pktqueue.c revision 1.22 1 1.22 andvar /* $NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.1 rmind * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rmind * by Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.4 rmind /*
33 1.4 rmind * The packet queue (pktqueue) interface is a lockless IP input queue
34 1.4 rmind * which also abstracts and handles network ISR scheduling. It provides
35 1.4 rmind * a mechanism to enable receiver-side packet steering (RPS).
36 1.4 rmind */
37 1.4 rmind
38 1.1 rmind #include <sys/cdefs.h>
39 1.22 andvar __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.22 2023/05/28 08:09:34 andvar Exp $");
40 1.14 knakahar
41 1.14 knakahar #ifdef _KERNEL_OPT
42 1.14 knakahar #include "opt_net_mpsafe.h"
43 1.14 knakahar #endif
44 1.1 rmind
45 1.1 rmind #include <sys/param.h>
46 1.1 rmind #include <sys/types.h>
47 1.1 rmind
48 1.1 rmind #include <sys/atomic.h>
49 1.1 rmind #include <sys/cpu.h>
50 1.1 rmind #include <sys/pcq.h>
51 1.1 rmind #include <sys/intr.h>
52 1.1 rmind #include <sys/mbuf.h>
53 1.1 rmind #include <sys/proc.h>
54 1.1 rmind #include <sys/percpu.h>
55 1.11 thorpej #include <sys/xcall.h>
56 1.20 thorpej #include <sys/once.h>
57 1.20 thorpej #include <sys/queue.h>
58 1.20 thorpej #include <sys/rwlock.h>
59 1.1 rmind
60 1.1 rmind #include <net/pktqueue.h>
61 1.14 knakahar #include <net/rss_config.h>
62 1.14 knakahar
63 1.14 knakahar #include <netinet/in.h>
64 1.14 knakahar #include <netinet/ip.h>
65 1.14 knakahar #include <netinet/ip6.h>
66 1.1 rmind
67 1.1 rmind struct pktqueue {
68 1.1 rmind /*
69 1.1 rmind * The lock used for a barrier mechanism. The barrier counter,
70 1.1 rmind * as well as the drop counter, are managed atomically though.
71 1.1 rmind * Ensure this group is in a separate cache line.
72 1.1 rmind */
73 1.13 skrll union {
74 1.13 skrll struct {
75 1.13 skrll kmutex_t pq_lock;
76 1.13 skrll volatile u_int pq_barrier;
77 1.13 skrll };
78 1.13 skrll uint8_t _pad[COHERENCY_UNIT];
79 1.13 skrll };
80 1.1 rmind
81 1.1 rmind /* The size of the queue, counters and the interrupt handler. */
82 1.1 rmind u_int pq_maxlen;
83 1.1 rmind percpu_t * pq_counters;
84 1.1 rmind void * pq_sih;
85 1.1 rmind
86 1.20 thorpej /* The per-CPU queues. */
87 1.12 riastrad struct percpu * pq_pcq; /* struct pcq * */
88 1.20 thorpej
89 1.20 thorpej /* The linkage on the list of all pktqueues. */
90 1.20 thorpej LIST_ENTRY(pktqueue) pq_list;
91 1.1 rmind };
92 1.1 rmind
93 1.1 rmind /* The counters of the packet queue. */
94 1.1 rmind #define PQCNT_ENQUEUE 0
95 1.1 rmind #define PQCNT_DEQUEUE 1
96 1.1 rmind #define PQCNT_DROP 2
97 1.1 rmind #define PQCNT_NCOUNTERS 3
98 1.1 rmind
99 1.1 rmind typedef struct {
100 1.1 rmind uint64_t count[PQCNT_NCOUNTERS];
101 1.1 rmind } pktq_counters_t;
102 1.1 rmind
103 1.1 rmind /* Special marker value used by pktq_barrier() mechanism. */
104 1.1 rmind #define PKTQ_MARKER ((void *)(~0ULL))
105 1.1 rmind
106 1.20 thorpej /*
107 1.20 thorpej * This is a list of all pktqueues. This list is used by
108 1.20 thorpej * pktq_ifdetach() to issue a barrier on every pktqueue.
109 1.20 thorpej *
110 1.20 thorpej * The r/w lock is acquired for writing in pktq_create() and
111 1.20 thorpej * pktq_destroy(), and for reading in pktq_ifdetach().
112 1.20 thorpej *
113 1.20 thorpej * This list is not performance critical, and will seldom be
114 1.20 thorpej * accessed.
115 1.20 thorpej */
116 1.20 thorpej static LIST_HEAD(, pktqueue) pktqueue_list __read_mostly;
117 1.20 thorpej static krwlock_t pktqueue_list_lock __read_mostly;
118 1.20 thorpej static once_t pktqueue_list_init_once __read_mostly;
119 1.20 thorpej
120 1.20 thorpej static int
121 1.20 thorpej pktqueue_list_init(void)
122 1.20 thorpej {
123 1.20 thorpej LIST_INIT(&pktqueue_list);
124 1.20 thorpej rw_init(&pktqueue_list_lock);
125 1.20 thorpej return 0;
126 1.20 thorpej }
127 1.20 thorpej
128 1.12 riastrad static void
129 1.12 riastrad pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci)
130 1.12 riastrad {
131 1.12 riastrad struct pcq **qp = vqp;
132 1.12 riastrad struct pktqueue *pq = vpq;
133 1.12 riastrad
134 1.12 riastrad *qp = pcq_create(pq->pq_maxlen, KM_SLEEP);
135 1.12 riastrad }
136 1.12 riastrad
137 1.12 riastrad static void
138 1.12 riastrad pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci)
139 1.12 riastrad {
140 1.12 riastrad struct pcq **qp = vqp, *q = *qp;
141 1.12 riastrad
142 1.12 riastrad KASSERT(pcq_peek(q) == NULL);
143 1.12 riastrad pcq_destroy(q);
144 1.12 riastrad *qp = NULL; /* paranoia */
145 1.12 riastrad }
146 1.12 riastrad
147 1.12 riastrad static struct pcq *
148 1.12 riastrad pktq_pcq(struct pktqueue *pq, struct cpu_info *ci)
149 1.12 riastrad {
150 1.12 riastrad struct pcq **qp, *q;
151 1.12 riastrad
152 1.12 riastrad /*
153 1.12 riastrad * As long as preemption is disabled, the xcall to swap percpu
154 1.12 riastrad * buffers can't complete, so it is safe to read the pointer.
155 1.12 riastrad */
156 1.12 riastrad KASSERT(kpreempt_disabled());
157 1.12 riastrad
158 1.12 riastrad qp = percpu_getptr_remote(pq->pq_pcq, ci);
159 1.12 riastrad q = *qp;
160 1.12 riastrad
161 1.12 riastrad return q;
162 1.12 riastrad }
163 1.1 rmind
164 1.1 rmind pktqueue_t *
165 1.5 ozaki pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
166 1.1 rmind {
167 1.1 rmind const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
168 1.1 rmind pktqueue_t *pq;
169 1.1 rmind percpu_t *pc;
170 1.1 rmind void *sih;
171 1.1 rmind
172 1.20 thorpej RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init);
173 1.20 thorpej
174 1.9 chs pc = percpu_alloc(sizeof(pktq_counters_t));
175 1.5 ozaki if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
176 1.1 rmind percpu_free(pc, sizeof(pktq_counters_t));
177 1.1 rmind return NULL;
178 1.1 rmind }
179 1.1 rmind
180 1.12 riastrad pq = kmem_zalloc(sizeof(*pq), KM_SLEEP);
181 1.1 rmind mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
182 1.1 rmind pq->pq_maxlen = maxlen;
183 1.1 rmind pq->pq_counters = pc;
184 1.1 rmind pq->pq_sih = sih;
185 1.12 riastrad pq->pq_pcq = percpu_create(sizeof(struct pcq *),
186 1.12 riastrad pktq_init_cpu, pktq_fini_cpu, pq);
187 1.1 rmind
188 1.20 thorpej rw_enter(&pktqueue_list_lock, RW_WRITER);
189 1.20 thorpej LIST_INSERT_HEAD(&pktqueue_list, pq, pq_list);
190 1.20 thorpej rw_exit(&pktqueue_list_lock);
191 1.20 thorpej
192 1.1 rmind return pq;
193 1.1 rmind }
194 1.1 rmind
195 1.1 rmind void
196 1.1 rmind pktq_destroy(pktqueue_t *pq)
197 1.1 rmind {
198 1.1 rmind
199 1.20 thorpej KASSERT(pktqueue_list_init_once.o_status == ONCE_DONE);
200 1.20 thorpej
201 1.20 thorpej rw_enter(&pktqueue_list_lock, RW_WRITER);
202 1.20 thorpej LIST_REMOVE(pq, pq_list);
203 1.20 thorpej rw_exit(&pktqueue_list_lock);
204 1.20 thorpej
205 1.12 riastrad percpu_free(pq->pq_pcq, sizeof(struct pcq *));
206 1.1 rmind percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
207 1.1 rmind softint_disestablish(pq->pq_sih);
208 1.1 rmind mutex_destroy(&pq->pq_lock);
209 1.12 riastrad kmem_free(pq, sizeof(*pq));
210 1.1 rmind }
211 1.1 rmind
212 1.1 rmind /*
213 1.1 rmind * - pktq_inc_counter: increment the counter given an ID.
214 1.1 rmind * - pktq_collect_counts: handler to sum up the counts from each CPU.
215 1.1 rmind * - pktq_getcount: return the effective count given an ID.
216 1.1 rmind */
217 1.1 rmind
218 1.1 rmind static inline void
219 1.1 rmind pktq_inc_count(pktqueue_t *pq, u_int i)
220 1.1 rmind {
221 1.1 rmind percpu_t *pc = pq->pq_counters;
222 1.1 rmind pktq_counters_t *c;
223 1.1 rmind
224 1.1 rmind c = percpu_getref(pc);
225 1.1 rmind c->count[i]++;
226 1.1 rmind percpu_putref(pc);
227 1.1 rmind }
228 1.1 rmind
229 1.1 rmind static void
230 1.1 rmind pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
231 1.1 rmind {
232 1.1 rmind const pktq_counters_t *c = mem;
233 1.1 rmind pktq_counters_t *sum = arg;
234 1.1 rmind
235 1.11 thorpej int s = splnet();
236 1.11 thorpej
237 1.1 rmind for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
238 1.1 rmind sum->count[i] += c->count[i];
239 1.1 rmind }
240 1.11 thorpej
241 1.11 thorpej splx(s);
242 1.1 rmind }
243 1.1 rmind
244 1.19 thorpej static uint64_t
245 1.1 rmind pktq_get_count(pktqueue_t *pq, pktq_count_t c)
246 1.1 rmind {
247 1.1 rmind pktq_counters_t sum;
248 1.1 rmind
249 1.1 rmind if (c != PKTQ_MAXLEN) {
250 1.1 rmind memset(&sum, 0, sizeof(sum));
251 1.11 thorpej percpu_foreach_xcall(pq->pq_counters,
252 1.11 thorpej XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
253 1.1 rmind }
254 1.1 rmind switch (c) {
255 1.1 rmind case PKTQ_NITEMS:
256 1.1 rmind return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
257 1.1 rmind case PKTQ_DROPS:
258 1.1 rmind return sum.count[PQCNT_DROP];
259 1.1 rmind case PKTQ_MAXLEN:
260 1.1 rmind return pq->pq_maxlen;
261 1.1 rmind }
262 1.1 rmind return 0;
263 1.1 rmind }
264 1.1 rmind
265 1.1 rmind uint32_t
266 1.18 thorpej pktq_rps_hash(const pktq_rps_hash_func_t *funcp, const struct mbuf *m)
267 1.14 knakahar {
268 1.14 knakahar pktq_rps_hash_func_t func = atomic_load_relaxed(funcp);
269 1.14 knakahar
270 1.14 knakahar KASSERT(func != NULL);
271 1.14 knakahar
272 1.14 knakahar return (*func)(m);
273 1.14 knakahar }
274 1.14 knakahar
275 1.14 knakahar static uint32_t
276 1.14 knakahar pktq_rps_hash_zero(const struct mbuf *m __unused)
277 1.1 rmind {
278 1.14 knakahar
279 1.14 knakahar return 0;
280 1.14 knakahar }
281 1.14 knakahar
282 1.14 knakahar static uint32_t
283 1.14 knakahar pktq_rps_hash_curcpu(const struct mbuf *m __unused)
284 1.14 knakahar {
285 1.14 knakahar
286 1.14 knakahar return cpu_index(curcpu());
287 1.14 knakahar }
288 1.14 knakahar
289 1.14 knakahar static uint32_t
290 1.14 knakahar pktq_rps_hash_toeplitz(const struct mbuf *m)
291 1.14 knakahar {
292 1.14 knakahar struct ip *ip;
293 1.1 rmind /*
294 1.14 knakahar * Disable UDP port - IP fragments aren't currently being handled
295 1.14 knakahar * and so we end up with a mix of 2-tuple and 4-tuple
296 1.14 knakahar * traffic.
297 1.1 rmind */
298 1.14 knakahar const u_int flag = RSS_TOEPLITZ_USE_TCP_PORT;
299 1.14 knakahar
300 1.14 knakahar /* glance IP version */
301 1.14 knakahar if ((m->m_flags & M_PKTHDR) == 0)
302 1.14 knakahar return 0;
303 1.14 knakahar
304 1.14 knakahar ip = mtod(m, struct ip *);
305 1.14 knakahar if (ip->ip_v == IPVERSION) {
306 1.14 knakahar if (__predict_false(m->m_len < sizeof(struct ip)))
307 1.14 knakahar return 0;
308 1.14 knakahar return rss_toeplitz_hash_from_mbuf_ipv4(m, flag);
309 1.14 knakahar } else if (ip->ip_v == 6) {
310 1.14 knakahar if (__predict_false(m->m_len < sizeof(struct ip6_hdr)))
311 1.14 knakahar return 0;
312 1.14 knakahar return rss_toeplitz_hash_from_mbuf_ipv6(m, flag);
313 1.14 knakahar }
314 1.14 knakahar
315 1.1 rmind return 0;
316 1.1 rmind }
317 1.1 rmind
318 1.1 rmind /*
319 1.15 knakahar * toeplitz without curcpu.
320 1.15 knakahar * Generally, this has better performance than toeplitz.
321 1.14 knakahar */
322 1.14 knakahar static uint32_t
323 1.14 knakahar pktq_rps_hash_toeplitz_othercpus(const struct mbuf *m)
324 1.14 knakahar {
325 1.14 knakahar uint32_t hash;
326 1.14 knakahar
327 1.16 knakahar if (ncpu == 1)
328 1.16 knakahar return 0;
329 1.16 knakahar
330 1.14 knakahar hash = pktq_rps_hash_toeplitz(m);
331 1.14 knakahar hash %= ncpu - 1;
332 1.14 knakahar if (hash >= cpu_index(curcpu()))
333 1.14 knakahar return hash + 1;
334 1.14 knakahar else
335 1.14 knakahar return hash;
336 1.14 knakahar }
337 1.14 knakahar
338 1.14 knakahar static struct pktq_rps_hash_table {
339 1.14 knakahar const char* prh_type;
340 1.14 knakahar pktq_rps_hash_func_t prh_func;
341 1.14 knakahar } const pktq_rps_hash_tab[] = {
342 1.14 knakahar { "zero", pktq_rps_hash_zero },
343 1.14 knakahar { "curcpu", pktq_rps_hash_curcpu },
344 1.14 knakahar { "toeplitz", pktq_rps_hash_toeplitz },
345 1.14 knakahar { "toeplitz-othercpus", pktq_rps_hash_toeplitz_othercpus },
346 1.14 knakahar };
347 1.14 knakahar const pktq_rps_hash_func_t pktq_rps_hash_default =
348 1.14 knakahar #ifdef NET_MPSAFE
349 1.14 knakahar pktq_rps_hash_curcpu;
350 1.14 knakahar #else
351 1.14 knakahar pktq_rps_hash_zero;
352 1.14 knakahar #endif
353 1.14 knakahar
354 1.14 knakahar static const char *
355 1.14 knakahar pktq_get_rps_hash_type(pktq_rps_hash_func_t func)
356 1.14 knakahar {
357 1.14 knakahar
358 1.14 knakahar for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
359 1.14 knakahar if (func == pktq_rps_hash_tab[i].prh_func) {
360 1.14 knakahar return pktq_rps_hash_tab[i].prh_type;
361 1.14 knakahar }
362 1.14 knakahar }
363 1.14 knakahar
364 1.14 knakahar return NULL;
365 1.14 knakahar }
366 1.14 knakahar
367 1.14 knakahar static int
368 1.14 knakahar pktq_set_rps_hash_type(pktq_rps_hash_func_t *func, const char *type)
369 1.14 knakahar {
370 1.14 knakahar
371 1.14 knakahar if (strcmp(type, pktq_get_rps_hash_type(*func)) == 0)
372 1.14 knakahar return 0;
373 1.14 knakahar
374 1.14 knakahar for (int i = 0; i < __arraycount(pktq_rps_hash_tab); i++) {
375 1.14 knakahar if (strcmp(type, pktq_rps_hash_tab[i].prh_type) == 0) {
376 1.14 knakahar atomic_store_relaxed(func, pktq_rps_hash_tab[i].prh_func);
377 1.14 knakahar return 0;
378 1.14 knakahar }
379 1.14 knakahar }
380 1.14 knakahar
381 1.14 knakahar return ENOENT;
382 1.14 knakahar }
383 1.14 knakahar
384 1.14 knakahar int
385 1.14 knakahar sysctl_pktq_rps_hash_handler(SYSCTLFN_ARGS)
386 1.14 knakahar {
387 1.14 knakahar struct sysctlnode node;
388 1.14 knakahar pktq_rps_hash_func_t *func;
389 1.14 knakahar int error;
390 1.14 knakahar char type[PKTQ_RPS_HASH_NAME_LEN];
391 1.14 knakahar
392 1.14 knakahar node = *rnode;
393 1.14 knakahar func = node.sysctl_data;
394 1.14 knakahar
395 1.14 knakahar strlcpy(type, pktq_get_rps_hash_type(*func), PKTQ_RPS_HASH_NAME_LEN);
396 1.14 knakahar
397 1.14 knakahar node.sysctl_data = &type;
398 1.14 knakahar node.sysctl_size = sizeof(type);
399 1.14 knakahar error = sysctl_lookup(SYSCTLFN_CALL(&node));
400 1.14 knakahar if (error || newp == NULL)
401 1.14 knakahar return error;
402 1.14 knakahar
403 1.14 knakahar error = pktq_set_rps_hash_type(func, type);
404 1.14 knakahar
405 1.14 knakahar return error;
406 1.14 knakahar }
407 1.14 knakahar
408 1.14 knakahar /*
409 1.1 rmind * pktq_enqueue: inject the packet into the end of the queue.
410 1.1 rmind *
411 1.1 rmind * => Must be called from the interrupt or with the preemption disabled.
412 1.1 rmind * => Consumes the packet and returns true on success.
413 1.1 rmind * => Returns false on failure; caller is responsible to free the packet.
414 1.1 rmind */
415 1.1 rmind bool
416 1.3 rmind pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
417 1.1 rmind {
418 1.8 ozaki #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
419 1.12 riastrad struct cpu_info *ci = curcpu();
420 1.7 ozaki #else
421 1.12 riastrad struct cpu_info *ci = cpu_lookup(hash % ncpu);
422 1.7 ozaki #endif
423 1.1 rmind
424 1.1 rmind KASSERT(kpreempt_disabled());
425 1.1 rmind
426 1.12 riastrad if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) {
427 1.1 rmind pktq_inc_count(pq, PQCNT_DROP);
428 1.1 rmind return false;
429 1.1 rmind }
430 1.12 riastrad softint_schedule_cpu(pq->pq_sih, ci);
431 1.1 rmind pktq_inc_count(pq, PQCNT_ENQUEUE);
432 1.1 rmind return true;
433 1.1 rmind }
434 1.1 rmind
435 1.1 rmind /*
436 1.1 rmind * pktq_dequeue: take a packet from the queue.
437 1.1 rmind *
438 1.1 rmind * => Must be called with preemption disabled.
439 1.1 rmind * => Must ensure there are not concurrent dequeue calls.
440 1.1 rmind */
441 1.1 rmind struct mbuf *
442 1.1 rmind pktq_dequeue(pktqueue_t *pq)
443 1.1 rmind {
444 1.12 riastrad struct cpu_info *ci = curcpu();
445 1.1 rmind struct mbuf *m;
446 1.1 rmind
447 1.12 riastrad KASSERT(kpreempt_disabled());
448 1.12 riastrad
449 1.12 riastrad m = pcq_get(pktq_pcq(pq, ci));
450 1.1 rmind if (__predict_false(m == PKTQ_MARKER)) {
451 1.1 rmind /* Note the marker entry. */
452 1.1 rmind atomic_inc_uint(&pq->pq_barrier);
453 1.17 thorpej
454 1.17 thorpej /* Get the next queue entry. */
455 1.17 thorpej m = pcq_get(pktq_pcq(pq, ci));
456 1.17 thorpej
457 1.17 thorpej /*
458 1.17 thorpej * There can only be one barrier operation pending
459 1.17 thorpej * on a pktqueue at any given time, so we can assert
460 1.17 thorpej * that the next item is not a marker.
461 1.17 thorpej */
462 1.17 thorpej KASSERT(m != PKTQ_MARKER);
463 1.1 rmind }
464 1.1 rmind if (__predict_true(m != NULL)) {
465 1.1 rmind pktq_inc_count(pq, PQCNT_DEQUEUE);
466 1.1 rmind }
467 1.1 rmind return m;
468 1.1 rmind }
469 1.1 rmind
470 1.1 rmind /*
471 1.1 rmind * pktq_barrier: waits for a grace period when all packets enqueued at
472 1.1 rmind * the moment of calling this routine will be processed. This is used
473 1.1 rmind * to ensure that e.g. packets referencing some interface were drained.
474 1.1 rmind */
475 1.1 rmind void
476 1.1 rmind pktq_barrier(pktqueue_t *pq)
477 1.1 rmind {
478 1.12 riastrad CPU_INFO_ITERATOR cii;
479 1.12 riastrad struct cpu_info *ci;
480 1.1 rmind u_int pending = 0;
481 1.1 rmind
482 1.1 rmind mutex_enter(&pq->pq_lock);
483 1.1 rmind KASSERT(pq->pq_barrier == 0);
484 1.1 rmind
485 1.12 riastrad for (CPU_INFO_FOREACH(cii, ci)) {
486 1.12 riastrad struct pcq *q;
487 1.12 riastrad
488 1.12 riastrad kpreempt_disable();
489 1.12 riastrad q = pktq_pcq(pq, ci);
490 1.12 riastrad kpreempt_enable();
491 1.1 rmind
492 1.1 rmind /* If the queue is empty - nothing to do. */
493 1.1 rmind if (pcq_peek(q) == NULL) {
494 1.1 rmind continue;
495 1.1 rmind }
496 1.1 rmind /* Otherwise, put the marker and entry. */
497 1.1 rmind while (!pcq_put(q, PKTQ_MARKER)) {
498 1.1 rmind kpause("pktqsync", false, 1, NULL);
499 1.1 rmind }
500 1.1 rmind kpreempt_disable();
501 1.12 riastrad softint_schedule_cpu(pq->pq_sih, ci);
502 1.1 rmind kpreempt_enable();
503 1.1 rmind pending++;
504 1.1 rmind }
505 1.1 rmind
506 1.1 rmind /* Wait for each queue to process the markers. */
507 1.1 rmind while (pq->pq_barrier != pending) {
508 1.1 rmind kpause("pktqsync", false, 1, NULL);
509 1.1 rmind }
510 1.1 rmind pq->pq_barrier = 0;
511 1.1 rmind mutex_exit(&pq->pq_lock);
512 1.1 rmind }
513 1.1 rmind
514 1.1 rmind /*
515 1.20 thorpej * pktq_ifdetach: issue a barrier on all pktqueues when a network
516 1.20 thorpej * interface is detached.
517 1.20 thorpej */
518 1.20 thorpej void
519 1.20 thorpej pktq_ifdetach(void)
520 1.20 thorpej {
521 1.20 thorpej pktqueue_t *pq;
522 1.20 thorpej
523 1.20 thorpej /* Just in case no pktqueues have been created yet... */
524 1.20 thorpej RUN_ONCE(&pktqueue_list_init_once, pktqueue_list_init);
525 1.20 thorpej
526 1.20 thorpej rw_enter(&pktqueue_list_lock, RW_READER);
527 1.20 thorpej LIST_FOREACH(pq, &pktqueue_list, pq_list) {
528 1.20 thorpej pktq_barrier(pq);
529 1.20 thorpej }
530 1.20 thorpej rw_exit(&pktqueue_list_lock);
531 1.20 thorpej }
532 1.20 thorpej
533 1.20 thorpej /*
534 1.1 rmind * pktq_flush: free mbufs in all queues.
535 1.1 rmind *
536 1.4 rmind * => The caller must ensure there are no concurrent writers or flush calls.
537 1.1 rmind */
538 1.1 rmind void
539 1.1 rmind pktq_flush(pktqueue_t *pq)
540 1.1 rmind {
541 1.12 riastrad CPU_INFO_ITERATOR cii;
542 1.12 riastrad struct cpu_info *ci;
543 1.21 thorpej struct mbuf *m, *m0 = NULL;
544 1.21 thorpej
545 1.21 thorpej ASSERT_SLEEPABLE();
546 1.21 thorpej
547 1.21 thorpej /*
548 1.21 thorpej * Run a dummy softint at IPL_SOFTNET on all CPUs to ensure that any
549 1.21 thorpej * already running handler for this pktqueue is no longer running.
550 1.21 thorpej */
551 1.21 thorpej xc_barrier(XC_HIGHPRI_IPL(IPL_SOFTNET));
552 1.21 thorpej
553 1.21 thorpej /*
554 1.21 thorpej * Acquire the barrier lock. While the caller ensures that
555 1.22 andvar * no explicit pktq_barrier() calls will be issued, this holds
556 1.21 thorpej * off any implicit pktq_barrier() calls that would happen
557 1.21 thorpej * as the result of pktq_ifdetach().
558 1.21 thorpej */
559 1.21 thorpej mutex_enter(&pq->pq_lock);
560 1.1 rmind
561 1.12 riastrad for (CPU_INFO_FOREACH(cii, ci)) {
562 1.12 riastrad struct pcq *q;
563 1.12 riastrad
564 1.12 riastrad kpreempt_disable();
565 1.12 riastrad q = pktq_pcq(pq, ci);
566 1.12 riastrad kpreempt_enable();
567 1.12 riastrad
568 1.12 riastrad /*
569 1.21 thorpej * Pull the packets off the pcq and chain them into
570 1.21 thorpej * a list to be freed later.
571 1.12 riastrad */
572 1.12 riastrad while ((m = pcq_get(q)) != NULL) {
573 1.1 rmind pktq_inc_count(pq, PQCNT_DEQUEUE);
574 1.21 thorpej m->m_nextpkt = m0;
575 1.21 thorpej m0 = m;
576 1.1 rmind }
577 1.1 rmind }
578 1.21 thorpej
579 1.21 thorpej mutex_exit(&pq->pq_lock);
580 1.21 thorpej
581 1.21 thorpej /* Free the packets now that the critical section is over. */
582 1.21 thorpej while ((m = m0) != NULL) {
583 1.21 thorpej m0 = m->m_nextpkt;
584 1.21 thorpej m_freem(m);
585 1.21 thorpej }
586 1.1 rmind }
587 1.2 rmind
588 1.12 riastrad static void
589 1.12 riastrad pktq_set_maxlen_cpu(void *vpq, void *vqs)
590 1.12 riastrad {
591 1.12 riastrad struct pktqueue *pq = vpq;
592 1.12 riastrad struct pcq **qp, *q, **qs = vqs;
593 1.12 riastrad unsigned i = cpu_index(curcpu());
594 1.12 riastrad int s;
595 1.12 riastrad
596 1.12 riastrad s = splnet();
597 1.12 riastrad qp = percpu_getref(pq->pq_pcq);
598 1.12 riastrad q = *qp;
599 1.12 riastrad *qp = qs[i];
600 1.12 riastrad qs[i] = q;
601 1.12 riastrad percpu_putref(pq->pq_pcq);
602 1.12 riastrad splx(s);
603 1.12 riastrad }
604 1.12 riastrad
605 1.2 rmind /*
606 1.2 rmind * pktq_set_maxlen: create per-CPU queues using a new size and replace
607 1.2 rmind * the existing queues without losing any packets.
608 1.12 riastrad *
609 1.12 riastrad * XXX ncpu must remain stable throughout.
610 1.2 rmind */
611 1.2 rmind int
612 1.2 rmind pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
613 1.2 rmind {
614 1.2 rmind const u_int slotbytes = ncpu * sizeof(pcq_t *);
615 1.2 rmind pcq_t **qs;
616 1.2 rmind
617 1.2 rmind if (!maxlen || maxlen > PCQ_MAXLEN)
618 1.2 rmind return EINVAL;
619 1.2 rmind if (pq->pq_maxlen == maxlen)
620 1.2 rmind return 0;
621 1.2 rmind
622 1.12 riastrad /* First, allocate the new queues. */
623 1.2 rmind qs = kmem_zalloc(slotbytes, KM_SLEEP);
624 1.2 rmind for (u_int i = 0; i < ncpu; i++) {
625 1.2 rmind qs[i] = pcq_create(maxlen, KM_SLEEP);
626 1.2 rmind }
627 1.12 riastrad
628 1.12 riastrad /*
629 1.12 riastrad * Issue an xcall to replace the queue pointers on each CPU.
630 1.12 riastrad * This implies all the necessary memory barriers.
631 1.12 riastrad */
632 1.2 rmind mutex_enter(&pq->pq_lock);
633 1.12 riastrad xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs));
634 1.2 rmind pq->pq_maxlen = maxlen;
635 1.2 rmind mutex_exit(&pq->pq_lock);
636 1.2 rmind
637 1.2 rmind /*
638 1.2 rmind * At this point, the new packets are flowing into the new
639 1.4 rmind * queues. However, the old queues may have some packets
640 1.4 rmind * present which are no longer being processed. We are going
641 1.2 rmind * to re-enqueue them. This may change the order of packet
642 1.2 rmind * arrival, but it is not considered an issue.
643 1.2 rmind *
644 1.4 rmind * There may be in-flight interrupts calling pktq_dequeue()
645 1.2 rmind * which reference the old queues. Issue a barrier to ensure
646 1.2 rmind * that we are going to be the only pcq_get() callers on the
647 1.2 rmind * old queues.
648 1.2 rmind */
649 1.2 rmind pktq_barrier(pq);
650 1.2 rmind
651 1.2 rmind for (u_int i = 0; i < ncpu; i++) {
652 1.12 riastrad struct pcq *q;
653 1.2 rmind struct mbuf *m;
654 1.2 rmind
655 1.12 riastrad kpreempt_disable();
656 1.12 riastrad q = pktq_pcq(pq, cpu_lookup(i));
657 1.12 riastrad kpreempt_enable();
658 1.12 riastrad
659 1.2 rmind while ((m = pcq_get(qs[i])) != NULL) {
660 1.12 riastrad while (!pcq_put(q, m)) {
661 1.2 rmind kpause("pktqrenq", false, 1, NULL);
662 1.2 rmind }
663 1.2 rmind }
664 1.2 rmind pcq_destroy(qs[i]);
665 1.2 rmind }
666 1.2 rmind
667 1.2 rmind /* Well, that was fun. */
668 1.2 rmind kmem_free(qs, slotbytes);
669 1.2 rmind return 0;
670 1.2 rmind }
671 1.6 ozaki
672 1.19 thorpej static int
673 1.19 thorpej sysctl_pktq_maxlen(SYSCTLFN_ARGS)
674 1.6 ozaki {
675 1.19 thorpej struct sysctlnode node = *rnode;
676 1.19 thorpej pktqueue_t * const pq = node.sysctl_data;
677 1.6 ozaki u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
678 1.6 ozaki int error;
679 1.6 ozaki
680 1.6 ozaki node.sysctl_data = &nmaxlen;
681 1.6 ozaki error = sysctl_lookup(SYSCTLFN_CALL(&node));
682 1.6 ozaki if (error || newp == NULL)
683 1.6 ozaki return error;
684 1.6 ozaki return pktq_set_maxlen(pq, nmaxlen);
685 1.6 ozaki }
686 1.6 ozaki
687 1.19 thorpej static int
688 1.19 thorpej sysctl_pktq_count(SYSCTLFN_ARGS, u_int count_id)
689 1.6 ozaki {
690 1.19 thorpej struct sysctlnode node = *rnode;
691 1.19 thorpej pktqueue_t * const pq = node.sysctl_data;
692 1.10 msaitoh uint64_t count = pktq_get_count(pq, count_id);
693 1.10 msaitoh
694 1.6 ozaki node.sysctl_data = &count;
695 1.6 ozaki return sysctl_lookup(SYSCTLFN_CALL(&node));
696 1.6 ozaki }
697 1.19 thorpej
698 1.19 thorpej static int
699 1.19 thorpej sysctl_pktq_nitems(SYSCTLFN_ARGS)
700 1.19 thorpej {
701 1.19 thorpej return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_NITEMS);
702 1.19 thorpej }
703 1.19 thorpej
704 1.19 thorpej static int
705 1.19 thorpej sysctl_pktq_drops(SYSCTLFN_ARGS)
706 1.19 thorpej {
707 1.19 thorpej return sysctl_pktq_count(SYSCTLFN_CALL(rnode), PKTQ_DROPS);
708 1.19 thorpej }
709 1.19 thorpej
710 1.19 thorpej /*
711 1.19 thorpej * pktqueue_sysctl_setup: set up the sysctl nodes for a pktqueue
712 1.19 thorpej * using standardized names at the specified parent node and
713 1.19 thorpej * node ID (or CTL_CREATE).
714 1.19 thorpej */
715 1.19 thorpej void
716 1.19 thorpej pktq_sysctl_setup(pktqueue_t * const pq, struct sysctllog ** const clog,
717 1.19 thorpej const struct sysctlnode * const parent_node, const int qid)
718 1.19 thorpej {
719 1.19 thorpej const struct sysctlnode *rnode = parent_node, *cnode;
720 1.19 thorpej
721 1.19 thorpej KASSERT(pq != NULL);
722 1.19 thorpej KASSERT(parent_node != NULL);
723 1.19 thorpej KASSERT(qid == CTL_CREATE || qid >= 0);
724 1.19 thorpej
725 1.19 thorpej /* Create the "ifq" node below the parent node. */
726 1.19 thorpej sysctl_createv(clog, 0, &rnode, &cnode,
727 1.19 thorpej CTLFLAG_PERMANENT,
728 1.19 thorpej CTLTYPE_NODE, "ifq",
729 1.19 thorpej SYSCTL_DESCR("Protocol input queue controls"),
730 1.19 thorpej NULL, 0, NULL, 0,
731 1.19 thorpej qid, CTL_EOL);
732 1.19 thorpej
733 1.19 thorpej /* Now create the standard child nodes below "ifq". */
734 1.19 thorpej rnode = cnode;
735 1.19 thorpej
736 1.19 thorpej sysctl_createv(clog, 0, &rnode, &cnode,
737 1.19 thorpej CTLFLAG_PERMANENT,
738 1.19 thorpej CTLTYPE_QUAD, "len",
739 1.19 thorpej SYSCTL_DESCR("Current input queue length"),
740 1.19 thorpej sysctl_pktq_nitems, 0, (void *)pq, 0,
741 1.19 thorpej IFQCTL_LEN, CTL_EOL);
742 1.19 thorpej sysctl_createv(clog, 0, &rnode, &cnode,
743 1.19 thorpej CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
744 1.19 thorpej CTLTYPE_INT, "maxlen",
745 1.19 thorpej SYSCTL_DESCR("Maximum allowed input queue length"),
746 1.19 thorpej sysctl_pktq_maxlen, 0, (void *)pq, 0,
747 1.19 thorpej IFQCTL_MAXLEN, CTL_EOL);
748 1.19 thorpej sysctl_createv(clog, 0, &rnode, &cnode,
749 1.19 thorpej CTLFLAG_PERMANENT,
750 1.19 thorpej CTLTYPE_QUAD, "drops",
751 1.19 thorpej SYSCTL_DESCR("Packets dropped due to full input queue"),
752 1.19 thorpej sysctl_pktq_drops, 0, (void *)pq, 0,
753 1.19 thorpej IFQCTL_DROPS, CTL_EOL);
754 1.19 thorpej }
755