Home | History | Annotate | Line # | Download | only in net
pktqueue.c revision 1.12.4.1
      1  1.12.4.1   thorpej /*	$NetBSD: pktqueue.c,v 1.12.4.1 2021/04/03 21:45:01 thorpej Exp $	*/
      2       1.1     rmind 
      3       1.1     rmind /*-
      4       1.1     rmind  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5       1.1     rmind  * All rights reserved.
      6       1.1     rmind  *
      7       1.1     rmind  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1     rmind  * by Mindaugas Rasiukevicius.
      9       1.1     rmind  *
     10       1.1     rmind  * Redistribution and use in source and binary forms, with or without
     11       1.1     rmind  * modification, are permitted provided that the following conditions
     12       1.1     rmind  * are met:
     13       1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     14       1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     15       1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     17       1.1     rmind  *    documentation and/or other materials provided with the distribution.
     18       1.1     rmind  *
     19       1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1     rmind  */
     31       1.1     rmind 
     32       1.4     rmind /*
     33       1.4     rmind  * The packet queue (pktqueue) interface is a lockless IP input queue
     34       1.4     rmind  * which also abstracts and handles network ISR scheduling.  It provides
     35       1.4     rmind  * a mechanism to enable receiver-side packet steering (RPS).
     36       1.4     rmind  */
     37       1.4     rmind 
     38       1.1     rmind #include <sys/cdefs.h>
     39  1.12.4.1   thorpej __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.12.4.1 2021/04/03 21:45:01 thorpej Exp $");
     40       1.1     rmind 
     41       1.1     rmind #include <sys/param.h>
     42       1.1     rmind #include <sys/types.h>
     43       1.1     rmind 
     44       1.1     rmind #include <sys/atomic.h>
     45       1.1     rmind #include <sys/cpu.h>
     46       1.1     rmind #include <sys/pcq.h>
     47       1.1     rmind #include <sys/intr.h>
     48       1.1     rmind #include <sys/mbuf.h>
     49       1.1     rmind #include <sys/proc.h>
     50       1.1     rmind #include <sys/percpu.h>
     51      1.11   thorpej #include <sys/xcall.h>
     52       1.1     rmind 
     53       1.1     rmind #include <net/pktqueue.h>
     54       1.1     rmind 
     55       1.1     rmind struct pktqueue {
     56       1.1     rmind 	/*
     57       1.1     rmind 	 * The lock used for a barrier mechanism.  The barrier counter,
     58       1.1     rmind 	 * as well as the drop counter, are managed atomically though.
     59       1.1     rmind 	 * Ensure this group is in a separate cache line.
     60       1.1     rmind 	 */
     61  1.12.4.1   thorpej 	union {
     62  1.12.4.1   thorpej 		struct {
     63  1.12.4.1   thorpej 			kmutex_t	pq_lock;
     64  1.12.4.1   thorpej 			volatile u_int	pq_barrier;
     65  1.12.4.1   thorpej 		};
     66  1.12.4.1   thorpej 		uint8_t	 _pad[COHERENCY_UNIT];
     67  1.12.4.1   thorpej 	};
     68       1.1     rmind 
     69       1.1     rmind 	/* The size of the queue, counters and the interrupt handler. */
     70       1.1     rmind 	u_int		pq_maxlen;
     71       1.1     rmind 	percpu_t *	pq_counters;
     72       1.1     rmind 	void *		pq_sih;
     73       1.1     rmind 
     74       1.1     rmind 	/* Finally, per-CPU queues. */
     75      1.12  riastrad 	struct percpu *	pq_pcq;	/* struct pcq * */
     76       1.1     rmind };
     77       1.1     rmind 
     78       1.1     rmind /* The counters of the packet queue. */
     79       1.1     rmind #define	PQCNT_ENQUEUE	0
     80       1.1     rmind #define	PQCNT_DEQUEUE	1
     81       1.1     rmind #define	PQCNT_DROP	2
     82       1.1     rmind #define	PQCNT_NCOUNTERS	3
     83       1.1     rmind 
     84       1.1     rmind typedef struct {
     85       1.1     rmind 	uint64_t	count[PQCNT_NCOUNTERS];
     86       1.1     rmind } pktq_counters_t;
     87       1.1     rmind 
     88       1.1     rmind /* Special marker value used by pktq_barrier() mechanism. */
     89       1.1     rmind #define	PKTQ_MARKER	((void *)(~0ULL))
     90       1.1     rmind 
     91      1.12  riastrad static void
     92      1.12  riastrad pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci)
     93      1.12  riastrad {
     94      1.12  riastrad 	struct pcq **qp = vqp;
     95      1.12  riastrad 	struct pktqueue *pq = vpq;
     96      1.12  riastrad 
     97      1.12  riastrad 	*qp = pcq_create(pq->pq_maxlen, KM_SLEEP);
     98      1.12  riastrad }
     99      1.12  riastrad 
    100      1.12  riastrad static void
    101      1.12  riastrad pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci)
    102      1.12  riastrad {
    103      1.12  riastrad 	struct pcq **qp = vqp, *q = *qp;
    104      1.12  riastrad 
    105      1.12  riastrad 	KASSERT(pcq_peek(q) == NULL);
    106      1.12  riastrad 	pcq_destroy(q);
    107      1.12  riastrad 	*qp = NULL;		/* paranoia */
    108      1.12  riastrad }
    109      1.12  riastrad 
    110      1.12  riastrad static struct pcq *
    111      1.12  riastrad pktq_pcq(struct pktqueue *pq, struct cpu_info *ci)
    112      1.12  riastrad {
    113      1.12  riastrad 	struct pcq **qp, *q;
    114      1.12  riastrad 
    115      1.12  riastrad 	/*
    116      1.12  riastrad 	 * As long as preemption is disabled, the xcall to swap percpu
    117      1.12  riastrad 	 * buffers can't complete, so it is safe to read the pointer.
    118      1.12  riastrad 	 */
    119      1.12  riastrad 	KASSERT(kpreempt_disabled());
    120      1.12  riastrad 
    121      1.12  riastrad 	qp = percpu_getptr_remote(pq->pq_pcq, ci);
    122      1.12  riastrad 	q = *qp;
    123      1.12  riastrad 
    124      1.12  riastrad 	return q;
    125      1.12  riastrad }
    126       1.1     rmind 
    127       1.1     rmind pktqueue_t *
    128       1.5     ozaki pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
    129       1.1     rmind {
    130       1.1     rmind 	const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
    131       1.1     rmind 	pktqueue_t *pq;
    132       1.1     rmind 	percpu_t *pc;
    133       1.1     rmind 	void *sih;
    134       1.1     rmind 
    135       1.9       chs 	pc = percpu_alloc(sizeof(pktq_counters_t));
    136       1.5     ozaki 	if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
    137       1.1     rmind 		percpu_free(pc, sizeof(pktq_counters_t));
    138       1.1     rmind 		return NULL;
    139       1.1     rmind 	}
    140       1.1     rmind 
    141      1.12  riastrad 	pq = kmem_zalloc(sizeof(*pq), KM_SLEEP);
    142       1.1     rmind 	mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
    143       1.1     rmind 	pq->pq_maxlen = maxlen;
    144       1.1     rmind 	pq->pq_counters = pc;
    145       1.1     rmind 	pq->pq_sih = sih;
    146      1.12  riastrad 	pq->pq_pcq = percpu_create(sizeof(struct pcq *),
    147      1.12  riastrad 	    pktq_init_cpu, pktq_fini_cpu, pq);
    148       1.1     rmind 
    149       1.1     rmind 	return pq;
    150       1.1     rmind }
    151       1.1     rmind 
    152       1.1     rmind void
    153       1.1     rmind pktq_destroy(pktqueue_t *pq)
    154       1.1     rmind {
    155       1.1     rmind 
    156      1.12  riastrad 	percpu_free(pq->pq_pcq, sizeof(struct pcq *));
    157       1.1     rmind 	percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
    158       1.1     rmind 	softint_disestablish(pq->pq_sih);
    159       1.1     rmind 	mutex_destroy(&pq->pq_lock);
    160      1.12  riastrad 	kmem_free(pq, sizeof(*pq));
    161       1.1     rmind }
    162       1.1     rmind 
    163       1.1     rmind /*
    164       1.1     rmind  * - pktq_inc_counter: increment the counter given an ID.
    165       1.1     rmind  * - pktq_collect_counts: handler to sum up the counts from each CPU.
    166       1.1     rmind  * - pktq_getcount: return the effective count given an ID.
    167       1.1     rmind  */
    168       1.1     rmind 
    169       1.1     rmind static inline void
    170       1.1     rmind pktq_inc_count(pktqueue_t *pq, u_int i)
    171       1.1     rmind {
    172       1.1     rmind 	percpu_t *pc = pq->pq_counters;
    173       1.1     rmind 	pktq_counters_t *c;
    174       1.1     rmind 
    175       1.1     rmind 	c = percpu_getref(pc);
    176       1.1     rmind 	c->count[i]++;
    177       1.1     rmind 	percpu_putref(pc);
    178       1.1     rmind }
    179       1.1     rmind 
    180       1.1     rmind static void
    181       1.1     rmind pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
    182       1.1     rmind {
    183       1.1     rmind 	const pktq_counters_t *c = mem;
    184       1.1     rmind 	pktq_counters_t *sum = arg;
    185       1.1     rmind 
    186      1.11   thorpej 	int s = splnet();
    187      1.11   thorpej 
    188       1.1     rmind 	for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
    189       1.1     rmind 		sum->count[i] += c->count[i];
    190       1.1     rmind 	}
    191      1.11   thorpej 
    192      1.11   thorpej 	splx(s);
    193       1.1     rmind }
    194       1.1     rmind 
    195       1.1     rmind uint64_t
    196       1.1     rmind pktq_get_count(pktqueue_t *pq, pktq_count_t c)
    197       1.1     rmind {
    198       1.1     rmind 	pktq_counters_t sum;
    199       1.1     rmind 
    200       1.1     rmind 	if (c != PKTQ_MAXLEN) {
    201       1.1     rmind 		memset(&sum, 0, sizeof(sum));
    202      1.11   thorpej 		percpu_foreach_xcall(pq->pq_counters,
    203      1.11   thorpej 		    XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
    204       1.1     rmind 	}
    205       1.1     rmind 	switch (c) {
    206       1.1     rmind 	case PKTQ_NITEMS:
    207       1.1     rmind 		return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
    208       1.1     rmind 	case PKTQ_DROPS:
    209       1.1     rmind 		return sum.count[PQCNT_DROP];
    210       1.1     rmind 	case PKTQ_MAXLEN:
    211       1.1     rmind 		return pq->pq_maxlen;
    212       1.1     rmind 	}
    213       1.1     rmind 	return 0;
    214       1.1     rmind }
    215       1.1     rmind 
    216       1.1     rmind uint32_t
    217       1.1     rmind pktq_rps_hash(const struct mbuf *m __unused)
    218       1.1     rmind {
    219       1.1     rmind 	/*
    220       1.1     rmind 	 * XXX: No distribution yet; the softnet_lock contention
    221       1.1     rmind 	 * XXX: must be eliminated first.
    222       1.1     rmind 	 */
    223       1.1     rmind 	return 0;
    224       1.1     rmind }
    225       1.1     rmind 
    226       1.1     rmind /*
    227       1.1     rmind  * pktq_enqueue: inject the packet into the end of the queue.
    228       1.1     rmind  *
    229       1.1     rmind  * => Must be called from the interrupt or with the preemption disabled.
    230       1.1     rmind  * => Consumes the packet and returns true on success.
    231       1.1     rmind  * => Returns false on failure; caller is responsible to free the packet.
    232       1.1     rmind  */
    233       1.1     rmind bool
    234       1.3     rmind pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
    235       1.1     rmind {
    236       1.8     ozaki #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
    237      1.12  riastrad 	struct cpu_info *ci = curcpu();
    238       1.7     ozaki #else
    239      1.12  riastrad 	struct cpu_info *ci = cpu_lookup(hash % ncpu);
    240       1.7     ozaki #endif
    241       1.1     rmind 
    242       1.1     rmind 	KASSERT(kpreempt_disabled());
    243       1.1     rmind 
    244      1.12  riastrad 	if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) {
    245       1.1     rmind 		pktq_inc_count(pq, PQCNT_DROP);
    246       1.1     rmind 		return false;
    247       1.1     rmind 	}
    248      1.12  riastrad 	softint_schedule_cpu(pq->pq_sih, ci);
    249       1.1     rmind 	pktq_inc_count(pq, PQCNT_ENQUEUE);
    250       1.1     rmind 	return true;
    251       1.1     rmind }
    252       1.1     rmind 
    253       1.1     rmind /*
    254       1.1     rmind  * pktq_dequeue: take a packet from the queue.
    255       1.1     rmind  *
    256       1.1     rmind  * => Must be called with preemption disabled.
    257       1.1     rmind  * => Must ensure there are not concurrent dequeue calls.
    258       1.1     rmind  */
    259       1.1     rmind struct mbuf *
    260       1.1     rmind pktq_dequeue(pktqueue_t *pq)
    261       1.1     rmind {
    262      1.12  riastrad 	struct cpu_info *ci = curcpu();
    263       1.1     rmind 	struct mbuf *m;
    264       1.1     rmind 
    265      1.12  riastrad 	KASSERT(kpreempt_disabled());
    266      1.12  riastrad 
    267      1.12  riastrad 	m = pcq_get(pktq_pcq(pq, ci));
    268       1.1     rmind 	if (__predict_false(m == PKTQ_MARKER)) {
    269       1.1     rmind 		/* Note the marker entry. */
    270       1.1     rmind 		atomic_inc_uint(&pq->pq_barrier);
    271       1.1     rmind 		return NULL;
    272       1.1     rmind 	}
    273       1.1     rmind 	if (__predict_true(m != NULL)) {
    274       1.1     rmind 		pktq_inc_count(pq, PQCNT_DEQUEUE);
    275       1.1     rmind 	}
    276       1.1     rmind 	return m;
    277       1.1     rmind }
    278       1.1     rmind 
    279       1.1     rmind /*
    280       1.1     rmind  * pktq_barrier: waits for a grace period when all packets enqueued at
    281       1.1     rmind  * the moment of calling this routine will be processed.  This is used
    282       1.1     rmind  * to ensure that e.g. packets referencing some interface were drained.
    283       1.1     rmind  */
    284       1.1     rmind void
    285       1.1     rmind pktq_barrier(pktqueue_t *pq)
    286       1.1     rmind {
    287      1.12  riastrad 	CPU_INFO_ITERATOR cii;
    288      1.12  riastrad 	struct cpu_info *ci;
    289       1.1     rmind 	u_int pending = 0;
    290       1.1     rmind 
    291       1.1     rmind 	mutex_enter(&pq->pq_lock);
    292       1.1     rmind 	KASSERT(pq->pq_barrier == 0);
    293       1.1     rmind 
    294      1.12  riastrad 	for (CPU_INFO_FOREACH(cii, ci)) {
    295      1.12  riastrad 		struct pcq *q;
    296      1.12  riastrad 
    297      1.12  riastrad 		kpreempt_disable();
    298      1.12  riastrad 		q = pktq_pcq(pq, ci);
    299      1.12  riastrad 		kpreempt_enable();
    300       1.1     rmind 
    301       1.1     rmind 		/* If the queue is empty - nothing to do. */
    302       1.1     rmind 		if (pcq_peek(q) == NULL) {
    303       1.1     rmind 			continue;
    304       1.1     rmind 		}
    305       1.1     rmind 		/* Otherwise, put the marker and entry. */
    306       1.1     rmind 		while (!pcq_put(q, PKTQ_MARKER)) {
    307       1.1     rmind 			kpause("pktqsync", false, 1, NULL);
    308       1.1     rmind 		}
    309       1.1     rmind 		kpreempt_disable();
    310      1.12  riastrad 		softint_schedule_cpu(pq->pq_sih, ci);
    311       1.1     rmind 		kpreempt_enable();
    312       1.1     rmind 		pending++;
    313       1.1     rmind 	}
    314       1.1     rmind 
    315       1.1     rmind 	/* Wait for each queue to process the markers. */
    316       1.1     rmind 	while (pq->pq_barrier != pending) {
    317       1.1     rmind 		kpause("pktqsync", false, 1, NULL);
    318       1.1     rmind 	}
    319       1.1     rmind 	pq->pq_barrier = 0;
    320       1.1     rmind 	mutex_exit(&pq->pq_lock);
    321       1.1     rmind }
    322       1.1     rmind 
    323       1.1     rmind /*
    324       1.1     rmind  * pktq_flush: free mbufs in all queues.
    325       1.1     rmind  *
    326       1.4     rmind  * => The caller must ensure there are no concurrent writers or flush calls.
    327       1.1     rmind  */
    328       1.1     rmind void
    329       1.1     rmind pktq_flush(pktqueue_t *pq)
    330       1.1     rmind {
    331      1.12  riastrad 	CPU_INFO_ITERATOR cii;
    332      1.12  riastrad 	struct cpu_info *ci;
    333       1.1     rmind 	struct mbuf *m;
    334       1.1     rmind 
    335      1.12  riastrad 	for (CPU_INFO_FOREACH(cii, ci)) {
    336      1.12  riastrad 		struct pcq *q;
    337      1.12  riastrad 
    338      1.12  riastrad 		kpreempt_disable();
    339      1.12  riastrad 		q = pktq_pcq(pq, ci);
    340      1.12  riastrad 		kpreempt_enable();
    341      1.12  riastrad 
    342      1.12  riastrad 		/*
    343      1.12  riastrad 		 * XXX This can't be right -- if the softint is running
    344      1.12  riastrad 		 * then pcq_get isn't safe here.
    345      1.12  riastrad 		 */
    346      1.12  riastrad 		while ((m = pcq_get(q)) != NULL) {
    347       1.1     rmind 			pktq_inc_count(pq, PQCNT_DEQUEUE);
    348       1.1     rmind 			m_freem(m);
    349       1.1     rmind 		}
    350       1.1     rmind 	}
    351       1.1     rmind }
    352       1.2     rmind 
    353      1.12  riastrad static void
    354      1.12  riastrad pktq_set_maxlen_cpu(void *vpq, void *vqs)
    355      1.12  riastrad {
    356      1.12  riastrad 	struct pktqueue *pq = vpq;
    357      1.12  riastrad 	struct pcq **qp, *q, **qs = vqs;
    358      1.12  riastrad 	unsigned i = cpu_index(curcpu());
    359      1.12  riastrad 	int s;
    360      1.12  riastrad 
    361      1.12  riastrad 	s = splnet();
    362      1.12  riastrad 	qp = percpu_getref(pq->pq_pcq);
    363      1.12  riastrad 	q = *qp;
    364      1.12  riastrad 	*qp = qs[i];
    365      1.12  riastrad 	qs[i] = q;
    366      1.12  riastrad 	percpu_putref(pq->pq_pcq);
    367      1.12  riastrad 	splx(s);
    368      1.12  riastrad }
    369      1.12  riastrad 
    370       1.2     rmind /*
    371       1.2     rmind  * pktq_set_maxlen: create per-CPU queues using a new size and replace
    372       1.2     rmind  * the existing queues without losing any packets.
    373      1.12  riastrad  *
    374      1.12  riastrad  * XXX ncpu must remain stable throughout.
    375       1.2     rmind  */
    376       1.2     rmind int
    377       1.2     rmind pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
    378       1.2     rmind {
    379       1.2     rmind 	const u_int slotbytes = ncpu * sizeof(pcq_t *);
    380       1.2     rmind 	pcq_t **qs;
    381       1.2     rmind 
    382       1.2     rmind 	if (!maxlen || maxlen > PCQ_MAXLEN)
    383       1.2     rmind 		return EINVAL;
    384       1.2     rmind 	if (pq->pq_maxlen == maxlen)
    385       1.2     rmind 		return 0;
    386       1.2     rmind 
    387      1.12  riastrad 	/* First, allocate the new queues. */
    388       1.2     rmind 	qs = kmem_zalloc(slotbytes, KM_SLEEP);
    389       1.2     rmind 	for (u_int i = 0; i < ncpu; i++) {
    390       1.2     rmind 		qs[i] = pcq_create(maxlen, KM_SLEEP);
    391       1.2     rmind 	}
    392      1.12  riastrad 
    393      1.12  riastrad 	/*
    394      1.12  riastrad 	 * Issue an xcall to replace the queue pointers on each CPU.
    395      1.12  riastrad 	 * This implies all the necessary memory barriers.
    396      1.12  riastrad 	 */
    397       1.2     rmind 	mutex_enter(&pq->pq_lock);
    398      1.12  riastrad 	xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs));
    399       1.2     rmind 	pq->pq_maxlen = maxlen;
    400       1.2     rmind 	mutex_exit(&pq->pq_lock);
    401       1.2     rmind 
    402       1.2     rmind 	/*
    403       1.2     rmind 	 * At this point, the new packets are flowing into the new
    404       1.4     rmind 	 * queues.  However, the old queues may have some packets
    405       1.4     rmind 	 * present which are no longer being processed.  We are going
    406       1.2     rmind 	 * to re-enqueue them.  This may change the order of packet
    407       1.2     rmind 	 * arrival, but it is not considered an issue.
    408       1.2     rmind 	 *
    409       1.4     rmind 	 * There may be in-flight interrupts calling pktq_dequeue()
    410       1.2     rmind 	 * which reference the old queues.  Issue a barrier to ensure
    411       1.2     rmind 	 * that we are going to be the only pcq_get() callers on the
    412       1.2     rmind 	 * old queues.
    413       1.2     rmind 	 */
    414       1.2     rmind 	pktq_barrier(pq);
    415       1.2     rmind 
    416       1.2     rmind 	for (u_int i = 0; i < ncpu; i++) {
    417      1.12  riastrad 		struct pcq *q;
    418       1.2     rmind 		struct mbuf *m;
    419       1.2     rmind 
    420      1.12  riastrad 		kpreempt_disable();
    421      1.12  riastrad 		q = pktq_pcq(pq, cpu_lookup(i));
    422      1.12  riastrad 		kpreempt_enable();
    423      1.12  riastrad 
    424       1.2     rmind 		while ((m = pcq_get(qs[i])) != NULL) {
    425      1.12  riastrad 			while (!pcq_put(q, m)) {
    426       1.2     rmind 				kpause("pktqrenq", false, 1, NULL);
    427       1.2     rmind 			}
    428       1.2     rmind 		}
    429       1.2     rmind 		pcq_destroy(qs[i]);
    430       1.2     rmind 	}
    431       1.2     rmind 
    432       1.2     rmind 	/* Well, that was fun. */
    433       1.2     rmind 	kmem_free(qs, slotbytes);
    434       1.2     rmind 	return 0;
    435       1.2     rmind }
    436       1.6     ozaki 
    437       1.6     ozaki int
    438       1.6     ozaki sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
    439       1.6     ozaki {
    440       1.6     ozaki 	u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
    441       1.6     ozaki 	struct sysctlnode node = *rnode;
    442       1.6     ozaki 	int error;
    443       1.6     ozaki 
    444       1.6     ozaki 	node.sysctl_data = &nmaxlen;
    445       1.6     ozaki 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    446       1.6     ozaki 	if (error || newp == NULL)
    447       1.6     ozaki 		return error;
    448       1.6     ozaki 	return pktq_set_maxlen(pq, nmaxlen);
    449       1.6     ozaki }
    450       1.6     ozaki 
    451       1.6     ozaki int
    452       1.6     ozaki sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
    453       1.6     ozaki {
    454      1.10   msaitoh 	uint64_t count = pktq_get_count(pq, count_id);
    455       1.6     ozaki 	struct sysctlnode node = *rnode;
    456      1.10   msaitoh 
    457       1.6     ozaki 	node.sysctl_data = &count;
    458       1.6     ozaki 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    459       1.6     ozaki }
    460