npf_tableset.c revision 1.1 1 /* $NetBSD: npf_tableset.c,v 1.1 2010/08/22 18:56:23 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2010 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * NPF table module.
34 *
35 * table_lock ->
36 * npf_table_t::t_lock
37 *
38 * TODO:
39 * - Currently, code is modeled to handle IPv4 CIDR blocks.
40 * - Dynamic hash growing/shrinking (i.e. re-hash functionality), maybe?
41 * - Dynamic array resize.
42 */
43
44 #ifdef _KERNEL
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: npf_tableset.c,v 1.1 2010/08/22 18:56:23 rmind Exp $");
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51
52 #include <sys/atomic.h>
53 #include <sys/hash.h>
54 #include <sys/kmem.h>
55 #include <sys/pool.h>
56 #include <sys/queue.h>
57 #include <sys/rwlock.h>
58 #include <sys/systm.h>
59 #include <sys/types.h>
60
61 #include "npf_impl.h"
62
63 /* Table entry structure. */
64 struct npf_tblent {
65 /* IPv4 CIDR block. */
66 in_addr_t te_addr;
67 in_addr_t te_mask;
68 union {
69 LIST_ENTRY(npf_tblent) hashq;
70 struct rb_node rbnode;
71 } te_entry;
72 };
73
74 /* Return pointer to npf_tblent_t from RB-tree node. (XXX fix rb-tree) */
75 #define NPF_RBN2TBLENT(n) \
76 (npf_tblent_t *)((uintptr_t)n - offsetof(npf_tblent_t, te_entry.rbnode))
77
78 LIST_HEAD(npf_hashl, npf_tblent);
79
80 /* Table structure. */
81 struct npf_table {
82 char t_name[16];
83 /* Lock and reference count. */
84 krwlock_t t_lock;
85 u_int t_refcnt;
86 /* Table ID. */
87 u_int t_id;
88 /* The storage type can be: 1. Hash 2. RB-tree. */
89 u_int t_type;
90 struct npf_hashl * t_hashl;
91 u_long t_hashmask;
92 struct rb_tree t_rbtree;
93 };
94
95 /* Global table array and its lock. */
96 static npf_tableset_t * table_array;
97 static krwlock_t table_lock;
98 static pool_cache_t tblent_cache;
99
100 /*
101 * npf_table_sysinit: initialise tableset structures.
102 */
103 int
104 npf_tableset_sysinit(void)
105 {
106
107 tblent_cache = pool_cache_init(sizeof(npf_tblent_t), coherency_unit,
108 0, 0, "npftenpl", NULL, IPL_NONE, NULL, NULL, NULL);
109 if (tblent_cache == NULL) {
110 return ENOMEM;
111 }
112 table_array = npf_tableset_create();
113 if (table_array == NULL) {
114 pool_cache_destroy(tblent_cache);
115 return ENOMEM;
116 }
117 rw_init(&table_lock);
118 return 0;
119 }
120
121 void
122 npf_tableset_sysfini(void)
123 {
124
125 npf_tableset_destroy(table_array);
126 pool_cache_destroy(tblent_cache);
127 rw_destroy(&table_lock);
128 }
129
130 npf_tableset_t *
131 npf_tableset_create(void)
132 {
133 const size_t sz = NPF_TABLE_SLOTS * sizeof(npf_table_t *);
134
135 return kmem_zalloc(sz, KM_SLEEP);
136 }
137
138 void
139 npf_tableset_destroy(npf_tableset_t *tblset)
140 {
141 const size_t sz = NPF_TABLE_SLOTS * sizeof(npf_table_t *);
142 npf_table_t *t;
143 u_int tid;
144
145 /*
146 * Destroy all tables (no references should be held, as ruleset
147 * should be destroyed before).
148 */
149 for (tid = 0; tid < NPF_TABLE_SLOTS; tid++) {
150 t = tblset[tid];
151 if (t != NULL) {
152 npf_table_destroy(t);
153 }
154 }
155 kmem_free(tblset, sz);
156 }
157
158 /*
159 * npf_tableset_insert: insert the table into the specified tableset.
160 *
161 * => Returns 0 on success, fails and returns errno if ID is already used.
162 */
163 int
164 npf_tableset_insert(npf_tableset_t *tblset, npf_table_t *t)
165 {
166 const u_int tid = t->t_id;
167 int error;
168
169 KASSERT((u_int)tid < NPF_TABLE_SLOTS);
170
171 if (tblset[tid] == NULL) {
172 tblset[tid] = t;
173 error = 0;
174 } else {
175 error = EEXIST;
176 }
177 return error;
178 }
179
180 /*
181 * npf_tableset_reload: replace old tableset array with a new one.
182 *
183 * => Called from npf_ruleset_reload() with a global ruleset lock held.
184 * => Returns pointer to the old tableset, caller will destroy it.
185 */
186 npf_tableset_t *
187 npf_tableset_reload(npf_tableset_t *tblset)
188 {
189 npf_tableset_t *oldtblset;
190
191 rw_enter(&table_lock, RW_WRITER);
192 oldtblset = table_array;
193 table_array = tblset;
194 rw_exit(&table_lock);
195
196 return oldtblset;
197 }
198
199 /*
200 * Red-black tree storage.
201 */
202
203 static signed int
204 table_rbtree_cmp_nodes(const struct rb_node *n1, const struct rb_node *n2)
205 {
206 const npf_tblent_t *te1 = NPF_RBN2TBLENT(n1);
207 const npf_tblent_t *te2 = NPF_RBN2TBLENT(n2);
208 const in_addr_t x = te1->te_addr & te1->te_mask;
209 const in_addr_t y = te2->te_addr & te2->te_mask;
210
211 if (x < y)
212 return 1;
213 if (x > y)
214 return -1;
215 return 0;
216 }
217
218 static signed int
219 table_rbtree_cmp_key(const struct rb_node *n1, const void *key)
220 {
221 const npf_tblent_t *te = NPF_RBN2TBLENT(n1);
222 const in_addr_t x = te->te_addr & te->te_mask;
223 const in_addr_t y = *(const in_addr_t *)key;
224
225 if (x < y)
226 return 1;
227 if (x > y)
228 return -1;
229 return 0;
230 }
231
232 static const struct rb_tree_ops table_rbtree_ops = {
233 .rbto_compare_nodes = table_rbtree_cmp_nodes,
234 .rbto_compare_key = table_rbtree_cmp_key
235 };
236
237 /*
238 * Hash helper routine.
239 */
240
241 static inline struct npf_hashl *
242 table_hash_bucket(npf_table_t *t, void *buf, size_t sz)
243 {
244 const uint32_t hidx = hash32_buf(buf, sz, HASH32_BUF_INIT);
245
246 return &t->t_hashl[hidx & t->t_hashmask];
247 }
248
249 /*
250 * npf_table_create: create table with a specified ID.
251 */
252 npf_table_t *
253 npf_table_create(u_int tid, int type, size_t hsize)
254 {
255 npf_table_t *t;
256
257 KASSERT((u_int)tid < NPF_TABLE_SLOTS);
258
259 t = kmem_zalloc(sizeof(npf_table_t), KM_SLEEP);
260 switch (type) {
261 case NPF_TABLE_RBTREE:
262 rb_tree_init(&t->t_rbtree, &table_rbtree_ops);
263 break;
264 case NPF_TABLE_HASH:
265 t->t_hashl = hashinit(hsize, HASH_LIST, true, &t->t_hashmask);
266 if (t->t_hashl == NULL) {
267 kmem_free(t, sizeof(npf_table_t));
268 return NULL;
269 }
270 break;
271 default:
272 KASSERT(false);
273 }
274 rw_init(&t->t_lock);
275 t->t_type = type;
276 t->t_refcnt = 1;
277 t->t_id = tid;
278 return t;
279 }
280
281 /*
282 * npf_table_destroy: free all table entries and table itself.
283 */
284 void
285 npf_table_destroy(npf_table_t *t)
286 {
287 npf_tblent_t *e;
288 struct rb_node *nd;
289 u_int n;
290
291 switch (t->t_type) {
292 case NPF_TABLE_HASH:
293 for (n = 0; n <= t->t_hashmask; n++) {
294 while ((e = LIST_FIRST(&t->t_hashl[n])) != NULL) {
295 LIST_REMOVE(e, te_entry.hashq);
296 pool_cache_put(tblent_cache, e);
297 }
298 }
299 hashdone(t->t_hashl, HASH_LIST, t->t_hashmask);
300 break;
301 case NPF_TABLE_RBTREE:
302 while ((nd = rb_tree_iterate(&t->t_rbtree, NULL,
303 RB_DIR_RIGHT)) != NULL) {
304 e = NPF_RBN2TBLENT(nd);
305 rb_tree_remove_node(&t->t_rbtree, &e->te_entry.rbnode);
306 pool_cache_put(tblent_cache, e);
307 }
308 break;
309 default:
310 KASSERT(false);
311 }
312 rw_destroy(&t->t_lock);
313 kmem_free(t, sizeof(npf_table_t));
314 }
315
316 /*
317 * npf_table_ref: holds the reference on table.
318 *
319 * => Table must be locked.
320 */
321 void
322 npf_table_ref(npf_table_t *t)
323 {
324
325 KASSERT(rw_lock_held(&t->t_lock));
326 atomic_inc_uint(&t->t_refcnt);
327 }
328
329 /*
330 * npf_table_unref: drop reference from the table and destroy the table if
331 * it is the last reference.
332 */
333 void
334 npf_table_unref(npf_table_t *t)
335 {
336
337 if (atomic_dec_uint_nv(&t->t_refcnt) != 0) {
338 return;
339 }
340 npf_table_destroy(t);
341 }
342
343 /*
344 * npf_table_get: find the table according to ID and "get it" by locking it.
345 */
346 npf_table_t *
347 npf_table_get(npf_tableset_t *tset, u_int tid)
348 {
349 npf_table_t *t;
350
351 if ((u_int)tid >= NPF_TABLE_SLOTS) {
352 return NULL;
353 }
354 if (tset) {
355 t = tset[tid];
356 if (t != NULL) {
357 rw_enter(&t->t_lock, RW_READER);
358 }
359 return t;
360 }
361 rw_enter(&table_lock, RW_READER);
362 t = table_array[tid];
363 if (t != NULL) {
364 rw_enter(&t->t_lock, RW_READER);
365 }
366 rw_exit(&table_lock);
367 return t;
368 }
369
370 /*
371 * npf_table_put: "put table back" by unlocking it.
372 */
373 void
374 npf_table_put(npf_table_t *t)
375 {
376
377 rw_exit(&t->t_lock);
378 }
379
380 /*
381 * npf_table_check: validate ID and type.
382 * */
383 int
384 npf_table_check(npf_tableset_t *tset, u_int tid, int type)
385 {
386
387 if ((u_int)tid >= NPF_TABLE_SLOTS) {
388 return EINVAL;
389 }
390 if (tset[tid] != NULL) {
391 return EEXIST;
392 }
393 if (type != NPF_TABLE_RBTREE && type != NPF_TABLE_HASH) {
394 return EINVAL;
395 }
396 return 0;
397 }
398
399 /*
400 * npf_table_add_v4cidr: add an IPv4 CIDR into the table.
401 */
402 int
403 npf_table_add_v4cidr(npf_tableset_t *tset, u_int tid,
404 in_addr_t addr, in_addr_t mask)
405 {
406 struct npf_hashl *htbl;
407 npf_tblent_t *e, *it;
408 npf_table_t *t;
409 in_addr_t val;
410 int error = 0;
411
412 /* Allocate and setup entry. */
413 e = pool_cache_get(tblent_cache, PR_WAITOK);
414 if (e == NULL) {
415 return ENOMEM;
416 }
417 e->te_addr = addr;
418 e->te_mask = mask;
419
420 /* Locks the table. */
421 t = npf_table_get(tset, tid);
422 if (__predict_false(t == NULL)) {
423 pool_cache_put(tblent_cache, e);
424 return EINVAL;
425 }
426 switch (t->t_type) {
427 case NPF_TABLE_HASH:
428 /* Generate hash value from: address & mask. */
429 val = addr & mask;
430 htbl = table_hash_bucket(t, &val, sizeof(in_addr_t));
431 /* Lookup to check for duplicates. */
432 LIST_FOREACH(it, htbl, te_entry.hashq) {
433 if (it->te_addr == addr && it->te_mask == mask)
434 break;
435 }
436 /* If no duplicate - insert entry. */
437 if (__predict_true(it == NULL)) {
438 LIST_INSERT_HEAD(htbl, e, te_entry.hashq);
439 } else {
440 error = EEXIST;
441 }
442 break;
443 case NPF_TABLE_RBTREE:
444 /* Insert entry. Returns false, if duplicate. */
445 if (!rb_tree_insert_node(&t->t_rbtree, &e->te_entry.rbnode)) {
446 error = EEXIST;
447 }
448 break;
449 default:
450 KASSERT(false);
451 }
452 npf_table_put(t);
453
454 if (__predict_false(error)) {
455 pool_cache_put(tblent_cache, e);
456 }
457 return error;
458 }
459
460 /*
461 * npf_table_rem_v4cidr: remove an IPv4 CIDR from the table.
462 */
463 int
464 npf_table_rem_v4cidr(npf_tableset_t *tset, u_int tid,
465 in_addr_t addr, in_addr_t mask)
466 {
467 struct npf_hashl *htbl;
468 struct rb_node *nd;
469 npf_tblent_t *e;
470 npf_table_t *t;
471 in_addr_t val;
472 int error;
473
474 e = NULL;
475
476 /* Locks the table. */
477 t = npf_table_get(tset, tid);
478 if (__predict_false(t == NULL)) {
479 return EINVAL;
480 }
481 /* Lookup & remove. */
482 switch (t->t_type) {
483 case NPF_TABLE_HASH:
484 /* Generate hash value from: (address & mask). */
485 val = addr & mask;
486 htbl = table_hash_bucket(t, &val, sizeof(in_addr_t));
487 LIST_FOREACH(e, htbl, te_entry.hashq) {
488 if (e->te_addr == addr && e->te_mask == mask)
489 break;
490 }
491 if (__predict_true(e != NULL)) {
492 LIST_REMOVE(e, te_entry.hashq);
493 } else {
494 error = ESRCH;
495 }
496 break;
497 case NPF_TABLE_RBTREE:
498 /* Key: (address & mask). */
499 val = addr & mask;
500 nd = rb_tree_find_node(&t->t_rbtree, &val);
501 if (__predict_true(nd != NULL)) {
502 e = NPF_RBN2TBLENT(nd);
503 rb_tree_remove_node(&t->t_rbtree, &e->te_entry.rbnode);
504 } else {
505 error = ESRCH;
506 }
507 break;
508 default:
509 KASSERT(false);
510 }
511 npf_table_put(t);
512
513 /* Free table the entry. */
514 if (__predict_true(e != NULL)) {
515 pool_cache_put(tblent_cache, e);
516 }
517 return e ? 0 : -1;
518 }
519
520 /*
521 * npf_table_match_v4addr: find the table according to ID, lookup and
522 * match the contents with specified IPv4 address.
523 */
524 int
525 npf_table_match_v4addr(u_int tid, in_addr_t ip4addr)
526 {
527 struct npf_hashl *htbl;
528 struct rb_node *nd;
529 npf_tblent_t *e;
530 npf_table_t *t;
531
532 e = NULL;
533
534 /* Locks the table. */
535 t = npf_table_get(NULL, tid);
536 if (__predict_false(t == NULL)) {
537 return EINVAL;
538 }
539 switch (t->t_type) {
540 case NPF_TABLE_HASH:
541 htbl = table_hash_bucket(t, &ip4addr, sizeof(in_addr_t));
542 LIST_FOREACH(e, htbl, te_entry.hashq) {
543 if ((ip4addr & e->te_mask) == e->te_addr) {
544 break;
545 }
546 }
547 break;
548 case NPF_TABLE_RBTREE:
549 nd = rb_tree_find_node(&t->t_rbtree, &ip4addr);
550 e = NPF_RBN2TBLENT(nd);
551 KASSERT((ip4addr & e->te_mask) == e->te_addr);
552 break;
553 default:
554 KASSERT(false);
555 }
556 npf_table_put(t);
557
558 return e ? 0 : -1;
559 }
560