pktqueue.c revision 1.11 1 1.11 thorpej /* $NetBSD: pktqueue.c,v 1.11 2020/02/07 12:35:33 thorpej Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.1 rmind * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rmind * by Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.4 rmind /*
33 1.4 rmind * The packet queue (pktqueue) interface is a lockless IP input queue
34 1.4 rmind * which also abstracts and handles network ISR scheduling. It provides
35 1.4 rmind * a mechanism to enable receiver-side packet steering (RPS).
36 1.4 rmind */
37 1.4 rmind
38 1.1 rmind #include <sys/cdefs.h>
39 1.11 thorpej __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.11 2020/02/07 12:35:33 thorpej Exp $");
40 1.1 rmind
41 1.1 rmind #include <sys/param.h>
42 1.1 rmind #include <sys/types.h>
43 1.1 rmind
44 1.1 rmind #include <sys/atomic.h>
45 1.1 rmind #include <sys/cpu.h>
46 1.1 rmind #include <sys/pcq.h>
47 1.1 rmind #include <sys/intr.h>
48 1.1 rmind #include <sys/mbuf.h>
49 1.1 rmind #include <sys/proc.h>
50 1.1 rmind #include <sys/percpu.h>
51 1.11 thorpej #include <sys/xcall.h>
52 1.1 rmind
53 1.1 rmind #include <net/pktqueue.h>
54 1.1 rmind
55 1.1 rmind /*
56 1.1 rmind * WARNING: update this if struct pktqueue changes.
57 1.1 rmind */
58 1.1 rmind #define PKTQ_CLPAD \
59 1.1 rmind MAX(COHERENCY_UNIT, COHERENCY_UNIT - sizeof(kmutex_t) - sizeof(u_int))
60 1.1 rmind
61 1.1 rmind struct pktqueue {
62 1.1 rmind /*
63 1.1 rmind * The lock used for a barrier mechanism. The barrier counter,
64 1.1 rmind * as well as the drop counter, are managed atomically though.
65 1.1 rmind * Ensure this group is in a separate cache line.
66 1.1 rmind */
67 1.1 rmind kmutex_t pq_lock;
68 1.1 rmind volatile u_int pq_barrier;
69 1.1 rmind uint8_t _pad[PKTQ_CLPAD];
70 1.1 rmind
71 1.1 rmind /* The size of the queue, counters and the interrupt handler. */
72 1.1 rmind u_int pq_maxlen;
73 1.1 rmind percpu_t * pq_counters;
74 1.1 rmind void * pq_sih;
75 1.1 rmind
76 1.1 rmind /* Finally, per-CPU queues. */
77 1.1 rmind pcq_t * pq_queue[];
78 1.1 rmind };
79 1.1 rmind
80 1.1 rmind /* The counters of the packet queue. */
81 1.1 rmind #define PQCNT_ENQUEUE 0
82 1.1 rmind #define PQCNT_DEQUEUE 1
83 1.1 rmind #define PQCNT_DROP 2
84 1.1 rmind #define PQCNT_NCOUNTERS 3
85 1.1 rmind
86 1.1 rmind typedef struct {
87 1.1 rmind uint64_t count[PQCNT_NCOUNTERS];
88 1.1 rmind } pktq_counters_t;
89 1.1 rmind
90 1.1 rmind /* Special marker value used by pktq_barrier() mechanism. */
91 1.1 rmind #define PKTQ_MARKER ((void *)(~0ULL))
92 1.1 rmind
93 1.1 rmind /*
94 1.1 rmind * The total size of pktqueue_t which depends on the number of CPUs.
95 1.1 rmind */
96 1.1 rmind #define PKTQUEUE_STRUCT_LEN(ncpu) \
97 1.1 rmind roundup2(offsetof(pktqueue_t, pq_queue[ncpu]), coherency_unit)
98 1.1 rmind
99 1.1 rmind pktqueue_t *
100 1.5 ozaki pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
101 1.1 rmind {
102 1.1 rmind const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
103 1.1 rmind const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
104 1.1 rmind pktqueue_t *pq;
105 1.1 rmind percpu_t *pc;
106 1.1 rmind void *sih;
107 1.1 rmind
108 1.9 chs pc = percpu_alloc(sizeof(pktq_counters_t));
109 1.5 ozaki if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
110 1.1 rmind percpu_free(pc, sizeof(pktq_counters_t));
111 1.1 rmind return NULL;
112 1.1 rmind }
113 1.1 rmind
114 1.1 rmind pq = kmem_zalloc(len, KM_SLEEP);
115 1.1 rmind for (u_int i = 0; i < ncpu; i++) {
116 1.1 rmind pq->pq_queue[i] = pcq_create(maxlen, KM_SLEEP);
117 1.1 rmind }
118 1.1 rmind mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
119 1.1 rmind pq->pq_maxlen = maxlen;
120 1.1 rmind pq->pq_counters = pc;
121 1.1 rmind pq->pq_sih = sih;
122 1.1 rmind
123 1.1 rmind return pq;
124 1.1 rmind }
125 1.1 rmind
126 1.1 rmind void
127 1.1 rmind pktq_destroy(pktqueue_t *pq)
128 1.1 rmind {
129 1.1 rmind const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
130 1.1 rmind
131 1.1 rmind for (u_int i = 0; i < ncpu; i++) {
132 1.1 rmind pcq_t *q = pq->pq_queue[i];
133 1.1 rmind KASSERT(pcq_peek(q) == NULL);
134 1.1 rmind pcq_destroy(q);
135 1.1 rmind }
136 1.1 rmind percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
137 1.1 rmind softint_disestablish(pq->pq_sih);
138 1.1 rmind mutex_destroy(&pq->pq_lock);
139 1.1 rmind kmem_free(pq, len);
140 1.1 rmind }
141 1.1 rmind
142 1.1 rmind /*
143 1.1 rmind * - pktq_inc_counter: increment the counter given an ID.
144 1.1 rmind * - pktq_collect_counts: handler to sum up the counts from each CPU.
145 1.1 rmind * - pktq_getcount: return the effective count given an ID.
146 1.1 rmind */
147 1.1 rmind
148 1.1 rmind static inline void
149 1.1 rmind pktq_inc_count(pktqueue_t *pq, u_int i)
150 1.1 rmind {
151 1.1 rmind percpu_t *pc = pq->pq_counters;
152 1.1 rmind pktq_counters_t *c;
153 1.1 rmind
154 1.1 rmind c = percpu_getref(pc);
155 1.1 rmind c->count[i]++;
156 1.1 rmind percpu_putref(pc);
157 1.1 rmind }
158 1.1 rmind
159 1.1 rmind static void
160 1.1 rmind pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
161 1.1 rmind {
162 1.1 rmind const pktq_counters_t *c = mem;
163 1.1 rmind pktq_counters_t *sum = arg;
164 1.1 rmind
165 1.11 thorpej int s = splnet();
166 1.11 thorpej
167 1.1 rmind for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
168 1.1 rmind sum->count[i] += c->count[i];
169 1.1 rmind }
170 1.11 thorpej
171 1.11 thorpej splx(s);
172 1.1 rmind }
173 1.1 rmind
174 1.1 rmind uint64_t
175 1.1 rmind pktq_get_count(pktqueue_t *pq, pktq_count_t c)
176 1.1 rmind {
177 1.1 rmind pktq_counters_t sum;
178 1.1 rmind
179 1.1 rmind if (c != PKTQ_MAXLEN) {
180 1.1 rmind memset(&sum, 0, sizeof(sum));
181 1.11 thorpej percpu_foreach_xcall(pq->pq_counters,
182 1.11 thorpej XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
183 1.1 rmind }
184 1.1 rmind switch (c) {
185 1.1 rmind case PKTQ_NITEMS:
186 1.1 rmind return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
187 1.1 rmind case PKTQ_DROPS:
188 1.1 rmind return sum.count[PQCNT_DROP];
189 1.1 rmind case PKTQ_MAXLEN:
190 1.1 rmind return pq->pq_maxlen;
191 1.1 rmind }
192 1.1 rmind return 0;
193 1.1 rmind }
194 1.1 rmind
195 1.1 rmind uint32_t
196 1.1 rmind pktq_rps_hash(const struct mbuf *m __unused)
197 1.1 rmind {
198 1.1 rmind /*
199 1.1 rmind * XXX: No distribution yet; the softnet_lock contention
200 1.1 rmind * XXX: must be eliminated first.
201 1.1 rmind */
202 1.1 rmind return 0;
203 1.1 rmind }
204 1.1 rmind
205 1.1 rmind /*
206 1.1 rmind * pktq_enqueue: inject the packet into the end of the queue.
207 1.1 rmind *
208 1.1 rmind * => Must be called from the interrupt or with the preemption disabled.
209 1.1 rmind * => Consumes the packet and returns true on success.
210 1.1 rmind * => Returns false on failure; caller is responsible to free the packet.
211 1.1 rmind */
212 1.1 rmind bool
213 1.3 rmind pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
214 1.1 rmind {
215 1.8 ozaki #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
216 1.7 ozaki const unsigned cpuid = curcpu()->ci_index;
217 1.7 ozaki #else
218 1.7 ozaki const unsigned cpuid = hash % ncpu;
219 1.7 ozaki #endif
220 1.1 rmind
221 1.1 rmind KASSERT(kpreempt_disabled());
222 1.1 rmind
223 1.1 rmind if (__predict_false(!pcq_put(pq->pq_queue[cpuid], m))) {
224 1.1 rmind pktq_inc_count(pq, PQCNT_DROP);
225 1.1 rmind return false;
226 1.1 rmind }
227 1.1 rmind softint_schedule_cpu(pq->pq_sih, cpu_lookup(cpuid));
228 1.1 rmind pktq_inc_count(pq, PQCNT_ENQUEUE);
229 1.1 rmind return true;
230 1.1 rmind }
231 1.1 rmind
232 1.1 rmind /*
233 1.1 rmind * pktq_dequeue: take a packet from the queue.
234 1.1 rmind *
235 1.1 rmind * => Must be called with preemption disabled.
236 1.1 rmind * => Must ensure there are not concurrent dequeue calls.
237 1.1 rmind */
238 1.1 rmind struct mbuf *
239 1.1 rmind pktq_dequeue(pktqueue_t *pq)
240 1.1 rmind {
241 1.1 rmind const struct cpu_info *ci = curcpu();
242 1.1 rmind const unsigned cpuid = cpu_index(ci);
243 1.1 rmind struct mbuf *m;
244 1.1 rmind
245 1.1 rmind m = pcq_get(pq->pq_queue[cpuid]);
246 1.1 rmind if (__predict_false(m == PKTQ_MARKER)) {
247 1.1 rmind /* Note the marker entry. */
248 1.1 rmind atomic_inc_uint(&pq->pq_barrier);
249 1.1 rmind return NULL;
250 1.1 rmind }
251 1.1 rmind if (__predict_true(m != NULL)) {
252 1.1 rmind pktq_inc_count(pq, PQCNT_DEQUEUE);
253 1.1 rmind }
254 1.1 rmind return m;
255 1.1 rmind }
256 1.1 rmind
257 1.1 rmind /*
258 1.1 rmind * pktq_barrier: waits for a grace period when all packets enqueued at
259 1.1 rmind * the moment of calling this routine will be processed. This is used
260 1.1 rmind * to ensure that e.g. packets referencing some interface were drained.
261 1.1 rmind */
262 1.1 rmind void
263 1.1 rmind pktq_barrier(pktqueue_t *pq)
264 1.1 rmind {
265 1.1 rmind u_int pending = 0;
266 1.1 rmind
267 1.1 rmind mutex_enter(&pq->pq_lock);
268 1.1 rmind KASSERT(pq->pq_barrier == 0);
269 1.1 rmind
270 1.1 rmind for (u_int i = 0; i < ncpu; i++) {
271 1.1 rmind pcq_t *q = pq->pq_queue[i];
272 1.1 rmind
273 1.1 rmind /* If the queue is empty - nothing to do. */
274 1.1 rmind if (pcq_peek(q) == NULL) {
275 1.1 rmind continue;
276 1.1 rmind }
277 1.1 rmind /* Otherwise, put the marker and entry. */
278 1.1 rmind while (!pcq_put(q, PKTQ_MARKER)) {
279 1.1 rmind kpause("pktqsync", false, 1, NULL);
280 1.1 rmind }
281 1.1 rmind kpreempt_disable();
282 1.1 rmind softint_schedule_cpu(pq->pq_sih, cpu_lookup(i));
283 1.1 rmind kpreempt_enable();
284 1.1 rmind pending++;
285 1.1 rmind }
286 1.1 rmind
287 1.1 rmind /* Wait for each queue to process the markers. */
288 1.1 rmind while (pq->pq_barrier != pending) {
289 1.1 rmind kpause("pktqsync", false, 1, NULL);
290 1.1 rmind }
291 1.1 rmind pq->pq_barrier = 0;
292 1.1 rmind mutex_exit(&pq->pq_lock);
293 1.1 rmind }
294 1.1 rmind
295 1.1 rmind /*
296 1.1 rmind * pktq_flush: free mbufs in all queues.
297 1.1 rmind *
298 1.4 rmind * => The caller must ensure there are no concurrent writers or flush calls.
299 1.1 rmind */
300 1.1 rmind void
301 1.1 rmind pktq_flush(pktqueue_t *pq)
302 1.1 rmind {
303 1.1 rmind struct mbuf *m;
304 1.1 rmind
305 1.1 rmind for (u_int i = 0; i < ncpu; i++) {
306 1.1 rmind while ((m = pcq_get(pq->pq_queue[i])) != NULL) {
307 1.1 rmind pktq_inc_count(pq, PQCNT_DEQUEUE);
308 1.1 rmind m_freem(m);
309 1.1 rmind }
310 1.1 rmind }
311 1.1 rmind }
312 1.2 rmind
313 1.2 rmind /*
314 1.2 rmind * pktq_set_maxlen: create per-CPU queues using a new size and replace
315 1.2 rmind * the existing queues without losing any packets.
316 1.2 rmind */
317 1.2 rmind int
318 1.2 rmind pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
319 1.2 rmind {
320 1.2 rmind const u_int slotbytes = ncpu * sizeof(pcq_t *);
321 1.2 rmind pcq_t **qs;
322 1.2 rmind
323 1.2 rmind if (!maxlen || maxlen > PCQ_MAXLEN)
324 1.2 rmind return EINVAL;
325 1.2 rmind if (pq->pq_maxlen == maxlen)
326 1.2 rmind return 0;
327 1.2 rmind
328 1.2 rmind /* First, allocate the new queues and replace them. */
329 1.2 rmind qs = kmem_zalloc(slotbytes, KM_SLEEP);
330 1.2 rmind for (u_int i = 0; i < ncpu; i++) {
331 1.2 rmind qs[i] = pcq_create(maxlen, KM_SLEEP);
332 1.2 rmind }
333 1.2 rmind mutex_enter(&pq->pq_lock);
334 1.2 rmind for (u_int i = 0; i < ncpu; i++) {
335 1.2 rmind /* Swap: store of a word is atomic. */
336 1.2 rmind pcq_t *q = pq->pq_queue[i];
337 1.2 rmind pq->pq_queue[i] = qs[i];
338 1.2 rmind qs[i] = q;
339 1.2 rmind }
340 1.2 rmind pq->pq_maxlen = maxlen;
341 1.2 rmind mutex_exit(&pq->pq_lock);
342 1.2 rmind
343 1.2 rmind /*
344 1.2 rmind * At this point, the new packets are flowing into the new
345 1.4 rmind * queues. However, the old queues may have some packets
346 1.4 rmind * present which are no longer being processed. We are going
347 1.2 rmind * to re-enqueue them. This may change the order of packet
348 1.2 rmind * arrival, but it is not considered an issue.
349 1.2 rmind *
350 1.4 rmind * There may be in-flight interrupts calling pktq_dequeue()
351 1.2 rmind * which reference the old queues. Issue a barrier to ensure
352 1.2 rmind * that we are going to be the only pcq_get() callers on the
353 1.2 rmind * old queues.
354 1.2 rmind */
355 1.2 rmind pktq_barrier(pq);
356 1.2 rmind
357 1.2 rmind for (u_int i = 0; i < ncpu; i++) {
358 1.2 rmind struct mbuf *m;
359 1.2 rmind
360 1.2 rmind while ((m = pcq_get(qs[i])) != NULL) {
361 1.2 rmind while (!pcq_put(pq->pq_queue[i], m)) {
362 1.2 rmind kpause("pktqrenq", false, 1, NULL);
363 1.2 rmind }
364 1.2 rmind }
365 1.2 rmind pcq_destroy(qs[i]);
366 1.2 rmind }
367 1.2 rmind
368 1.2 rmind /* Well, that was fun. */
369 1.2 rmind kmem_free(qs, slotbytes);
370 1.2 rmind return 0;
371 1.2 rmind }
372 1.6 ozaki
373 1.6 ozaki int
374 1.6 ozaki sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
375 1.6 ozaki {
376 1.6 ozaki u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
377 1.6 ozaki struct sysctlnode node = *rnode;
378 1.6 ozaki int error;
379 1.6 ozaki
380 1.6 ozaki node.sysctl_data = &nmaxlen;
381 1.6 ozaki error = sysctl_lookup(SYSCTLFN_CALL(&node));
382 1.6 ozaki if (error || newp == NULL)
383 1.6 ozaki return error;
384 1.6 ozaki return pktq_set_maxlen(pq, nmaxlen);
385 1.6 ozaki }
386 1.6 ozaki
387 1.6 ozaki int
388 1.6 ozaki sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
389 1.6 ozaki {
390 1.10 msaitoh uint64_t count = pktq_get_count(pq, count_id);
391 1.6 ozaki struct sysctlnode node = *rnode;
392 1.10 msaitoh
393 1.6 ozaki node.sysctl_data = &count;
394 1.6 ozaki return sysctl_lookup(SYSCTLFN_CALL(&node));
395 1.6 ozaki }
396