1 1.22 andvar /* $NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $ */ 2 1.1 rmind 3 1.1 rmind /*- 4 1.1 rmind * Copyright (c) 2014 The NetBSD Foundation, Inc. 5 1.1 rmind * All rights reserved. 6 1.1 rmind * 7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation 8 1.1 rmind * by Mindaugas Rasiukevicius. 9 1.1 rmind * 10 1.1 rmind * Redistribution and use in source and binary forms, with or without 11 1.1 rmind * modification, are permitted provided that the following conditions 12 1.1 rmind * are met: 13 1.1 rmind * 1. Redistributions of source code must retain the above copyright 14 1.1 rmind * notice, this list of conditions and the following disclaimer. 15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 rmind * notice, this list of conditions and the following disclaimer in the 17 1.1 rmind * documentation and/or other materials provided with the distribution. 18 1.1 rmind * 19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE. 30 1.1 rmind */ 31 1.1 rmind 32 1.4 rmind /* 33 1.4 rmind * The packet queue (pktqueue) interface is a lockless IP input queue 34 1.4 rmind * which also abstracts and handles network ISR scheduling. It provides 35 1.4 rmind * a mechanism to enable receiver-side packet steering (RPS). 36 1.4 rmind */ 37 1.4 rmind 38 1.1 rmind #include <sys/cdefs.h> 39 1.22 andvar __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $"); 40 1.14 knakahar 41 1.14 knakahar #ifdef _KERNEL_OPT 42 1.14 knakahar #include "opt_net_mpsafe.h" 43 1.14 knakahar #endif 44 1.1 rmind 45 1.1 rmind #include <sys/param.h> 46 1.1 rmind #include <sys/types.h> 47 1.1 rmind 48 1.1 rmind #include <sys/atomic.h> 49 1.1 rmind #include <sys/cpu.h> 50 1.1 rmind #include <sys/pcq.h> 51 1.1 rmind #include <sys/intr.h> 52 1.1 rmind #include <sys/mbuf.h> 53 1.1 rmind #include <sys/proc.h> 54 1.1 rmind #include <sys/percpu.h> 55 1.11 thorpej #include <sys/xcall.h> 56 1.20 thorpej #include <sys/once.h> 57 1.20 thorpej #include <sys/queue.h> 58 1.20 thorpej #include <sys/rwlock.h> 59 1.1 rmind 60 1.1 rmind #include <net/pktqueue.h> 61 1.14 knakahar #include <net/rss_config.h> 62 1.14 knakahar 63 1.14 knakahar #include <netinet/in.h> 64 1.14 knakahar #include <netinet/ip.h> 65 1.14 knakahar #include <netinet/ip6.h> 66 1.1 rmind 67 1.1 rmind struct pktqueue { 68 1.1 rmind /* 69 1.1 rmind * The lock used for a barrier mechanism. The barrier counter, 70 1.1 rmind * as well as the drop counter, are managed atomically though. 71 1.1 rmind * Ensure this group is in a separate cache line. 72 1.1 rmind */ 73 1.13 skrll union { 74 1.13 skrll struct { 75 1.13 skrll kmutex_t pq_lock; 76 1.13 skrll volatile u_int pq_barrier; 77 1.13 skrll }; 78 1.13 skrll uint8_t _pad[COHERENCY_UNIT]; 79 1.13 skrll }; 80 1.1 rmind 81 1.1 rmind /* The size of the queue, counters and the interrupt handler. */ 82 1.1 rmind u_int pq_maxlen; 83 1.1 rmind percpu_t * pq_counters; 84 1.1 rmind void * pq_sih; 85 1.1 rmind 86 1.20 thorpej /* The per-CPU queues. */ 87 1.12 riastrad struct percpu * pq_pcq; /* struct pcq * */ 88 1.20 thorpej 89 1.20 thorpej /* The linkage on the list of all pktqueues. */ 90 1.20 thorpej LIST_ENTRY(pktqueue) pq_list; 91 1.1 rmind }; 92 1.1 rmind 93 1.1 rmind /* The counters of the packet queue. */ 94 1.1 rmind #define PQCNT_ENQUEUE 0 95 1.1 rmind #define PQCNT_DEQUEUE 1 96 1.1 rmind #define PQCNT_DROP 2 97 1.1 rmind #define PQCNT_NCOUNTERS 3 98 1.1 rmind 99 1.1 rmind typedef struct { 100 1.1 rmind uint64_t count[PQCNT_NCOUNTERS]; 101 1.1 rmind } pktq_counters_t; 102 1.1 rmind 103 1.1 rmind /* Special marker value used by pktq_barrier() mechanism. */ 104 1.1 rmind #define PKTQ_MARKER ((void *)(~0ULL)) 105 1.1 rmind 106 1.20 thorpej /* 107 1.20 thorpej * This is a list of all pktqueues. This list is used by 108 1.20 thorpej * pktq_ifdetach() to issue a barrier on every pktqueue. 109 1.20 thorpej * 110 1.20 thorpej * The r/w lock is acquired for writing in pktq_create() and 111 1.20 thorpej * pktq_destroy(), and for reading in pktq_ifdetach(). 112 1.20 thorpej * 113 1.20 thorpej * This list is not performance critical, and will seldom be 114 1.20 thorpej * accessed. 115 1.20 thorpej */ 116 1.20 thorpej static LIST_HEAD(, pktqueue) pktqueue_list __read_mostly; 117 1.20 thorpej static krwlock_t pktqueue_list_lock __read_mostly; 118 1.20 thorpej static once_t pktqueue_list_init_once __read_mostly; 119 1.20 thorpej 120 1.20 thorpej static int 121 1.20 thorpej pktqueue_list_init(void) 122 1.20 thorpej { 123 1.20 thorpej LIST_INIT(&pktqueue_list); 124 1.20 thorpej rw_init(&pktqueue_list_lock); 125 1.20 thorpej return 0; 126 1.20 thorpej } 127 1.20 thorpej 128 1.12 riastrad static void 129 1.12 riastrad pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci) 130 1.12 riastrad { 131 1.12 riastrad struct pcq **qp = vqp; 132 1.12 riastrad struct pktqueue *pq = vpq; 133 1.12 riastrad 134 1.12 riastrad *qp = pcq_create(pq->pq_maxlen, KM_SLEEP); 135 1.12 riastrad } 136 1.12 riastrad 137 1.12 riastrad static void 138 1.12 riastrad pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci) 139 1.12 riastrad { 140 1.12 riastrad struct pcq **qp = vqp, *q = *qp; 141 1.12 riastrad 142 1.12 riastrad KASSERT(pcq_peek(q) == NULL); 143 1.12 riastrad pcq_destroy(q); 144 1.12 riastrad *qp = NULL; /* paranoia */ 145 1.12 riastrad } 146 1.12 riastrad 147 1.12 riastrad static struct pcq * 148 1.12 riastrad pktq_pcq(struct pktqueue *pq, struct cpu_info *ci) 149 1.12 riastrad { 150 1.12 riastrad struct pcq **qp, *q; 151 1.12 riastrad 152 1.12 riastrad /* 153 1.12 riastrad * As long as preemption is disabled, the xcall to swap percpu 154 1.12 riastrad * buffers can't complete, so it is safe to read the pointer. 155 1.12 riastrad */ 156 1.12 riastrad KASSERT(kpreempt_disabled()); 157 1.12 riastrad 158 1.12 riastrad qp = percpu_getptr_remote(pq->pq_pcq, ci); 159 1.12 riastrad q = *qp; 160 1.12 riastrad 161 1.12 riastrad return q; 162 1.12 riastrad } 163 1.1 rmind 164 1.1 rmind pktqueue_t * 165 1.5 ozaki pktq_create(size_t maxlen, void (*intrh)(void *), void *sc) 166 1.1 rmind { 167 1.1 rmind const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU; 168 1.1 rmind pktqueue_t *pq; 169 1.1 rmind percpu_t *pc; 170 1.1 rmind void *sih; 171 1.1 rmind 172 1.20 thorpej RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init); 173 1.20 thorpej 174 1.9 chs pc = percpu_alloc(sizeof(pktq_counters_t)); 175 1.5 ozaki if ((sih = softint_establish(sflags, intrh, sc)) == NULL) { 176 1.1 rmind percpu_free(pc, sizeof(pktq_counters_t)); 177 1.1 rmind return NULL; 178 1.1 rmind } 179 1.1 rmind 180 1.12 riastrad pq = kmem_zalloc(sizeof(*pq), KM_SLEEP); 181 1.1 rmind mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE); 182 1.1 rmind pq->pq_maxlen = maxlen; 183 1.1 rmind pq->pq_counters = pc; 184 1.1 rmind pq->pq_sih = sih; 185 1.12 riastrad pq->pq_pcq = percpu_create(sizeof(struct pcq *), 186 1.12 riastrad pktq_init_cpu, pktq_fini_cpu, pq); 187 1.1 rmind 188 1.20 thorpej rw_enter(&pktqueue_list_lock, RW_WRITER); 189 1.20 thorpej LIST_INSERT_HEAD(&pktqueue_list, pq, pq_list); 190 1.20 thorpej rw_exit(&pktqueue_list_lock); 191 1.20 thorpej 192 1.1 rmind return pq; 193 1.1 rmind } 194 1.1 rmind 195 1.1 rmind void 196 1.1 rmind pktq_destroy(pktqueue_t *pq) 197 1.1 rmind { 198 1.1 rmind 199 1.20 thorpej KASSERT(pktqueue_list_init_once.o_status == ONCE_DONE); 200 1.20 thorpej 201 1.20 thorpej rw_enter(&pktqueue_list_lock, RW_WRITER); 202 1.20 thorpej LIST_REMOVE(pq, pq_list); 203 1.20 thorpej rw_exit(&pktqueue_list_lock); 204 1.20 thorpej 205 1.12 riastrad percpu_free(pq->pq_pcq, sizeof(struct pcq *)); 206 1.1 rmind percpu_free(pq->pq_counters, sizeof(pktq_counters_t)); 207 1.1 rmind softint_disestablish(pq->pq_sih); 208 1.1 rmind mutex_destroy(&pq->pq_lock); 209 1.12 riastrad kmem_free(pq, sizeof(*pq)); 210 1.1 rmind } 211 1.1 rmind 212 1.1 rmind /* 213 1.1 rmind * - pktq_inc_counter: increment the counter given an ID. 214 1.1 rmind * - pktq_collect_counts: handler to sum up the counts from each CPU. 215 1.1 rmind * - pktq_getcount: return the effective count given an ID. 216 1.1 rmind */ 217 1.1 rmind 218 1.1 rmind static inline void 219 1.1 rmind pktq_inc_count(pktqueue_t *pq, u_int i) 220 1.1 rmind { 221 1.1 rmind percpu_t *pc = pq->pq_counters; 222 1.1 rmind pktq_counters_t *c; 223 1.1 rmind 224 1.1 rmind c = percpu_getref(pc); 225 1.1 rmind c->count[i]++; 226 1.1 rmind percpu_putref(pc); 227 1.1 rmind } 228 1.1 rmind 229 1.1 rmind static void 230 1.1 rmind pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci) 231 1.1 rmind { 232 1.1 rmind const pktq_counters_t *c = mem; 233 1.1 rmind pktq_counters_t *sum = arg; 234 1.1 rmind 235 1.11 thorpej int s = splnet(); 236 1.11 thorpej 237 1.1 rmind for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) { 238 1.1 rmind sum->count[i] += c->count[i]; 239 1.1 rmind } 240 1.11 thorpej 241 1.11 thorpej splx(s); 242 1.1 rmind } 243 1.1 rmind 244 1.19 thorpej static uint64_t 245 1.1 rmind pktq_get_count(pktqueue_t *pq, pktq_count_t c) 246 1.1 rmind { 247 1.1 rmind pktq_counters_t sum; 248 1.1 rmind 249 1.1 rmind if (c != PKTQ_MAXLEN) { 250 1.1 rmind memset(&sum, 0, sizeof(sum)); 251 1.11 thorpej percpu_foreach_xcall(pq->pq_counters, 252 1.11 thorpej XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum); 253 1.1 rmind } 254 1.1 rmind switch (c) { 255 1.1 rmind case PKTQ_NITEMS: 256 1.1 rmind return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE]; 257 1.1 rmind case PKTQ_DROPS: 258 1.1 rmind return sum.count[PQCNT_DROP]; 259 1.1 rmind case PKTQ_MAXLEN: 260 1.1 rmind return pq->pq_maxlen; 261 1.1 rmind } 262 1.1 rmind return 0; 263 1.1 rmind } 264 1.1 rmind 265 1.1 rmind uint32_t 266 1.18 thorpej pktq_rps_hash(const pktq_rps_hash_func_t *funcp, const struct mbuf *m) 267 1.14 knakahar { 268 1.14 knakahar pktq_rps_hash_func_t func = atomic_load_relaxed(funcp); 269 1.14 knakahar 270 1.14 knakahar KASSERT(func != NULL); 271 1.14 knakahar 272 1.14 knakahar return (*func)(m); 273 1.14 knakahar } 274 1.14 knakahar 275 1.14 knakahar static uint32_t 276 1.14 knakahar pktq_rps_hash_zero(const struct mbuf *m __unused) 277 1.1 rmind { 278 1.14 knakahar 279 1.14 knakahar return 0; 280 1.14 knakahar } 281 1.14 knakahar 282 1.14 knakahar static uint32_t 283 1.14 knakahar pktq_rps_hash_curcpu(const struct mbuf *m __unused) 284 1.14 knakahar { 285 1.14 knakahar 286 1.14 knakahar return cpu_index(curcpu()); 287 1.14 knakahar } 288 1.14 knakahar 289 1.14 knakahar static uint32_t 290 1.14 knakahar pktq_rps_hash_toeplitz(const struct mbuf *m) 291 1.14 knakahar { 292 1.14 knakahar struct ip *ip; 293 1.1 rmind /* 294 1.14 knakahar * Disable UDP port - IP fragments aren't currently being handled 295 1.14 knakahar * and so we end up with a mix of 2-tuple and 4-tuple 296 1.14 knakahar * traffic. 297 1.1 rmind */ 298 1.14 knakahar const u_int flag = RSS_TOEPLITZ_USE_TCP_PORT; 299 1.14 knakahar 300 1.14 knakahar /* glance IP version */ 301 1.14 knakahar if ((m->m_flags & M_PKTHDR) == 0) 302 1.14 knakahar return 0; 303 1.14 knakahar 304 1.14 knakahar ip = mtod(m, struct ip *); 305 1.14 knakahar if (ip->ip_v == IPVERSION) { 306 1.14 knakahar if (__predict_false(m->m_len < sizeof(struct ip))) 307 1.14 knakahar return 0; 308 1.14 knakahar return rss_toeplitz_hash_from_mbuf_ipv4(m, flag); 309 1.14 knakahar } else if (ip->ip_v == 6) { 310 1.14 knakahar if (__predict_false(m->m_len < sizeof(struct ip6_hdr))) 311 1.14 knakahar return 0; 312 1.14 knakahar return rss_toeplitz_hash_from_mbuf_ipv6(m, flag); 313 1.14 knakahar } 314 1.14 knakahar 315 1.1 rmind return 0; 316 1.1 rmind } 317 1.1 rmind 318 1.1 rmind /* 319 1.15 knakahar * toeplitz without curcpu. 320 1.15 knakahar * Generally, this has better performance than toeplitz. 321 1.14 knakahar */ 322 1.14 knakahar static uint32_t 323 1.14 knakahar pktq_rps_hash_toeplitz_othercpus(const struct mbuf *m) 324 1.14 knakahar { 325 1.14 knakahar uint32_t hash; 326 1.14 knakahar 327 1.16 knakahar if (ncpu == 1) 328 1.16 knakahar return 0; 329 1.16 knakahar 330 1.14 knakahar hash = pktq_rps_hash_toeplitz(m); 331 1.14 knakahar hash %= ncpu - 1; 332 1.14 knakahar if (hash >= cpu_index(curcpu())) 333 1.14 knakahar return hash + 1; 334 1.14 knakahar else 335 1.14 knakahar return hash; 336 1.14 knakahar } 337 1.14 knakahar 338 1.14 knakahar static struct pktq_rps_hash_table { 339 1.14 knakahar const char* prh_type; 340 1.14 knakahar pktq_rps_hash_func_t prh_func; 341 1.14 knakahar } const pktq_rps_hash_tab[] = { 342 1.14 knakahar { "zero", pktq_rps_hash_zero }, 343 1.14 knakahar { "curcpu", pktq_rps_hash_curcpu }, 344 1.14 knakahar { "toeplitz", pktq_rps_hash_toeplitz }, 345 1.14 knakahar { "toeplitz-othercpus", pktq_rps_hash_toeplitz_othercpus }, 346 1.14 knakahar }; 347 1.14 knakahar const pktq_rps_hash_func_t pktq_rps_hash_default = 348 1.14 knakahar #ifdef NET_MPSAFE 349 1.14 knakahar pktq_rps_hash_curcpu; 350 1.14 knakahar #else 351 1.14 knakahar pktq_rps_hash_zero; 352 1.14 knakahar #endif 353 1.14 knakahar 354 1.14 knakahar static const char * 355 1.14 knakahar pktq_get_rps_hash_type(pktq_rps_hash_func_t func) 356 1.14 knakahar { 357 1.14 knakahar 358 1.14 knakahar for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) { 359 1.14 knakahar if (func == pktq_rps_hash_tab[i].prh_func) { 360 1.14 knakahar return pktq_rps_hash_tab[i].prh_type; 361 1.14 knakahar } 362 1.14 knakahar } 363 1.14 knakahar 364 1.14 knakahar return NULL; 365 1.14 knakahar } 366 1.14 knakahar 367 1.14 knakahar static int 368 1.14 knakahar pktq_set_rps_hash_type(pktq_rps_hash_func_t *func, const char *type) 369 1.14 knakahar { 370 1.14 knakahar 371 1.14 knakahar if (strcmp(type, pktq_get_rps_hash_type(*func)) == 0) 372 1.14 knakahar return 0; 373 1.14 knakahar 374 1.14 knakahar for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) { 375 1.14 knakahar if (strcmp(type, pktq_rps_hash_tab[i].prh_type) == 0) { 376 1.14 knakahar atomic_store_relaxed(func, pktq_rps_hash_tab[i].prh_func); 377 1.14 knakahar return 0; 378 1.14 knakahar } 379 1.14 knakahar } 380 1.14 knakahar 381 1.14 knakahar return ENOENT; 382 1.14 knakahar } 383 1.14 knakahar 384 1.14 knakahar int 385 1.14 knakahar sysctl_pktq_rps_hash_handler(SYSCTLFN_ARGS) 386 1.14 knakahar { 387 1.14 knakahar struct sysctlnode node; 388 1.14 knakahar pktq_rps_hash_func_t *func; 389 1.14 knakahar int error; 390 1.14 knakahar char type[PKTQ_RPS_HASH_NAME_LEN]; 391 1.14 knakahar 392 1.14 knakahar node = *rnode; 393 1.14 knakahar func = node.sysctl_data; 394 1.14 knakahar 395 1.14 knakahar strlcpy(type, pktq_get_rps_hash_type(*func), PKTQ_RPS_HASH_NAME_LEN); 396 1.14 knakahar 397 1.14 knakahar node.sysctl_data = &type; 398 1.14 knakahar node.sysctl_size = sizeof(type); 399 1.14 knakahar error = sysctl_lookup(SYSCTLFN_CALL(&node)); 400 1.14 knakahar if (error || newp == NULL) 401 1.14 knakahar return error; 402 1.14 knakahar 403 1.14 knakahar error = pktq_set_rps_hash_type(func, type); 404 1.14 knakahar 405 1.14 knakahar return error; 406 1.14 knakahar } 407 1.14 knakahar 408 1.14 knakahar /* 409 1.1 rmind * pktq_enqueue: inject the packet into the end of the queue. 410 1.1 rmind * 411 1.1 rmind * => Must be called from the interrupt or with the preemption disabled. 412 1.1 rmind * => Consumes the packet and returns true on success. 413 1.1 rmind * => Returns false on failure; caller is responsible to free the packet. 414 1.1 rmind */ 415 1.1 rmind bool 416 1.3 rmind pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused) 417 1.1 rmind { 418 1.8 ozaki #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI) 419 1.12 riastrad struct cpu_info *ci = curcpu(); 420 1.7 ozaki #else 421 1.12 riastrad struct cpu_info *ci = cpu_lookup(hash % ncpu); 422 1.7 ozaki #endif 423 1.1 rmind 424 1.1 rmind KASSERT(kpreempt_disabled()); 425 1.1 rmind 426 1.12 riastrad if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) { 427 1.1 rmind pktq_inc_count(pq, PQCNT_DROP); 428 1.1 rmind return false; 429 1.1 rmind } 430 1.12 riastrad softint_schedule_cpu(pq->pq_sih, ci); 431 1.1 rmind pktq_inc_count(pq, PQCNT_ENQUEUE); 432 1.1 rmind return true; 433 1.1 rmind } 434 1.1 rmind 435 1.1 rmind /* 436 1.1 rmind * pktq_dequeue: take a packet from the queue. 437 1.1 rmind * 438 1.1 rmind * => Must be called with preemption disabled. 439 1.1 rmind * => Must ensure there are not concurrent dequeue calls. 440 1.1 rmind */ 441 1.1 rmind struct mbuf * 442 1.1 rmind pktq_dequeue(pktqueue_t *pq) 443 1.1 rmind { 444 1.12 riastrad struct cpu_info *ci = curcpu(); 445 1.1 rmind struct mbuf *m; 446 1.1 rmind 447 1.12 riastrad KASSERT(kpreempt_disabled()); 448 1.12 riastrad 449 1.12 riastrad m = pcq_get(pktq_pcq(pq, ci)); 450 1.1 rmind if (__predict_false(m == PKTQ_MARKER)) { 451 1.1 rmind /* Note the marker entry. */ 452 1.1 rmind atomic_inc_uint(&pq->pq_barrier); 453 1.17 thorpej 454 1.17 thorpej /* Get the next queue entry. */ 455 1.17 thorpej m = pcq_get(pktq_pcq(pq, ci)); 456 1.17 thorpej 457 1.17 thorpej /* 458 1.17 thorpej * There can only be one barrier operation pending 459 1.17 thorpej * on a pktqueue at any given time, so we can assert 460 1.17 thorpej * that the next item is not a marker. 461 1.17 thorpej */ 462 1.17 thorpej KASSERT(m != PKTQ_MARKER); 463 1.1 rmind } 464 1.1 rmind if (__predict_true(m != NULL)) { 465 1.1 rmind pktq_inc_count(pq, PQCNT_DEQUEUE); 466 1.1 rmind } 467 1.1 rmind return m; 468 1.1 rmind } 469 1.1 rmind 470 1.1 rmind /* 471 1.1 rmind * pktq_barrier: waits for a grace period when all packets enqueued at 472 1.1 rmind * the moment of calling this routine will be processed. This is used 473 1.1 rmind * to ensure that e.g. packets referencing some interface were drained. 474 1.1 rmind */ 475 1.1 rmind void 476 1.1 rmind pktq_barrier(pktqueue_t *pq) 477 1.1 rmind { 478 1.12 riastrad CPU_INFO_ITERATOR cii; 479 1.12 riastrad struct cpu_info *ci; 480 1.1 rmind u_int pending = 0; 481 1.1 rmind 482 1.1 rmind mutex_enter(&pq->pq_lock); 483 1.1 rmind KASSERT(pq->pq_barrier == 0); 484 1.1 rmind 485 1.12 riastrad for (CPU_INFO_FOREACH(cii, ci)) { 486 1.12 riastrad struct pcq *q; 487 1.12 riastrad 488 1.12 riastrad kpreempt_disable(); 489 1.12 riastrad q = pktq_pcq(pq, ci); 490 1.12 riastrad kpreempt_enable(); 491 1.1 rmind 492 1.1 rmind /* If the queue is empty - nothing to do. */ 493 1.1 rmind if (pcq_peek(q) == NULL) { 494 1.1 rmind continue; 495 1.1 rmind } 496 1.1 rmind /* Otherwise, put the marker and entry. */ 497 1.1 rmind while (!pcq_put(q, PKTQ_MARKER)) { 498 1.1 rmind kpause("pktqsync", false, 1, NULL); 499 1.1 rmind } 500 1.1 rmind kpreempt_disable(); 501 1.12 riastrad softint_schedule_cpu(pq->pq_sih, ci); 502 1.1 rmind kpreempt_enable(); 503 1.1 rmind pending++; 504 1.1 rmind } 505 1.1 rmind 506 1.1 rmind /* Wait for each queue to process the markers. */ 507 1.1 rmind while (pq->pq_barrier != pending) { 508 1.1 rmind kpause("pktqsync", false, 1, NULL); 509 1.1 rmind } 510 1.1 rmind pq->pq_barrier = 0; 511 1.1 rmind mutex_exit(&pq->pq_lock); 512 1.1 rmind } 513 1.1 rmind 514 1.1 rmind /* 515 1.20 thorpej * pktq_ifdetach: issue a barrier on all pktqueues when a network 516 1.20 thorpej * interface is detached. 517 1.20 thorpej */ 518 1.20 thorpej void 519 1.20 thorpej pktq_ifdetach(void) 520 1.20 thorpej { 521 1.20 thorpej pktqueue_t *pq; 522 1.20 thorpej 523 1.20 thorpej /* Just in case no pktqueues have been created yet... */ 524 1.20 thorpej RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init); 525 1.20 thorpej 526 1.20 thorpej rw_enter(&pktqueue_list_lock, RW_READER); 527 1.20 thorpej LIST_FOREACH(pq, &pktqueue_list, pq_list) { 528 1.20 thorpej pktq_barrier(pq); 529 1.20 thorpej } 530 1.20 thorpej rw_exit(&pktqueue_list_lock); 531 1.20 thorpej } 532 1.20 thorpej 533 1.20 thorpej /* 534 1.1 rmind * pktq_flush: free mbufs in all queues. 535 1.1 rmind * 536 1.4 rmind * => The caller must ensure there are no concurrent writers or flush calls. 537 1.1 rmind */ 538 1.1 rmind void 539 1.1 rmind pktq_flush(pktqueue_t *pq) 540 1.1 rmind { 541 1.12 riastrad CPU_INFO_ITERATOR cii; 542 1.12 riastrad struct cpu_info *ci; 543 1.21 thorpej struct mbuf *m, *m0 = NULL; 544 1.21 thorpej 545 1.21 thorpej ASSERT_SLEEPABLE(); 546 1.21 thorpej 547 1.21 thorpej /* 548 1.21 thorpej * Run a dummy softint at IPL_SOFTNET on all CPUs to ensure that any 549 1.21 thorpej * already running handler for this pktqueue is no longer running. 550 1.21 thorpej */ 551 1.21 thorpej xc_barrier(XC_HIGHPRI_IPL(IPL_SOFTNET)); 552 1.21 thorpej 553 1.21 thorpej /* 554 1.21 thorpej * Acquire the barrier lock. While the caller ensures that 555 1.22 andvar * no explicit pktq_barrier() calls will be issued, this holds 556 1.21 thorpej * off any implicit pktq_barrier() calls that would happen 557 1.21 thorpej * as the result of pktq_ifdetach(). 558 1.21 thorpej */ 559 1.21 thorpej mutex_enter(&pq->pq_lock); 560 1.1 rmind 561 1.12 riastrad for (CPU_INFO_FOREACH(cii, ci)) { 562 1.12 riastrad struct pcq *q; 563 1.12 riastrad 564 1.12 riastrad kpreempt_disable(); 565 1.12 riastrad q = pktq_pcq(pq, ci); 566 1.12 riastrad kpreempt_enable(); 567 1.12 riastrad 568 1.12 riastrad /* 569 1.21 thorpej * Pull the packets off the pcq and chain them into 570 1.21 thorpej * a list to be freed later. 571 1.12 riastrad */ 572 1.12 riastrad while ((m = pcq_get(q)) != NULL) { 573 1.1 rmind pktq_inc_count(pq, PQCNT_DEQUEUE); 574 1.21 thorpej m->m_nextpkt = m0; 575 1.21 thorpej m0 = m; 576 1.1 rmind } 577 1.1 rmind } 578 1.21 thorpej 579 1.21 thorpej mutex_exit(&pq->pq_lock); 580 1.21 thorpej 581 1.21 thorpej /* Free the packets now that the critical section is over. */ 582 1.21 thorpej while ((m = m0) != NULL) { 583 1.21 thorpej m0 = m->m_nextpkt; 584 1.21 thorpej m_freem(m); 585 1.21 thorpej } 586 1.1 rmind } 587 1.2 rmind 588 1.12 riastrad static void 589 1.12 riastrad pktq_set_maxlen_cpu(void *vpq, void *vqs) 590 1.12 riastrad { 591 1.12 riastrad struct pktqueue *pq = vpq; 592 1.12 riastrad struct pcq **qp, *q, **qs = vqs; 593 1.12 riastrad unsigned i = cpu_index(curcpu()); 594 1.12 riastrad int s; 595 1.12 riastrad 596 1.12 riastrad s = splnet(); 597 1.12 riastrad qp = percpu_getref(pq->pq_pcq); 598 1.12 riastrad q = *qp; 599 1.12 riastrad *qp = qs[i]; 600 1.12 riastrad qs[i] = q; 601 1.12 riastrad percpu_putref(pq->pq_pcq); 602 1.12 riastrad splx(s); 603 1.12 riastrad } 604 1.12 riastrad 605 1.2 rmind /* 606 1.2 rmind * pktq_set_maxlen: create per-CPU queues using a new size and replace 607 1.2 rmind * the existing queues without losing any packets. 608 1.12 riastrad * 609 1.12 riastrad * XXX ncpu must remain stable throughout. 610 1.2 rmind */ 611 1.2 rmind int 612 1.2 rmind pktq_set_maxlen(pktqueue_t *pq, size_t maxlen) 613 1.2 rmind { 614 1.2 rmind const u_int slotbytes = ncpu * sizeof(pcq_t *); 615 1.2 rmind pcq_t **qs; 616 1.2 rmind 617 1.2 rmind if (!maxlen || maxlen > PCQ_MAXLEN) 618 1.2 rmind return EINVAL; 619 1.2 rmind if (pq->pq_maxlen == maxlen) 620 1.2 rmind return 0; 621 1.2 rmind 622 1.12 riastrad /* First, allocate the new queues. */ 623 1.2 rmind qs = kmem_zalloc(slotbytes, KM_SLEEP); 624 1.2 rmind for (u_int i = 0; i < ncpu; i++) { 625 1.2 rmind qs[i] = pcq_create(maxlen, KM_SLEEP); 626 1.2 rmind } 627 1.12 riastrad 628 1.12 riastrad /* 629 1.12 riastrad * Issue an xcall to replace the queue pointers on each CPU. 630 1.12 riastrad * This implies all the necessary memory barriers. 631 1.12 riastrad */ 632 1.2 rmind mutex_enter(&pq->pq_lock); 633 1.12 riastrad xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs)); 634 1.2 rmind pq->pq_maxlen = maxlen; 635 1.2 rmind mutex_exit(&pq->pq_lock); 636 1.2 rmind 637 1.2 rmind /* 638 1.2 rmind * At this point, the new packets are flowing into the new 639 1.4 rmind * queues. However, the old queues may have some packets 640 1.4 rmind * present which are no longer being processed. We are going 641 1.2 rmind * to re-enqueue them. This may change the order of packet 642 1.2 rmind * arrival, but it is not considered an issue. 643 1.2 rmind * 644 1.4 rmind * There may be in-flight interrupts calling pktq_dequeue() 645 1.2 rmind * which reference the old queues. Issue a barrier to ensure 646 1.2 rmind * that we are going to be the only pcq_get() callers on the 647 1.2 rmind * old queues. 648 1.2 rmind */ 649 1.2 rmind pktq_barrier(pq); 650 1.2 rmind 651 1.2 rmind for (u_int i = 0; i < ncpu; i++) { 652 1.12 riastrad struct pcq *q; 653 1.2 rmind struct mbuf *m; 654 1.2 rmind 655 1.12 riastrad kpreempt_disable(); 656 1.12 riastrad q = pktq_pcq(pq, cpu_lookup(i)); 657 1.12 riastrad kpreempt_enable(); 658 1.12 riastrad 659 1.2 rmind while ((m = pcq_get(qs[i])) != NULL) { 660 1.12 riastrad while (!pcq_put(q, m)) { 661 1.2 rmind kpause("pktqrenq", false, 1, NULL); 662 1.2 rmind } 663 1.2 rmind } 664 1.2 rmind pcq_destroy(qs[i]); 665 1.2 rmind } 666 1.2 rmind 667 1.2 rmind /* Well, that was fun. */ 668 1.2 rmind kmem_free(qs, slotbytes); 669 1.2 rmind return 0; 670 1.2 rmind } 671 1.6 ozaki 672 1.19 thorpej static int 673 1.19 thorpej sysctl_pktq_maxlen(SYSCTLFN_ARGS) 674 1.6 ozaki { 675 1.19 thorpej struct sysctlnode node = *rnode; 676 1.19 thorpej pktqueue_t * const pq = node.sysctl_data; 677 1.6 ozaki u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN); 678 1.6 ozaki int error; 679 1.6 ozaki 680 1.6 ozaki node.sysctl_data = &nmaxlen; 681 1.6 ozaki error = sysctl_lookup(SYSCTLFN_CALL(&node)); 682 1.6 ozaki if (error || newp == NULL) 683 1.6 ozaki return error; 684 1.6 ozaki return pktq_set_maxlen(pq, nmaxlen); 685 1.6 ozaki } 686 1.6 ozaki 687 1.19 thorpej static int 688 1.19 thorpej sysctl_pktq_count(SYSCTLFN_ARGS, u_int count_id) 689 1.6 ozaki { 690 1.19 thorpej struct sysctlnode node = *rnode; 691 1.19 thorpej pktqueue_t * const pq = node.sysctl_data; 692 1.10 msaitoh uint64_t count = pktq_get_count(pq, count_id); 693 1.10 msaitoh 694 1.6 ozaki node.sysctl_data = &count; 695 1.6 ozaki return sysctl_lookup(SYSCTLFN_CALL(&node)); 696 1.6 ozaki } 697 1.19 thorpej 698 1.19 thorpej static int 699 1.19 thorpej sysctl_pktq_nitems(SYSCTLFN_ARGS) 700 1.19 thorpej { 701 1.19 thorpej return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_NITEMS); 702 1.19 thorpej } 703 1.19 thorpej 704 1.19 thorpej static int 705 1.19 thorpej sysctl_pktq_drops(SYSCTLFN_ARGS) 706 1.19 thorpej { 707 1.19 thorpej return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_DROPS); 708 1.19 thorpej } 709 1.19 thorpej 710 1.19 thorpej /* 711 1.19 thorpej * pktqueue_sysctl_setup: set up the sysctl nodes for a pktqueue 712 1.19 thorpej * using standardized names at the specified parent node and 713 1.19 thorpej * node ID (or CTL_CREATE). 714 1.19 thorpej */ 715 1.19 thorpej void 716 1.19 thorpej pktq_sysctl_setup(pktqueue_t * const pq, struct sysctllog ** const clog, 717 1.19 thorpej const struct sysctlnode * const parent_node, const int qid) 718 1.19 thorpej { 719 1.19 thorpej const struct sysctlnode *rnode = parent_node, *cnode; 720 1.19 thorpej 721 1.19 thorpej KASSERT(pq != NULL); 722 1.19 thorpej KASSERT(parent_node != NULL); 723 1.19 thorpej KASSERT(qid == CTL_CREATE || qid >= 0); 724 1.19 thorpej 725 1.19 thorpej /* Create the "ifq" node below the parent node. */ 726 1.19 thorpej sysctl_createv(clog, 0, &rnode, &cnode, 727 1.19 thorpej CTLFLAG_PERMANENT, 728 1.19 thorpej CTLTYPE_NODE, "ifq", 729 1.19 thorpej SYSCTL_DESCR("Protocol input queue controls"), 730 1.19 thorpej NULL, 0, NULL, 0, 731 1.19 thorpej qid, CTL_EOL); 732 1.19 thorpej 733 1.19 thorpej /* Now create the standard child nodes below "ifq". */ 734 1.19 thorpej rnode = cnode; 735 1.19 thorpej 736 1.19 thorpej sysctl_createv(clog, 0, &rnode, &cnode, 737 1.19 thorpej CTLFLAG_PERMANENT, 738 1.19 thorpej CTLTYPE_QUAD, "len", 739 1.19 thorpej SYSCTL_DESCR("Current input queue length"), 740 1.19 thorpej sysctl_pktq_nitems, 0, (void *)pq, 0, 741 1.19 thorpej IFQCTL_LEN, CTL_EOL); 742 1.19 thorpej sysctl_createv(clog, 0, &rnode, &cnode, 743 1.19 thorpej CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 744 1.19 thorpej CTLTYPE_INT, "maxlen", 745 1.19 thorpej SYSCTL_DESCR("Maximum allowed input queue length"), 746 1.19 thorpej sysctl_pktq_maxlen, 0, (void *)pq, 0, 747 1.19 thorpej IFQCTL_MAXLEN, CTL_EOL); 748 1.19 thorpej sysctl_createv(clog, 0, &rnode, &cnode, 749 1.19 thorpej CTLFLAG_PERMANENT, 750 1.19 thorpej CTLTYPE_QUAD, "drops", 751 1.19 thorpej SYSCTL_DESCR("Packets dropped due to full input queue"), 752 1.19 thorpej sysctl_pktq_drops, 0, (void *)pq, 0, 753 1.19 thorpej IFQCTL_DROPS, CTL_EOL); 754 1.19 thorpej } 755