Home | History | Annotate | Line # | Download | only in net
pktqueue.c revision 1.10.6.1
      1  1.10.6.1       ad /*	$NetBSD: pktqueue.c,v 1.10.6.1 2020/02/29 20:21:06 ad Exp $	*/
      2       1.1    rmind 
      3       1.1    rmind /*-
      4       1.1    rmind  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5       1.1    rmind  * All rights reserved.
      6       1.1    rmind  *
      7       1.1    rmind  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1    rmind  * by Mindaugas Rasiukevicius.
      9       1.1    rmind  *
     10       1.1    rmind  * Redistribution and use in source and binary forms, with or without
     11       1.1    rmind  * modification, are permitted provided that the following conditions
     12       1.1    rmind  * are met:
     13       1.1    rmind  * 1. Redistributions of source code must retain the above copyright
     14       1.1    rmind  *    notice, this list of conditions and the following disclaimer.
     15       1.1    rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1    rmind  *    notice, this list of conditions and the following disclaimer in the
     17       1.1    rmind  *    documentation and/or other materials provided with the distribution.
     18       1.1    rmind  *
     19       1.1    rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1    rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1    rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1    rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1    rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1    rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1    rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1    rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1    rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1    rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1    rmind  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1    rmind  */
     31       1.1    rmind 
     32       1.4    rmind /*
     33       1.4    rmind  * The packet queue (pktqueue) interface is a lockless IP input queue
     34       1.4    rmind  * which also abstracts and handles network ISR scheduling.  It provides
     35       1.4    rmind  * a mechanism to enable receiver-side packet steering (RPS).
     36       1.4    rmind  */
     37       1.4    rmind 
     38       1.1    rmind #include <sys/cdefs.h>
     39  1.10.6.1       ad __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.10.6.1 2020/02/29 20:21:06 ad Exp $");
     40       1.1    rmind 
     41       1.1    rmind #include <sys/param.h>
     42       1.1    rmind #include <sys/types.h>
     43       1.1    rmind 
     44       1.1    rmind #include <sys/atomic.h>
     45       1.1    rmind #include <sys/cpu.h>
     46       1.1    rmind #include <sys/pcq.h>
     47       1.1    rmind #include <sys/intr.h>
     48       1.1    rmind #include <sys/mbuf.h>
     49       1.1    rmind #include <sys/proc.h>
     50       1.1    rmind #include <sys/percpu.h>
     51  1.10.6.1       ad #include <sys/xcall.h>
     52       1.1    rmind 
     53       1.1    rmind #include <net/pktqueue.h>
     54       1.1    rmind 
     55       1.1    rmind /*
     56       1.1    rmind  * WARNING: update this if struct pktqueue changes.
     57       1.1    rmind  */
     58       1.1    rmind #define	PKTQ_CLPAD	\
     59       1.1    rmind     MAX(COHERENCY_UNIT, COHERENCY_UNIT - sizeof(kmutex_t) - sizeof(u_int))
     60       1.1    rmind 
     61       1.1    rmind struct pktqueue {
     62       1.1    rmind 	/*
     63       1.1    rmind 	 * The lock used for a barrier mechanism.  The barrier counter,
     64       1.1    rmind 	 * as well as the drop counter, are managed atomically though.
     65       1.1    rmind 	 * Ensure this group is in a separate cache line.
     66       1.1    rmind 	 */
     67       1.1    rmind 	kmutex_t	pq_lock;
     68       1.1    rmind 	volatile u_int	pq_barrier;
     69       1.1    rmind 	uint8_t		_pad[PKTQ_CLPAD];
     70       1.1    rmind 
     71       1.1    rmind 	/* The size of the queue, counters and the interrupt handler. */
     72       1.1    rmind 	u_int		pq_maxlen;
     73       1.1    rmind 	percpu_t *	pq_counters;
     74       1.1    rmind 	void *		pq_sih;
     75       1.1    rmind 
     76       1.1    rmind 	/* Finally, per-CPU queues. */
     77       1.1    rmind 	pcq_t *		pq_queue[];
     78       1.1    rmind };
     79       1.1    rmind 
     80       1.1    rmind /* The counters of the packet queue. */
     81       1.1    rmind #define	PQCNT_ENQUEUE	0
     82       1.1    rmind #define	PQCNT_DEQUEUE	1
     83       1.1    rmind #define	PQCNT_DROP	2
     84       1.1    rmind #define	PQCNT_NCOUNTERS	3
     85       1.1    rmind 
     86       1.1    rmind typedef struct {
     87       1.1    rmind 	uint64_t	count[PQCNT_NCOUNTERS];
     88       1.1    rmind } pktq_counters_t;
     89       1.1    rmind 
     90       1.1    rmind /* Special marker value used by pktq_barrier() mechanism. */
     91       1.1    rmind #define	PKTQ_MARKER	((void *)(~0ULL))
     92       1.1    rmind 
     93       1.1    rmind /*
     94       1.1    rmind  * The total size of pktqueue_t which depends on the number of CPUs.
     95       1.1    rmind  */
     96       1.1    rmind #define	PKTQUEUE_STRUCT_LEN(ncpu)	\
     97       1.1    rmind     roundup2(offsetof(pktqueue_t, pq_queue[ncpu]), coherency_unit)
     98       1.1    rmind 
     99       1.1    rmind pktqueue_t *
    100       1.5    ozaki pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
    101       1.1    rmind {
    102       1.1    rmind 	const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
    103       1.1    rmind 	const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
    104       1.1    rmind 	pktqueue_t *pq;
    105       1.1    rmind 	percpu_t *pc;
    106       1.1    rmind 	void *sih;
    107       1.1    rmind 
    108       1.9      chs 	pc = percpu_alloc(sizeof(pktq_counters_t));
    109       1.5    ozaki 	if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
    110       1.1    rmind 		percpu_free(pc, sizeof(pktq_counters_t));
    111       1.1    rmind 		return NULL;
    112       1.1    rmind 	}
    113       1.1    rmind 
    114       1.1    rmind 	pq = kmem_zalloc(len, KM_SLEEP);
    115       1.1    rmind 	for (u_int i = 0; i < ncpu; i++) {
    116       1.1    rmind 		pq->pq_queue[i] = pcq_create(maxlen, KM_SLEEP);
    117       1.1    rmind 	}
    118       1.1    rmind 	mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
    119       1.1    rmind 	pq->pq_maxlen = maxlen;
    120       1.1    rmind 	pq->pq_counters = pc;
    121       1.1    rmind 	pq->pq_sih = sih;
    122       1.1    rmind 
    123       1.1    rmind 	return pq;
    124       1.1    rmind }
    125       1.1    rmind 
    126       1.1    rmind void
    127       1.1    rmind pktq_destroy(pktqueue_t *pq)
    128       1.1    rmind {
    129       1.1    rmind 	const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
    130       1.1    rmind 
    131       1.1    rmind 	for (u_int i = 0; i < ncpu; i++) {
    132       1.1    rmind 		pcq_t *q = pq->pq_queue[i];
    133       1.1    rmind 		KASSERT(pcq_peek(q) == NULL);
    134       1.1    rmind 		pcq_destroy(q);
    135       1.1    rmind 	}
    136       1.1    rmind 	percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
    137       1.1    rmind 	softint_disestablish(pq->pq_sih);
    138       1.1    rmind 	mutex_destroy(&pq->pq_lock);
    139       1.1    rmind 	kmem_free(pq, len);
    140       1.1    rmind }
    141       1.1    rmind 
    142       1.1    rmind /*
    143       1.1    rmind  * - pktq_inc_counter: increment the counter given an ID.
    144       1.1    rmind  * - pktq_collect_counts: handler to sum up the counts from each CPU.
    145       1.1    rmind  * - pktq_getcount: return the effective count given an ID.
    146       1.1    rmind  */
    147       1.1    rmind 
    148       1.1    rmind static inline void
    149       1.1    rmind pktq_inc_count(pktqueue_t *pq, u_int i)
    150       1.1    rmind {
    151       1.1    rmind 	percpu_t *pc = pq->pq_counters;
    152       1.1    rmind 	pktq_counters_t *c;
    153       1.1    rmind 
    154       1.1    rmind 	c = percpu_getref(pc);
    155       1.1    rmind 	c->count[i]++;
    156       1.1    rmind 	percpu_putref(pc);
    157       1.1    rmind }
    158       1.1    rmind 
    159       1.1    rmind static void
    160       1.1    rmind pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
    161       1.1    rmind {
    162       1.1    rmind 	const pktq_counters_t *c = mem;
    163       1.1    rmind 	pktq_counters_t *sum = arg;
    164       1.1    rmind 
    165  1.10.6.1       ad 	int s = splnet();
    166  1.10.6.1       ad 
    167       1.1    rmind 	for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
    168       1.1    rmind 		sum->count[i] += c->count[i];
    169       1.1    rmind 	}
    170  1.10.6.1       ad 
    171  1.10.6.1       ad 	splx(s);
    172       1.1    rmind }
    173       1.1    rmind 
    174       1.1    rmind uint64_t
    175       1.1    rmind pktq_get_count(pktqueue_t *pq, pktq_count_t c)
    176       1.1    rmind {
    177       1.1    rmind 	pktq_counters_t sum;
    178       1.1    rmind 
    179       1.1    rmind 	if (c != PKTQ_MAXLEN) {
    180       1.1    rmind 		memset(&sum, 0, sizeof(sum));
    181  1.10.6.1       ad 		percpu_foreach_xcall(pq->pq_counters,
    182  1.10.6.1       ad 		    XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
    183       1.1    rmind 	}
    184       1.1    rmind 	switch (c) {
    185       1.1    rmind 	case PKTQ_NITEMS:
    186       1.1    rmind 		return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
    187       1.1    rmind 	case PKTQ_DROPS:
    188       1.1    rmind 		return sum.count[PQCNT_DROP];
    189       1.1    rmind 	case PKTQ_MAXLEN:
    190       1.1    rmind 		return pq->pq_maxlen;
    191       1.1    rmind 	}
    192       1.1    rmind 	return 0;
    193       1.1    rmind }
    194       1.1    rmind 
    195       1.1    rmind uint32_t
    196       1.1    rmind pktq_rps_hash(const struct mbuf *m __unused)
    197       1.1    rmind {
    198       1.1    rmind 	/*
    199       1.1    rmind 	 * XXX: No distribution yet; the softnet_lock contention
    200       1.1    rmind 	 * XXX: must be eliminated first.
    201       1.1    rmind 	 */
    202       1.1    rmind 	return 0;
    203       1.1    rmind }
    204       1.1    rmind 
    205       1.1    rmind /*
    206       1.1    rmind  * pktq_enqueue: inject the packet into the end of the queue.
    207       1.1    rmind  *
    208       1.1    rmind  * => Must be called from the interrupt or with the preemption disabled.
    209       1.1    rmind  * => Consumes the packet and returns true on success.
    210       1.1    rmind  * => Returns false on failure; caller is responsible to free the packet.
    211       1.1    rmind  */
    212       1.1    rmind bool
    213       1.3    rmind pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
    214       1.1    rmind {
    215       1.8    ozaki #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
    216       1.7    ozaki 	const unsigned cpuid = curcpu()->ci_index;
    217       1.7    ozaki #else
    218       1.7    ozaki 	const unsigned cpuid = hash % ncpu;
    219       1.7    ozaki #endif
    220       1.1    rmind 
    221       1.1    rmind 	KASSERT(kpreempt_disabled());
    222       1.1    rmind 
    223       1.1    rmind 	if (__predict_false(!pcq_put(pq->pq_queue[cpuid], m))) {
    224       1.1    rmind 		pktq_inc_count(pq, PQCNT_DROP);
    225       1.1    rmind 		return false;
    226       1.1    rmind 	}
    227       1.1    rmind 	softint_schedule_cpu(pq->pq_sih, cpu_lookup(cpuid));
    228       1.1    rmind 	pktq_inc_count(pq, PQCNT_ENQUEUE);
    229       1.1    rmind 	return true;
    230       1.1    rmind }
    231       1.1    rmind 
    232       1.1    rmind /*
    233       1.1    rmind  * pktq_dequeue: take a packet from the queue.
    234       1.1    rmind  *
    235       1.1    rmind  * => Must be called with preemption disabled.
    236       1.1    rmind  * => Must ensure there are not concurrent dequeue calls.
    237       1.1    rmind  */
    238       1.1    rmind struct mbuf *
    239       1.1    rmind pktq_dequeue(pktqueue_t *pq)
    240       1.1    rmind {
    241       1.1    rmind 	const struct cpu_info *ci = curcpu();
    242       1.1    rmind 	const unsigned cpuid = cpu_index(ci);
    243       1.1    rmind 	struct mbuf *m;
    244       1.1    rmind 
    245       1.1    rmind 	m = pcq_get(pq->pq_queue[cpuid]);
    246       1.1    rmind 	if (__predict_false(m == PKTQ_MARKER)) {
    247       1.1    rmind 		/* Note the marker entry. */
    248       1.1    rmind 		atomic_inc_uint(&pq->pq_barrier);
    249       1.1    rmind 		return NULL;
    250       1.1    rmind 	}
    251       1.1    rmind 	if (__predict_true(m != NULL)) {
    252       1.1    rmind 		pktq_inc_count(pq, PQCNT_DEQUEUE);
    253       1.1    rmind 	}
    254       1.1    rmind 	return m;
    255       1.1    rmind }
    256       1.1    rmind 
    257       1.1    rmind /*
    258       1.1    rmind  * pktq_barrier: waits for a grace period when all packets enqueued at
    259       1.1    rmind  * the moment of calling this routine will be processed.  This is used
    260       1.1    rmind  * to ensure that e.g. packets referencing some interface were drained.
    261       1.1    rmind  */
    262       1.1    rmind void
    263       1.1    rmind pktq_barrier(pktqueue_t *pq)
    264       1.1    rmind {
    265       1.1    rmind 	u_int pending = 0;
    266       1.1    rmind 
    267       1.1    rmind 	mutex_enter(&pq->pq_lock);
    268       1.1    rmind 	KASSERT(pq->pq_barrier == 0);
    269       1.1    rmind 
    270       1.1    rmind 	for (u_int i = 0; i < ncpu; i++) {
    271       1.1    rmind 		pcq_t *q = pq->pq_queue[i];
    272       1.1    rmind 
    273       1.1    rmind 		/* If the queue is empty - nothing to do. */
    274       1.1    rmind 		if (pcq_peek(q) == NULL) {
    275       1.1    rmind 			continue;
    276       1.1    rmind 		}
    277       1.1    rmind 		/* Otherwise, put the marker and entry. */
    278       1.1    rmind 		while (!pcq_put(q, PKTQ_MARKER)) {
    279       1.1    rmind 			kpause("pktqsync", false, 1, NULL);
    280       1.1    rmind 		}
    281       1.1    rmind 		kpreempt_disable();
    282       1.1    rmind 		softint_schedule_cpu(pq->pq_sih, cpu_lookup(i));
    283       1.1    rmind 		kpreempt_enable();
    284       1.1    rmind 		pending++;
    285       1.1    rmind 	}
    286       1.1    rmind 
    287       1.1    rmind 	/* Wait for each queue to process the markers. */
    288       1.1    rmind 	while (pq->pq_barrier != pending) {
    289       1.1    rmind 		kpause("pktqsync", false, 1, NULL);
    290       1.1    rmind 	}
    291       1.1    rmind 	pq->pq_barrier = 0;
    292       1.1    rmind 	mutex_exit(&pq->pq_lock);
    293       1.1    rmind }
    294       1.1    rmind 
    295       1.1    rmind /*
    296       1.1    rmind  * pktq_flush: free mbufs in all queues.
    297       1.1    rmind  *
    298       1.4    rmind  * => The caller must ensure there are no concurrent writers or flush calls.
    299       1.1    rmind  */
    300       1.1    rmind void
    301       1.1    rmind pktq_flush(pktqueue_t *pq)
    302       1.1    rmind {
    303       1.1    rmind 	struct mbuf *m;
    304       1.1    rmind 
    305       1.1    rmind 	for (u_int i = 0; i < ncpu; i++) {
    306       1.1    rmind 		while ((m = pcq_get(pq->pq_queue[i])) != NULL) {
    307       1.1    rmind 			pktq_inc_count(pq, PQCNT_DEQUEUE);
    308       1.1    rmind 			m_freem(m);
    309       1.1    rmind 		}
    310       1.1    rmind 	}
    311       1.1    rmind }
    312       1.2    rmind 
    313       1.2    rmind /*
    314       1.2    rmind  * pktq_set_maxlen: create per-CPU queues using a new size and replace
    315       1.2    rmind  * the existing queues without losing any packets.
    316       1.2    rmind  */
    317       1.2    rmind int
    318       1.2    rmind pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
    319       1.2    rmind {
    320       1.2    rmind 	const u_int slotbytes = ncpu * sizeof(pcq_t *);
    321       1.2    rmind 	pcq_t **qs;
    322       1.2    rmind 
    323       1.2    rmind 	if (!maxlen || maxlen > PCQ_MAXLEN)
    324       1.2    rmind 		return EINVAL;
    325       1.2    rmind 	if (pq->pq_maxlen == maxlen)
    326       1.2    rmind 		return 0;
    327       1.2    rmind 
    328       1.2    rmind 	/* First, allocate the new queues and replace them. */
    329       1.2    rmind 	qs = kmem_zalloc(slotbytes, KM_SLEEP);
    330       1.2    rmind 	for (u_int i = 0; i < ncpu; i++) {
    331       1.2    rmind 		qs[i] = pcq_create(maxlen, KM_SLEEP);
    332       1.2    rmind 	}
    333       1.2    rmind 	mutex_enter(&pq->pq_lock);
    334       1.2    rmind 	for (u_int i = 0; i < ncpu; i++) {
    335       1.2    rmind 		/* Swap: store of a word is atomic. */
    336       1.2    rmind 		pcq_t *q = pq->pq_queue[i];
    337       1.2    rmind 		pq->pq_queue[i] = qs[i];
    338       1.2    rmind 		qs[i] = q;
    339       1.2    rmind 	}
    340       1.2    rmind 	pq->pq_maxlen = maxlen;
    341       1.2    rmind 	mutex_exit(&pq->pq_lock);
    342       1.2    rmind 
    343       1.2    rmind 	/*
    344       1.2    rmind 	 * At this point, the new packets are flowing into the new
    345       1.4    rmind 	 * queues.  However, the old queues may have some packets
    346       1.4    rmind 	 * present which are no longer being processed.  We are going
    347       1.2    rmind 	 * to re-enqueue them.  This may change the order of packet
    348       1.2    rmind 	 * arrival, but it is not considered an issue.
    349       1.2    rmind 	 *
    350       1.4    rmind 	 * There may be in-flight interrupts calling pktq_dequeue()
    351       1.2    rmind 	 * which reference the old queues.  Issue a barrier to ensure
    352       1.2    rmind 	 * that we are going to be the only pcq_get() callers on the
    353       1.2    rmind 	 * old queues.
    354       1.2    rmind 	 */
    355       1.2    rmind 	pktq_barrier(pq);
    356       1.2    rmind 
    357       1.2    rmind 	for (u_int i = 0; i < ncpu; i++) {
    358       1.2    rmind 		struct mbuf *m;
    359       1.2    rmind 
    360       1.2    rmind 		while ((m = pcq_get(qs[i])) != NULL) {
    361       1.2    rmind 			while (!pcq_put(pq->pq_queue[i], m)) {
    362       1.2    rmind 				kpause("pktqrenq", false, 1, NULL);
    363       1.2    rmind 			}
    364       1.2    rmind 		}
    365       1.2    rmind 		pcq_destroy(qs[i]);
    366       1.2    rmind 	}
    367       1.2    rmind 
    368       1.2    rmind 	/* Well, that was fun. */
    369       1.2    rmind 	kmem_free(qs, slotbytes);
    370       1.2    rmind 	return 0;
    371       1.2    rmind }
    372       1.6    ozaki 
    373       1.6    ozaki int
    374       1.6    ozaki sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
    375       1.6    ozaki {
    376       1.6    ozaki 	u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
    377       1.6    ozaki 	struct sysctlnode node = *rnode;
    378       1.6    ozaki 	int error;
    379       1.6    ozaki 
    380       1.6    ozaki 	node.sysctl_data = &nmaxlen;
    381       1.6    ozaki 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    382       1.6    ozaki 	if (error || newp == NULL)
    383       1.6    ozaki 		return error;
    384       1.6    ozaki 	return pktq_set_maxlen(pq, nmaxlen);
    385       1.6    ozaki }
    386       1.6    ozaki 
    387       1.6    ozaki int
    388       1.6    ozaki sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
    389       1.6    ozaki {
    390      1.10  msaitoh 	uint64_t count = pktq_get_count(pq, count_id);
    391       1.6    ozaki 	struct sysctlnode node = *rnode;
    392      1.10  msaitoh 
    393       1.6    ozaki 	node.sysctl_data = &count;
    394       1.6    ozaki 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    395       1.6    ozaki }
    396