.
137 1.1 rmind *
138 1.1 rmind * => Returns 0 on success, fails and returns errno if ID is already used.
139 1.1 rmind */
140 1.1 rmind int
141 1.1 rmind npf_tableset_insert(npf_tableset_t *tblset, npf_table_t *t)
142 1.1 rmind {
143 1.1 rmind const u_int tid = t->t_id;
144 1.1 rmind int error;
145 1.1 rmind
146 1.1 rmind KASSERT((u_int)tid < NPF_TABLE_SLOTS);
147 1.1 rmind
148 1.1 rmind if (tblset[tid] == NULL) {
149 1.1 rmind tblset[tid] = t;
150 1.1 rmind error = 0;
151 1.1 rmind } else {
152 1.1 rmind error = EEXIST;
153 1.1 rmind }
154 1.1 rmind return error;
155 1.1 rmind }
156 1.1 rmind
157 1.1 rmind /*
158 1.1 rmind * Red-black tree storage.
159 1.1 rmind */
160 1.1 rmind
161 1.1 rmind static signed int
162 1.2 rmind table_rbtree_cmp_nodes(void *ctx, const void *n1, const void *n2)
163 1.1 rmind {
164 1.2 rmind const npf_tblent_t * const te1 = n1;
165 1.2 rmind const npf_tblent_t * const te2 = n2;
166 1.1 rmind
167 1.11 rmind return npf_addr_cmp(&te1->te_addr, te1->te_mask,
168 1.7 rmind &te2->te_addr, te2->te_mask);
169 1.1 rmind }
170 1.1 rmind
171 1.1 rmind static signed int
172 1.2 rmind table_rbtree_cmp_key(void *ctx, const void *n1, const void *key)
173 1.1 rmind {
174 1.2 rmind const npf_tblent_t * const te = n1;
175 1.6 zoltan const npf_addr_t *t2 = key;
176 1.1 rmind
177 1.11 rmind return npf_addr_cmp(&te->te_addr, te->te_mask, t2, NPF_NO_NETMASK);
178 1.1 rmind }
179 1.1 rmind
180 1.2 rmind static const rb_tree_ops_t table_rbtree_ops = {
181 1.1 rmind .rbto_compare_nodes = table_rbtree_cmp_nodes,
182 1.2 rmind .rbto_compare_key = table_rbtree_cmp_key,
183 1.2 rmind .rbto_node_offset = offsetof(npf_tblent_t, te_entry.rbnode),
184 1.2 rmind .rbto_context = NULL
185 1.1 rmind };
186 1.1 rmind
187 1.1 rmind /*
188 1.1 rmind * Hash helper routine.
189 1.1 rmind */
190 1.1 rmind
191 1.1 rmind static inline struct npf_hashl *
192 1.6 zoltan table_hash_bucket(npf_table_t *t, const void *buf, size_t sz)
193 1.1 rmind {
194 1.1 rmind const uint32_t hidx = hash32_buf(buf, sz, HASH32_BUF_INIT);
195 1.1 rmind
196 1.1 rmind return &t->t_hashl[hidx & t->t_hashmask];
197 1.1 rmind }
198 1.1 rmind
199 1.1 rmind /*
200 1.1 rmind * npf_table_create: create table with a specified ID.
201 1.1 rmind */
202 1.1 rmind npf_table_t *
203 1.1 rmind npf_table_create(u_int tid, int type, size_t hsize)
204 1.1 rmind {
205 1.1 rmind npf_table_t *t;
206 1.1 rmind
207 1.1 rmind KASSERT((u_int)tid < NPF_TABLE_SLOTS);
208 1.1 rmind
209 1.1 rmind t = kmem_zalloc(sizeof(npf_table_t), KM_SLEEP);
210 1.1 rmind switch (type) {
211 1.9 rmind case NPF_TABLE_TREE:
212 1.1 rmind rb_tree_init(&t->t_rbtree, &table_rbtree_ops);
213 1.1 rmind break;
214 1.1 rmind case NPF_TABLE_HASH:
215 1.1 rmind t->t_hashl = hashinit(hsize, HASH_LIST, true, &t->t_hashmask);
216 1.1 rmind if (t->t_hashl == NULL) {
217 1.1 rmind kmem_free(t, sizeof(npf_table_t));
218 1.1 rmind return NULL;
219 1.1 rmind }
220 1.1 rmind break;
221 1.1 rmind default:
222 1.1 rmind KASSERT(false);
223 1.1 rmind }
224 1.1 rmind rw_init(&t->t_lock);
225 1.1 rmind t->t_type = type;
226 1.1 rmind t->t_refcnt = 1;
227 1.1 rmind t->t_id = tid;
228 1.1 rmind return t;
229 1.1 rmind }
230 1.1 rmind
231 1.1 rmind /*
232 1.1 rmind * npf_table_destroy: free all table entries and table itself.
233 1.1 rmind */
234 1.1 rmind void
235 1.1 rmind npf_table_destroy(npf_table_t *t)
236 1.1 rmind {
237 1.1 rmind npf_tblent_t *e;
238 1.1 rmind u_int n;
239 1.1 rmind
240 1.1 rmind switch (t->t_type) {
241 1.1 rmind case NPF_TABLE_HASH:
242 1.1 rmind for (n = 0; n <= t->t_hashmask; n++) {
243 1.1 rmind while ((e = LIST_FIRST(&t->t_hashl[n])) != NULL) {
244 1.1 rmind LIST_REMOVE(e, te_entry.hashq);
245 1.1 rmind pool_cache_put(tblent_cache, e);
246 1.1 rmind }
247 1.1 rmind }
248 1.1 rmind hashdone(t->t_hashl, HASH_LIST, t->t_hashmask);
249 1.1 rmind break;
250 1.9 rmind case NPF_TABLE_TREE:
251 1.2 rmind while ((e = rb_tree_iterate(&t->t_rbtree, NULL,
252 1.2 rmind RB_DIR_LEFT)) != NULL) {
253 1.2 rmind rb_tree_remove_node(&t->t_rbtree, e);
254 1.1 rmind pool_cache_put(tblent_cache, e);
255 1.1 rmind }
256 1.1 rmind break;
257 1.1 rmind default:
258 1.1 rmind KASSERT(false);
259 1.1 rmind }
260 1.1 rmind rw_destroy(&t->t_lock);
261 1.1 rmind kmem_free(t, sizeof(npf_table_t));
262 1.1 rmind }
263 1.1 rmind
264 1.1 rmind /*
265 1.1 rmind * npf_table_ref: holds the reference on table.
266 1.1 rmind *
267 1.1 rmind * => Table must be locked.
268 1.1 rmind */
269 1.1 rmind void
270 1.1 rmind npf_table_ref(npf_table_t *t)
271 1.1 rmind {
272 1.1 rmind
273 1.1 rmind KASSERT(rw_lock_held(&t->t_lock));
274 1.1 rmind atomic_inc_uint(&t->t_refcnt);
275 1.1 rmind }
276 1.1 rmind
277 1.1 rmind /*
278 1.1 rmind * npf_table_unref: drop reference from the table and destroy the table if
279 1.1 rmind * it is the last reference.
280 1.1 rmind */
281 1.1 rmind void
282 1.1 rmind npf_table_unref(npf_table_t *t)
283 1.1 rmind {
284 1.1 rmind
285 1.1 rmind if (atomic_dec_uint_nv(&t->t_refcnt) != 0) {
286 1.1 rmind return;
287 1.1 rmind }
288 1.1 rmind npf_table_destroy(t);
289 1.1 rmind }
290 1.1 rmind
291 1.1 rmind /*
292 1.1 rmind * npf_table_get: find the table according to ID and "get it" by locking it.
293 1.1 rmind */
294 1.1 rmind npf_table_t *
295 1.1 rmind npf_table_get(npf_tableset_t *tset, u_int tid)
296 1.1 rmind {
297 1.1 rmind npf_table_t *t;
298 1.1 rmind
299 1.8 rmind KASSERT(tset != NULL);
300 1.8 rmind
301 1.1 rmind if ((u_int)tid >= NPF_TABLE_SLOTS) {
302 1.1 rmind return NULL;
303 1.1 rmind }
304 1.8 rmind t = tset[tid];
305 1.1 rmind if (t != NULL) {
306 1.1 rmind rw_enter(&t->t_lock, RW_READER);
307 1.1 rmind }
308 1.1 rmind return t;
309 1.1 rmind }
310 1.1 rmind
311 1.1 rmind /*
312 1.1 rmind * npf_table_put: "put table back" by unlocking it.
313 1.1 rmind */
314 1.1 rmind void
315 1.1 rmind npf_table_put(npf_table_t *t)
316 1.1 rmind {
317 1.1 rmind
318 1.1 rmind rw_exit(&t->t_lock);
319 1.1 rmind }
320 1.1 rmind
321 1.1 rmind /*
322 1.1 rmind * npf_table_check: validate ID and type.
323 1.1 rmind * */
324 1.1 rmind int
325 1.1 rmind npf_table_check(npf_tableset_t *tset, u_int tid, int type)
326 1.1 rmind {
327 1.1 rmind
328 1.1 rmind if ((u_int)tid >= NPF_TABLE_SLOTS) {
329 1.1 rmind return EINVAL;
330 1.1 rmind }
331 1.1 rmind if (tset[tid] != NULL) {
332 1.1 rmind return EEXIST;
333 1.1 rmind }
334 1.9 rmind if (type != NPF_TABLE_TREE && type != NPF_TABLE_HASH) {
335 1.1 rmind return EINVAL;
336 1.1 rmind }
337 1.1 rmind return 0;
338 1.1 rmind }
339 1.1 rmind
340 1.1 rmind /*
341 1.6 zoltan * npf_table_add_cidr: add an IPv4 or IPv6 CIDR into the table.
342 1.1 rmind */
343 1.1 rmind int
344 1.6 zoltan npf_table_add_cidr(npf_tableset_t *tset, u_int tid,
345 1.6 zoltan const npf_addr_t *addr, const npf_netmask_t mask)
346 1.1 rmind {
347 1.1 rmind struct npf_hashl *htbl;
348 1.1 rmind npf_tblent_t *e, *it;
349 1.1 rmind npf_table_t *t;
350 1.6 zoltan npf_addr_t val;
351 1.1 rmind int error = 0;
352 1.1 rmind
353 1.8 rmind if (mask > NPF_MAX_NETMASK) {
354 1.8 rmind return EINVAL;
355 1.8 rmind }
356 1.1 rmind e = pool_cache_get(tblent_cache, PR_WAITOK);
357 1.6 zoltan memcpy(&e->te_addr, addr, sizeof(npf_addr_t));
358 1.1 rmind e->te_mask = mask;
359 1.1 rmind
360 1.8 rmind /* Get the table (acquire the lock). */
361 1.1 rmind t = npf_table_get(tset, tid);
362 1.8 rmind if (t == NULL) {
363 1.1 rmind pool_cache_put(tblent_cache, e);
364 1.1 rmind return EINVAL;
365 1.1 rmind }
366 1.1 rmind switch (t->t_type) {
367 1.1 rmind case NPF_TABLE_HASH:
368 1.1 rmind /* Generate hash value from: address & mask. */
369 1.11 rmind npf_addr_mask(addr, mask, &val);
370 1.6 zoltan htbl = table_hash_bucket(t, &val, sizeof(npf_addr_t));
371 1.1 rmind /* Lookup to check for duplicates. */
372 1.1 rmind LIST_FOREACH(it, htbl, te_entry.hashq) {
373 1.7 rmind if (it->te_mask != mask) {
374 1.7 rmind continue;
375 1.7 rmind }
376 1.7 rmind if (!memcmp(&it->te_addr, addr, sizeof(npf_addr_t))) {
377 1.7 rmind break;
378 1.6 zoltan }
379 1.1 rmind }
380 1.1 rmind /* If no duplicate - insert entry. */
381 1.1 rmind if (__predict_true(it == NULL)) {
382 1.1 rmind LIST_INSERT_HEAD(htbl, e, te_entry.hashq);
383 1.1 rmind } else {
384 1.1 rmind error = EEXIST;
385 1.1 rmind }
386 1.1 rmind break;
387 1.9 rmind case NPF_TABLE_TREE:
388 1.1 rmind /* Insert entry. Returns false, if duplicate. */
389 1.2 rmind if (rb_tree_insert_node(&t->t_rbtree, e) != e) {
390 1.1 rmind error = EEXIST;
391 1.1 rmind }
392 1.1 rmind break;
393 1.1 rmind default:
394 1.1 rmind KASSERT(false);
395 1.1 rmind }
396 1.1 rmind npf_table_put(t);
397 1.1 rmind
398 1.8 rmind if (error) {
399 1.1 rmind pool_cache_put(tblent_cache, e);
400 1.1 rmind }
401 1.1 rmind return error;
402 1.1 rmind }
403 1.1 rmind
404 1.1 rmind /*
405 1.1 rmind * npf_table_rem_v4cidr: remove an IPv4 CIDR from the table.
406 1.1 rmind */
407 1.1 rmind int
408 1.6 zoltan npf_table_rem_cidr(npf_tableset_t *tset, u_int tid,
409 1.6 zoltan const npf_addr_t *addr, const npf_netmask_t mask)
410 1.1 rmind {
411 1.1 rmind struct npf_hashl *htbl;
412 1.1 rmind npf_tblent_t *e;
413 1.1 rmind npf_table_t *t;
414 1.6 zoltan npf_addr_t val;
415 1.1 rmind int error;
416 1.1 rmind
417 1.8 rmind if (mask > NPF_MAX_NETMASK) {
418 1.8 rmind return EINVAL;
419 1.8 rmind }
420 1.1 rmind
421 1.8 rmind /* Get the table (acquire the lock). */
422 1.1 rmind t = npf_table_get(tset, tid);
423 1.1 rmind if (__predict_false(t == NULL)) {
424 1.1 rmind return EINVAL;
425 1.1 rmind }
426 1.8 rmind e = NULL;
427 1.8 rmind
428 1.1 rmind switch (t->t_type) {
429 1.1 rmind case NPF_TABLE_HASH:
430 1.1 rmind /* Generate hash value from: (address & mask). */
431 1.11 rmind npf_addr_mask(addr, mask, &val);
432 1.6 zoltan htbl = table_hash_bucket(t, &val, sizeof(npf_addr_t));
433 1.1 rmind LIST_FOREACH(e, htbl, te_entry.hashq) {
434 1.7 rmind if (e->te_mask != mask) {
435 1.7 rmind continue;
436 1.7 rmind }
437 1.7 rmind if (!memcmp(&e->te_addr, addr, sizeof(npf_addr_t))) {
438 1.7 rmind break;
439 1.6 zoltan }
440 1.1 rmind }
441 1.1 rmind if (__predict_true(e != NULL)) {
442 1.1 rmind LIST_REMOVE(e, te_entry.hashq);
443 1.1 rmind } else {
444 1.1 rmind error = ESRCH;
445 1.1 rmind }
446 1.1 rmind break;
447 1.9 rmind case NPF_TABLE_TREE:
448 1.1 rmind /* Key: (address & mask). */
449 1.11 rmind npf_addr_mask(addr, mask, &val);
450 1.2 rmind e = rb_tree_find_node(&t->t_rbtree, &val);
451 1.2 rmind if (__predict_true(e != NULL)) {
452 1.2 rmind rb_tree_remove_node(&t->t_rbtree, e);
453 1.1 rmind } else {
454 1.1 rmind error = ESRCH;
455 1.1 rmind }
456 1.1 rmind break;
457 1.1 rmind default:
458 1.1 rmind KASSERT(false);
459 1.1 rmind }
460 1.1 rmind npf_table_put(t);
461 1.1 rmind
462 1.8 rmind if (e == NULL) {
463 1.8 rmind return ENOENT;
464 1.1 rmind }
465 1.8 rmind pool_cache_put(tblent_cache, e);
466 1.8 rmind return 0;
467 1.1 rmind }
468 1.1 rmind
469 1.1 rmind /*
470 1.6 zoltan * npf_table_match_addr: find the table according to ID, lookup and
471 1.1 rmind * match the contents with specified IPv4 address.
472 1.1 rmind */
473 1.1 rmind int
474 1.8 rmind npf_table_match_addr(npf_tableset_t *tset, u_int tid, const npf_addr_t *addr)
475 1.1 rmind {
476 1.1 rmind struct npf_hashl *htbl;
477 1.5 rmind npf_tblent_t *e = NULL;
478 1.1 rmind npf_table_t *t;
479 1.1 rmind
480 1.8 rmind /* Get the table (acquire the lock). */
481 1.8 rmind t = npf_table_get(tset, tid);
482 1.1 rmind if (__predict_false(t == NULL)) {
483 1.1 rmind return EINVAL;
484 1.1 rmind }
485 1.1 rmind switch (t->t_type) {
486 1.1 rmind case NPF_TABLE_HASH:
487 1.6 zoltan htbl = table_hash_bucket(t, addr, sizeof(npf_addr_t));
488 1.1 rmind LIST_FOREACH(e, htbl, te_entry.hashq) {
489 1.11 rmind if (npf_addr_cmp(addr, e->te_mask, &e->te_addr,
490 1.7 rmind NPF_NO_NETMASK) == 0)
491 1.7 rmind break;
492 1.1 rmind }
493 1.1 rmind break;
494 1.9 rmind case NPF_TABLE_TREE:
495 1.6 zoltan e = rb_tree_find_node(&t->t_rbtree, addr);
496 1.1 rmind break;
497 1.1 rmind default:
498 1.1 rmind KASSERT(false);
499 1.1 rmind }
500 1.1 rmind npf_table_put(t);
501 1.1 rmind
502 1.11 rmind if (e == NULL) {
503 1.11 rmind return ENOENT;
504 1.11 rmind }
505 1.11 rmind KASSERT(npf_addr_cmp(addr, e->te_mask, &e->te_addr,
506 1.11 rmind NPF_NO_NETMASK) == 0);
507 1.11 rmind return 0;
508 1.1 rmind }
509