pktqueue.c revision 1.18 1 1.18 thorpej /* $NetBSD: pktqueue.c,v 1.18 2022/09/01 05:04:22 thorpej Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.1 rmind * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rmind * by Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.4 rmind /*
33 1.4 rmind * The packet queue (pktqueue) interface is a lockless IP input queue
34 1.4 rmind * which also abstracts and handles network ISR scheduling. It provides
35 1.4 rmind * a mechanism to enable receiver-side packet steering (RPS).
36 1.4 rmind */
37 1.4 rmind
38 1.1 rmind #include <sys/cdefs.h>
39 1.18 thorpej __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.18 2022/09/01 05:04:22 thorpej Exp $");
40 1.14 knakahar
41 1.14 knakahar #ifdef _KERNEL_OPT
42 1.14 knakahar #include "opt_net_mpsafe.h"
43 1.14 knakahar #endif
44 1.1 rmind
45 1.1 rmind #include <sys/param.h>
46 1.1 rmind #include <sys/types.h>
47 1.1 rmind
48 1.1 rmind #include <sys/atomic.h>
49 1.1 rmind #include <sys/cpu.h>
50 1.1 rmind #include <sys/pcq.h>
51 1.1 rmind #include <sys/intr.h>
52 1.1 rmind #include <sys/mbuf.h>
53 1.1 rmind #include <sys/proc.h>
54 1.1 rmind #include <sys/percpu.h>
55 1.11 thorpej #include <sys/xcall.h>
56 1.1 rmind
57 1.1 rmind #include <net/pktqueue.h>
58 1.14 knakahar #include <net/rss_config.h>
59 1.14 knakahar
60 1.14 knakahar #include <netinet/in.h>
61 1.14 knakahar #include <netinet/ip.h>
62 1.14 knakahar #include <netinet/ip6.h>
63 1.1 rmind
64 1.1 rmind struct pktqueue {
65 1.1 rmind /*
66 1.1 rmind * The lock used for a barrier mechanism. The barrier counter,
67 1.1 rmind * as well as the drop counter, are managed atomically though.
68 1.1 rmind * Ensure this group is in a separate cache line.
69 1.1 rmind */
70 1.13 skrll union {
71 1.13 skrll struct {
72 1.13 skrll kmutex_t pq_lock;
73 1.13 skrll volatile u_int pq_barrier;
74 1.13 skrll };
75 1.13 skrll uint8_t _pad[COHERENCY_UNIT];
76 1.13 skrll };
77 1.1 rmind
78 1.1 rmind /* The size of the queue, counters and the interrupt handler. */
79 1.1 rmind u_int pq_maxlen;
80 1.1 rmind percpu_t * pq_counters;
81 1.1 rmind void * pq_sih;
82 1.1 rmind
83 1.1 rmind /* Finally, per-CPU queues. */
84 1.12 riastrad struct percpu * pq_pcq; /* struct pcq * */
85 1.1 rmind };
86 1.1 rmind
87 1.1 rmind /* The counters of the packet queue. */
88 1.1 rmind #define PQCNT_ENQUEUE 0
89 1.1 rmind #define PQCNT_DEQUEUE 1
90 1.1 rmind #define PQCNT_DROP 2
91 1.1 rmind #define PQCNT_NCOUNTERS 3
92 1.1 rmind
93 1.1 rmind typedef struct {
94 1.1 rmind uint64_t count[PQCNT_NCOUNTERS];
95 1.1 rmind } pktq_counters_t;
96 1.1 rmind
97 1.1 rmind /* Special marker value used by pktq_barrier() mechanism. */
98 1.1 rmind #define PKTQ_MARKER ((void *)(~0ULL))
99 1.1 rmind
100 1.12 riastrad static void
101 1.12 riastrad pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci)
102 1.12 riastrad {
103 1.12 riastrad struct pcq **qp = vqp;
104 1.12 riastrad struct pktqueue *pq = vpq;
105 1.12 riastrad
106 1.12 riastrad *qp = pcq_create(pq->pq_maxlen, KM_SLEEP);
107 1.12 riastrad }
108 1.12 riastrad
109 1.12 riastrad static void
110 1.12 riastrad pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci)
111 1.12 riastrad {
112 1.12 riastrad struct pcq **qp = vqp, *q = *qp;
113 1.12 riastrad
114 1.12 riastrad KASSERT(pcq_peek(q) == NULL);
115 1.12 riastrad pcq_destroy(q);
116 1.12 riastrad *qp = NULL; /* paranoia */
117 1.12 riastrad }
118 1.12 riastrad
119 1.12 riastrad static struct pcq *
120 1.12 riastrad pktq_pcq(struct pktqueue *pq, struct cpu_info *ci)
121 1.12 riastrad {
122 1.12 riastrad struct pcq **qp, *q;
123 1.12 riastrad
124 1.12 riastrad /*
125 1.12 riastrad * As long as preemption is disabled, the xcall to swap percpu
126 1.12 riastrad * buffers can't complete, so it is safe to read the pointer.
127 1.12 riastrad */
128 1.12 riastrad KASSERT(kpreempt_disabled());
129 1.12 riastrad
130 1.12 riastrad qp = percpu_getptr_remote(pq->pq_pcq, ci);
131 1.12 riastrad q = *qp;
132 1.12 riastrad
133 1.12 riastrad return q;
134 1.12 riastrad }
135 1.1 rmind
136 1.1 rmind pktqueue_t *
137 1.5 ozaki pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
138 1.1 rmind {
139 1.1 rmind const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
140 1.1 rmind pktqueue_t *pq;
141 1.1 rmind percpu_t *pc;
142 1.1 rmind void *sih;
143 1.1 rmind
144 1.9 chs pc = percpu_alloc(sizeof(pktq_counters_t));
145 1.5 ozaki if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
146 1.1 rmind percpu_free(pc, sizeof(pktq_counters_t));
147 1.1 rmind return NULL;
148 1.1 rmind }
149 1.1 rmind
150 1.12 riastrad pq = kmem_zalloc(sizeof(*pq), KM_SLEEP);
151 1.1 rmind mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
152 1.1 rmind pq->pq_maxlen = maxlen;
153 1.1 rmind pq->pq_counters = pc;
154 1.1 rmind pq->pq_sih = sih;
155 1.12 riastrad pq->pq_pcq = percpu_create(sizeof(struct pcq *),
156 1.12 riastrad pktq_init_cpu, pktq_fini_cpu, pq);
157 1.1 rmind
158 1.1 rmind return pq;
159 1.1 rmind }
160 1.1 rmind
161 1.1 rmind void
162 1.1 rmind pktq_destroy(pktqueue_t *pq)
163 1.1 rmind {
164 1.1 rmind
165 1.12 riastrad percpu_free(pq->pq_pcq, sizeof(struct pcq *));
166 1.1 rmind percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
167 1.1 rmind softint_disestablish(pq->pq_sih);
168 1.1 rmind mutex_destroy(&pq->pq_lock);
169 1.12 riastrad kmem_free(pq, sizeof(*pq));
170 1.1 rmind }
171 1.1 rmind
172 1.1 rmind /*
173 1.1 rmind * - pktq_inc_counter: increment the counter given an ID.
174 1.1 rmind * - pktq_collect_counts: handler to sum up the counts from each CPU.
175 1.1 rmind * - pktq_getcount: return the effective count given an ID.
176 1.1 rmind */
177 1.1 rmind
178 1.1 rmind static inline void
179 1.1 rmind pktq_inc_count(pktqueue_t *pq, u_int i)
180 1.1 rmind {
181 1.1 rmind percpu_t *pc = pq->pq_counters;
182 1.1 rmind pktq_counters_t *c;
183 1.1 rmind
184 1.1 rmind c = percpu_getref(pc);
185 1.1 rmind c->count[i]++;
186 1.1 rmind percpu_putref(pc);
187 1.1 rmind }
188 1.1 rmind
189 1.1 rmind static void
190 1.1 rmind pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
191 1.1 rmind {
192 1.1 rmind const pktq_counters_t *c = mem;
193 1.1 rmind pktq_counters_t *sum = arg;
194 1.1 rmind
195 1.11 thorpej int s = splnet();
196 1.11 thorpej
197 1.1 rmind for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
198 1.1 rmind sum->count[i] += c->count[i];
199 1.1 rmind }
200 1.11 thorpej
201 1.11 thorpej splx(s);
202 1.1 rmind }
203 1.1 rmind
204 1.1 rmind uint64_t
205 1.1 rmind pktq_get_count(pktqueue_t *pq, pktq_count_t c)
206 1.1 rmind {
207 1.1 rmind pktq_counters_t sum;
208 1.1 rmind
209 1.1 rmind if (c != PKTQ_MAXLEN) {
210 1.1 rmind memset(&sum, 0, sizeof(sum));
211 1.11 thorpej percpu_foreach_xcall(pq->pq_counters,
212 1.11 thorpej XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
213 1.1 rmind }
214 1.1 rmind switch (c) {
215 1.1 rmind case PKTQ_NITEMS:
216 1.1 rmind return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
217 1.1 rmind case PKTQ_DROPS:
218 1.1 rmind return sum.count[PQCNT_DROP];
219 1.1 rmind case PKTQ_MAXLEN:
220 1.1 rmind return pq->pq_maxlen;
221 1.1 rmind }
222 1.1 rmind return 0;
223 1.1 rmind }
224 1.1 rmind
225 1.1 rmind uint32_t
226 1.18 thorpej pktq_rps_hash(const pktq_rps_hash_func_t *funcp, const struct mbuf *m)
227 1.14 knakahar {
228 1.14 knakahar pktq_rps_hash_func_t func = atomic_load_relaxed(funcp);
229 1.14 knakahar
230 1.14 knakahar KASSERT(func != NULL);
231 1.14 knakahar
232 1.14 knakahar return (*func)(m);
233 1.14 knakahar }
234 1.14 knakahar
235 1.14 knakahar static uint32_t
236 1.14 knakahar pktq_rps_hash_zero(const struct mbuf *m __unused)
237 1.1 rmind {
238 1.14 knakahar
239 1.14 knakahar return 0;
240 1.14 knakahar }
241 1.14 knakahar
242 1.14 knakahar static uint32_t
243 1.14 knakahar pktq_rps_hash_curcpu(const struct mbuf *m __unused)
244 1.14 knakahar {
245 1.14 knakahar
246 1.14 knakahar return cpu_index(curcpu());
247 1.14 knakahar }
248 1.14 knakahar
249 1.14 knakahar static uint32_t
250 1.14 knakahar pktq_rps_hash_toeplitz(const struct mbuf *m)
251 1.14 knakahar {
252 1.14 knakahar struct ip *ip;
253 1.1 rmind /*
254 1.14 knakahar * Disable UDP port - IP fragments aren't currently being handled
255 1.14 knakahar * and so we end up with a mix of 2-tuple and 4-tuple
256 1.14 knakahar * traffic.
257 1.1 rmind */
258 1.14 knakahar const u_int flag = RSS_TOEPLITZ_USE_TCP_PORT;
259 1.14 knakahar
260 1.14 knakahar /* glance IP version */
261 1.14 knakahar if ((m->m_flags & M_PKTHDR) == 0)
262 1.14 knakahar return 0;
263 1.14 knakahar
264 1.14 knakahar ip = mtod(m, struct ip *);
265 1.14 knakahar if (ip->ip_v == IPVERSION) {
266 1.14 knakahar if (__predict_false(m->m_len < sizeof(struct ip)))
267 1.14 knakahar return 0;
268 1.14 knakahar return rss_toeplitz_hash_from_mbuf_ipv4(m, flag);
269 1.14 knakahar } else if (ip->ip_v == 6) {
270 1.14 knakahar if (__predict_false(m->m_len < sizeof(struct ip6_hdr)))
271 1.14 knakahar return 0;
272 1.14 knakahar return rss_toeplitz_hash_from_mbuf_ipv6(m, flag);
273 1.14 knakahar }
274 1.14 knakahar
275 1.1 rmind return 0;
276 1.1 rmind }
277 1.1 rmind
278 1.1 rmind /*
279 1.15 knakahar * toeplitz without curcpu.
280 1.15 knakahar * Generally, this has better performance than toeplitz.
281 1.14 knakahar */
282 1.14 knakahar static uint32_t
283 1.14 knakahar pktq_rps_hash_toeplitz_othercpus(const struct mbuf *m)
284 1.14 knakahar {
285 1.14 knakahar uint32_t hash;
286 1.14 knakahar
287 1.16 knakahar if (ncpu == 1)
288 1.16 knakahar return 0;
289 1.16 knakahar
290 1.14 knakahar hash = pktq_rps_hash_toeplitz(m);
291 1.14 knakahar hash %= ncpu - 1;
292 1.14 knakahar if (hash >= cpu_index(curcpu()))
293 1.14 knakahar return hash + 1;
294 1.14 knakahar else
295 1.14 knakahar return hash;
296 1.14 knakahar }
297 1.14 knakahar
298 1.14 knakahar static struct pktq_rps_hash_table {
299 1.14 knakahar const char* prh_type;
300 1.14 knakahar pktq_rps_hash_func_t prh_func;
301 1.14 knakahar } const pktq_rps_hash_tab[] = {
302 1.14 knakahar { "zero", pktq_rps_hash_zero },
303 1.14 knakahar { "curcpu", pktq_rps_hash_curcpu },
304 1.14 knakahar { "toeplitz", pktq_rps_hash_toeplitz },
305 1.14 knakahar { "toeplitz-othercpus", pktq_rps_hash_toeplitz_othercpus },
306 1.14 knakahar };
307 1.14 knakahar const pktq_rps_hash_func_t pktq_rps_hash_default =
308 1.14 knakahar #ifdef NET_MPSAFE
309 1.14 knakahar pktq_rps_hash_curcpu;
310 1.14 knakahar #else
311 1.14 knakahar pktq_rps_hash_zero;
312 1.14 knakahar #endif
313 1.14 knakahar
314 1.14 knakahar static const char *
315 1.14 knakahar pktq_get_rps_hash_type(pktq_rps_hash_func_t func)
316 1.14 knakahar {
317 1.14 knakahar
318 1.14 knakahar for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
319 1.14 knakahar if (func == pktq_rps_hash_tab[i].prh_func) {
320 1.14 knakahar return pktq_rps_hash_tab[i].prh_type;
321 1.14 knakahar }
322 1.14 knakahar }
323 1.14 knakahar
324 1.14 knakahar return NULL;
325 1.14 knakahar }
326 1.14 knakahar
327 1.14 knakahar static int
328 1.14 knakahar pktq_set_rps_hash_type(pktq_rps_hash_func_t *func, const char *type)
329 1.14 knakahar {
330 1.14 knakahar
331 1.14 knakahar if (strcmp(type, pktq_get_rps_hash_type(*func)) == 0)
332 1.14 knakahar return 0;
333 1.14 knakahar
334 1.14 knakahar for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
335 1.14 knakahar if (strcmp(type, pktq_rps_hash_tab[i].prh_type) == 0) {
336 1.14 knakahar atomic_store_relaxed(func, pktq_rps_hash_tab[i].prh_func);
337 1.14 knakahar return 0;
338 1.14 knakahar }
339 1.14 knakahar }
340 1.14 knakahar
341 1.14 knakahar return ENOENT;
342 1.14 knakahar }
343 1.14 knakahar
344 1.14 knakahar int
345 1.14 knakahar sysctl_pktq_rps_hash_handler(SYSCTLFN_ARGS)
346 1.14 knakahar {
347 1.14 knakahar struct sysctlnode node;
348 1.14 knakahar pktq_rps_hash_func_t *func;
349 1.14 knakahar int error;
350 1.14 knakahar char type[PKTQ_RPS_HASH_NAME_LEN];
351 1.14 knakahar
352 1.14 knakahar node = *rnode;
353 1.14 knakahar func = node.sysctl_data;
354 1.14 knakahar
355 1.14 knakahar strlcpy(type, pktq_get_rps_hash_type(*func), PKTQ_RPS_HASH_NAME_LEN);
356 1.14 knakahar
357 1.14 knakahar node.sysctl_data = &type;
358 1.14 knakahar node.sysctl_size = sizeof(type);
359 1.14 knakahar error = sysctl_lookup(SYSCTLFN_CALL(&node));
360 1.14 knakahar if (error || newp == NULL)
361 1.14 knakahar return error;
362 1.14 knakahar
363 1.14 knakahar error = pktq_set_rps_hash_type(func, type);
364 1.14 knakahar
365 1.14 knakahar return error;
366 1.14 knakahar }
367 1.14 knakahar
368 1.14 knakahar /*
369 1.1 rmind * pktq_enqueue: inject the packet into the end of the queue.
370 1.1 rmind *
371 1.1 rmind * => Must be called from the interrupt or with the preemption disabled.
372 1.1 rmind * => Consumes the packet and returns true on success.
373 1.1 rmind * => Returns false on failure; caller is responsible to free the packet.
374 1.1 rmind */
375 1.1 rmind bool
376 1.3 rmind pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
377 1.1 rmind {
378 1.8 ozaki #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
379 1.12 riastrad struct cpu_info *ci = curcpu();
380 1.7 ozaki #else
381 1.12 riastrad struct cpu_info *ci = cpu_lookup(hash % ncpu);
382 1.7 ozaki #endif
383 1.1 rmind
384 1.1 rmind KASSERT(kpreempt_disabled());
385 1.1 rmind
386 1.12 riastrad if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) {
387 1.1 rmind pktq_inc_count(pq, PQCNT_DROP);
388 1.1 rmind return false;
389 1.1 rmind }
390 1.12 riastrad softint_schedule_cpu(pq->pq_sih, ci);
391 1.1 rmind pktq_inc_count(pq, PQCNT_ENQUEUE);
392 1.1 rmind return true;
393 1.1 rmind }
394 1.1 rmind
395 1.1 rmind /*
396 1.1 rmind * pktq_dequeue: take a packet from the queue.
397 1.1 rmind *
398 1.1 rmind * => Must be called with preemption disabled.
399 1.1 rmind * => Must ensure there are not concurrent dequeue calls.
400 1.1 rmind */
401 1.1 rmind struct mbuf *
402 1.1 rmind pktq_dequeue(pktqueue_t *pq)
403 1.1 rmind {
404 1.12 riastrad struct cpu_info *ci = curcpu();
405 1.1 rmind struct mbuf *m;
406 1.1 rmind
407 1.12 riastrad KASSERT(kpreempt_disabled());
408 1.12 riastrad
409 1.12 riastrad m = pcq_get(pktq_pcq(pq, ci));
410 1.1 rmind if (__predict_false(m == PKTQ_MARKER)) {
411 1.1 rmind /* Note the marker entry. */
412 1.1 rmind atomic_inc_uint(&pq->pq_barrier);
413 1.17 thorpej
414 1.17 thorpej /* Get the next queue entry. */
415 1.17 thorpej m = pcq_get(pktq_pcq(pq, ci));
416 1.17 thorpej
417 1.17 thorpej /*
418 1.17 thorpej * There can only be one barrier operation pending
419 1.17 thorpej * on a pktqueue at any given time, so we can assert
420 1.17 thorpej * that the next item is not a marker.
421 1.17 thorpej */
422 1.17 thorpej KASSERT(m != PKTQ_MARKER);
423 1.1 rmind }
424 1.1 rmind if (__predict_true(m != NULL)) {
425 1.1 rmind pktq_inc_count(pq, PQCNT_DEQUEUE);
426 1.1 rmind }
427 1.1 rmind return m;
428 1.1 rmind }
429 1.1 rmind
430 1.1 rmind /*
431 1.1 rmind * pktq_barrier: waits for a grace period when all packets enqueued at
432 1.1 rmind * the moment of calling this routine will be processed. This is used
433 1.1 rmind * to ensure that e.g. packets referencing some interface were drained.
434 1.1 rmind */
435 1.1 rmind void
436 1.1 rmind pktq_barrier(pktqueue_t *pq)
437 1.1 rmind {
438 1.12 riastrad CPU_INFO_ITERATOR cii;
439 1.12 riastrad struct cpu_info *ci;
440 1.1 rmind u_int pending = 0;
441 1.1 rmind
442 1.1 rmind mutex_enter(&pq->pq_lock);
443 1.1 rmind KASSERT(pq->pq_barrier == 0);
444 1.1 rmind
445 1.12 riastrad for (CPU_INFO_FOREACH(cii, ci)) {
446 1.12 riastrad struct pcq *q;
447 1.12 riastrad
448 1.12 riastrad kpreempt_disable();
449 1.12 riastrad q = pktq_pcq(pq, ci);
450 1.12 riastrad kpreempt_enable();
451 1.1 rmind
452 1.1 rmind /* If the queue is empty - nothing to do. */
453 1.1 rmind if (pcq_peek(q) == NULL) {
454 1.1 rmind continue;
455 1.1 rmind }
456 1.1 rmind /* Otherwise, put the marker and entry. */
457 1.1 rmind while (!pcq_put(q, PKTQ_MARKER)) {
458 1.1 rmind kpause("pktqsync", false, 1, NULL);
459 1.1 rmind }
460 1.1 rmind kpreempt_disable();
461 1.12 riastrad softint_schedule_cpu(pq->pq_sih, ci);
462 1.1 rmind kpreempt_enable();
463 1.1 rmind pending++;
464 1.1 rmind }
465 1.1 rmind
466 1.1 rmind /* Wait for each queue to process the markers. */
467 1.1 rmind while (pq->pq_barrier != pending) {
468 1.1 rmind kpause("pktqsync", false, 1, NULL);
469 1.1 rmind }
470 1.1 rmind pq->pq_barrier = 0;
471 1.1 rmind mutex_exit(&pq->pq_lock);
472 1.1 rmind }
473 1.1 rmind
474 1.1 rmind /*
475 1.1 rmind * pktq_flush: free mbufs in all queues.
476 1.1 rmind *
477 1.4 rmind * => The caller must ensure there are no concurrent writers or flush calls.
478 1.1 rmind */
479 1.1 rmind void
480 1.1 rmind pktq_flush(pktqueue_t *pq)
481 1.1 rmind {
482 1.12 riastrad CPU_INFO_ITERATOR cii;
483 1.12 riastrad struct cpu_info *ci;
484 1.1 rmind struct mbuf *m;
485 1.1 rmind
486 1.12 riastrad for (CPU_INFO_FOREACH(cii, ci)) {
487 1.12 riastrad struct pcq *q;
488 1.12 riastrad
489 1.12 riastrad kpreempt_disable();
490 1.12 riastrad q = pktq_pcq(pq, ci);
491 1.12 riastrad kpreempt_enable();
492 1.12 riastrad
493 1.12 riastrad /*
494 1.12 riastrad * XXX This can't be right -- if the softint is running
495 1.12 riastrad * then pcq_get isn't safe here.
496 1.12 riastrad */
497 1.12 riastrad while ((m = pcq_get(q)) != NULL) {
498 1.1 rmind pktq_inc_count(pq, PQCNT_DEQUEUE);
499 1.1 rmind m_freem(m);
500 1.1 rmind }
501 1.1 rmind }
502 1.1 rmind }
503 1.2 rmind
504 1.12 riastrad static void
505 1.12 riastrad pktq_set_maxlen_cpu(void *vpq, void *vqs)
506 1.12 riastrad {
507 1.12 riastrad struct pktqueue *pq = vpq;
508 1.12 riastrad struct pcq **qp, *q, **qs = vqs;
509 1.12 riastrad unsigned i = cpu_index(curcpu());
510 1.12 riastrad int s;
511 1.12 riastrad
512 1.12 riastrad s = splnet();
513 1.12 riastrad qp = percpu_getref(pq->pq_pcq);
514 1.12 riastrad q = *qp;
515 1.12 riastrad *qp = qs[i];
516 1.12 riastrad qs[i] = q;
517 1.12 riastrad percpu_putref(pq->pq_pcq);
518 1.12 riastrad splx(s);
519 1.12 riastrad }
520 1.12 riastrad
521 1.2 rmind /*
522 1.2 rmind * pktq_set_maxlen: create per-CPU queues using a new size and replace
523 1.2 rmind * the existing queues without losing any packets.
524 1.12 riastrad *
525 1.12 riastrad * XXX ncpu must remain stable throughout.
526 1.2 rmind */
527 1.2 rmind int
528 1.2 rmind pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
529 1.2 rmind {
530 1.2 rmind const u_int slotbytes = ncpu * sizeof(pcq_t *);
531 1.2 rmind pcq_t **qs;
532 1.2 rmind
533 1.2 rmind if (!maxlen || maxlen > PCQ_MAXLEN)
534 1.2 rmind return EINVAL;
535 1.2 rmind if (pq->pq_maxlen == maxlen)
536 1.2 rmind return 0;
537 1.2 rmind
538 1.12 riastrad /* First, allocate the new queues. */
539 1.2 rmind qs = kmem_zalloc(slotbytes, KM_SLEEP);
540 1.2 rmind for (u_int i = 0; i < ncpu; i++) {
541 1.2 rmind qs[i] = pcq_create(maxlen, KM_SLEEP);
542 1.2 rmind }
543 1.12 riastrad
544 1.12 riastrad /*
545 1.12 riastrad * Issue an xcall to replace the queue pointers on each CPU.
546 1.12 riastrad * This implies all the necessary memory barriers.
547 1.12 riastrad */
548 1.2 rmind mutex_enter(&pq->pq_lock);
549 1.12 riastrad xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs));
550 1.2 rmind pq->pq_maxlen = maxlen;
551 1.2 rmind mutex_exit(&pq->pq_lock);
552 1.2 rmind
553 1.2 rmind /*
554 1.2 rmind * At this point, the new packets are flowing into the new
555 1.4 rmind * queues. However, the old queues may have some packets
556 1.4 rmind * present which are no longer being processed. We are going
557 1.2 rmind * to re-enqueue them. This may change the order of packet
558 1.2 rmind * arrival, but it is not considered an issue.
559 1.2 rmind *
560 1.4 rmind * There may be in-flight interrupts calling pktq_dequeue()
561 1.2 rmind * which reference the old queues. Issue a barrier to ensure
562 1.2 rmind * that we are going to be the only pcq_get() callers on the
563 1.2 rmind * old queues.
564 1.2 rmind */
565 1.2 rmind pktq_barrier(pq);
566 1.2 rmind
567 1.2 rmind for (u_int i = 0; i < ncpu; i++) {
568 1.12 riastrad struct pcq *q;
569 1.2 rmind struct mbuf *m;
570 1.2 rmind
571 1.12 riastrad kpreempt_disable();
572 1.12 riastrad q = pktq_pcq(pq, cpu_lookup(i));
573 1.12 riastrad kpreempt_enable();
574 1.12 riastrad
575 1.2 rmind while ((m = pcq_get(qs[i])) != NULL) {
576 1.12 riastrad while (!pcq_put(q, m)) {
577 1.2 rmind kpause("pktqrenq", false, 1, NULL);
578 1.2 rmind }
579 1.2 rmind }
580 1.2 rmind pcq_destroy(qs[i]);
581 1.2 rmind }
582 1.2 rmind
583 1.2 rmind /* Well, that was fun. */
584 1.2 rmind kmem_free(qs, slotbytes);
585 1.2 rmind return 0;
586 1.2 rmind }
587 1.6 ozaki
588 1.6 ozaki int
589 1.6 ozaki sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
590 1.6 ozaki {
591 1.6 ozaki u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
592 1.6 ozaki struct sysctlnode node = *rnode;
593 1.6 ozaki int error;
594 1.6 ozaki
595 1.6 ozaki node.sysctl_data = &nmaxlen;
596 1.6 ozaki error = sysctl_lookup(SYSCTLFN_CALL(&node));
597 1.6 ozaki if (error || newp == NULL)
598 1.6 ozaki return error;
599 1.6 ozaki return pktq_set_maxlen(pq, nmaxlen);
600 1.6 ozaki }
601 1.6 ozaki
602 1.6 ozaki int
603 1.6 ozaki sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
604 1.6 ozaki {
605 1.10 msaitoh uint64_t count = pktq_get_count(pq, count_id);
606 1.6 ozaki struct sysctlnode node = *rnode;
607 1.10 msaitoh
608 1.6 ozaki node.sysctl_data = &count;
609 1.6 ozaki return sysctl_lookup(SYSCTLFN_CALL(&node));
610 1.6 ozaki }
611