Home | History | Annotate | Line # | Download | only in net
pktqueue.c revision 1.9.10.1
      1  1.9.10.1  christos /*	$NetBSD: pktqueue.c,v 1.9.10.1 2019/06/10 22:09:45 christos Exp $	*/
      2       1.1     rmind 
      3       1.1     rmind /*-
      4       1.1     rmind  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5       1.1     rmind  * All rights reserved.
      6       1.1     rmind  *
      7       1.1     rmind  * This code is derived from software contributed to The NetBSD Foundation
      8       1.1     rmind  * by Mindaugas Rasiukevicius.
      9       1.1     rmind  *
     10       1.1     rmind  * Redistribution and use in source and binary forms, with or without
     11       1.1     rmind  * modification, are permitted provided that the following conditions
     12       1.1     rmind  * are met:
     13       1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     14       1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     15       1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     17       1.1     rmind  *    documentation and/or other materials provided with the distribution.
     18       1.1     rmind  *
     19       1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1     rmind  */
     31       1.1     rmind 
     32       1.4     rmind /*
     33       1.4     rmind  * The packet queue (pktqueue) interface is a lockless IP input queue
     34       1.4     rmind  * which also abstracts and handles network ISR scheduling.  It provides
     35       1.4     rmind  * a mechanism to enable receiver-side packet steering (RPS).
     36       1.4     rmind  */
     37       1.4     rmind 
     38       1.1     rmind #include <sys/cdefs.h>
     39  1.9.10.1  christos __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.9.10.1 2019/06/10 22:09:45 christos Exp $");
     40       1.1     rmind 
     41       1.1     rmind #include <sys/param.h>
     42       1.1     rmind #include <sys/types.h>
     43       1.1     rmind 
     44       1.1     rmind #include <sys/atomic.h>
     45       1.1     rmind #include <sys/cpu.h>
     46       1.1     rmind #include <sys/pcq.h>
     47       1.1     rmind #include <sys/intr.h>
     48       1.1     rmind #include <sys/mbuf.h>
     49       1.1     rmind #include <sys/proc.h>
     50       1.1     rmind #include <sys/percpu.h>
     51       1.1     rmind 
     52       1.1     rmind #include <net/pktqueue.h>
     53       1.1     rmind 
     54       1.1     rmind /*
     55       1.1     rmind  * WARNING: update this if struct pktqueue changes.
     56       1.1     rmind  */
     57       1.1     rmind #define	PKTQ_CLPAD	\
     58       1.1     rmind     MAX(COHERENCY_UNIT, COHERENCY_UNIT - sizeof(kmutex_t) - sizeof(u_int))
     59       1.1     rmind 
     60       1.1     rmind struct pktqueue {
     61       1.1     rmind 	/*
     62       1.1     rmind 	 * The lock used for a barrier mechanism.  The barrier counter,
     63       1.1     rmind 	 * as well as the drop counter, are managed atomically though.
     64       1.1     rmind 	 * Ensure this group is in a separate cache line.
     65       1.1     rmind 	 */
     66       1.1     rmind 	kmutex_t	pq_lock;
     67       1.1     rmind 	volatile u_int	pq_barrier;
     68       1.1     rmind 	uint8_t		_pad[PKTQ_CLPAD];
     69       1.1     rmind 
     70       1.1     rmind 	/* The size of the queue, counters and the interrupt handler. */
     71       1.1     rmind 	u_int		pq_maxlen;
     72       1.1     rmind 	percpu_t *	pq_counters;
     73       1.1     rmind 	void *		pq_sih;
     74       1.1     rmind 
     75       1.1     rmind 	/* Finally, per-CPU queues. */
     76       1.1     rmind 	pcq_t *		pq_queue[];
     77       1.1     rmind };
     78       1.1     rmind 
     79       1.1     rmind /* The counters of the packet queue. */
     80       1.1     rmind #define	PQCNT_ENQUEUE	0
     81       1.1     rmind #define	PQCNT_DEQUEUE	1
     82       1.1     rmind #define	PQCNT_DROP	2
     83       1.1     rmind #define	PQCNT_NCOUNTERS	3
     84       1.1     rmind 
     85       1.1     rmind typedef struct {
     86       1.1     rmind 	uint64_t	count[PQCNT_NCOUNTERS];
     87       1.1     rmind } pktq_counters_t;
     88       1.1     rmind 
     89       1.1     rmind /* Special marker value used by pktq_barrier() mechanism. */
     90       1.1     rmind #define	PKTQ_MARKER	((void *)(~0ULL))
     91       1.1     rmind 
     92       1.1     rmind /*
     93       1.1     rmind  * The total size of pktqueue_t which depends on the number of CPUs.
     94       1.1     rmind  */
     95       1.1     rmind #define	PKTQUEUE_STRUCT_LEN(ncpu)	\
     96       1.1     rmind     roundup2(offsetof(pktqueue_t, pq_queue[ncpu]), coherency_unit)
     97       1.1     rmind 
     98       1.1     rmind pktqueue_t *
     99       1.5     ozaki pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
    100       1.1     rmind {
    101       1.1     rmind 	const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
    102       1.1     rmind 	const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
    103       1.1     rmind 	pktqueue_t *pq;
    104       1.1     rmind 	percpu_t *pc;
    105       1.1     rmind 	void *sih;
    106       1.1     rmind 
    107       1.9       chs 	pc = percpu_alloc(sizeof(pktq_counters_t));
    108       1.5     ozaki 	if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
    109       1.1     rmind 		percpu_free(pc, sizeof(pktq_counters_t));
    110       1.1     rmind 		return NULL;
    111       1.1     rmind 	}
    112       1.1     rmind 
    113       1.1     rmind 	pq = kmem_zalloc(len, KM_SLEEP);
    114       1.1     rmind 	for (u_int i = 0; i < ncpu; i++) {
    115       1.1     rmind 		pq->pq_queue[i] = pcq_create(maxlen, KM_SLEEP);
    116       1.1     rmind 	}
    117       1.1     rmind 	mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
    118       1.1     rmind 	pq->pq_maxlen = maxlen;
    119       1.1     rmind 	pq->pq_counters = pc;
    120       1.1     rmind 	pq->pq_sih = sih;
    121       1.1     rmind 
    122       1.1     rmind 	return pq;
    123       1.1     rmind }
    124       1.1     rmind 
    125       1.1     rmind void
    126       1.1     rmind pktq_destroy(pktqueue_t *pq)
    127       1.1     rmind {
    128       1.1     rmind 	const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
    129       1.1     rmind 
    130       1.1     rmind 	for (u_int i = 0; i < ncpu; i++) {
    131       1.1     rmind 		pcq_t *q = pq->pq_queue[i];
    132       1.1     rmind 		KASSERT(pcq_peek(q) == NULL);
    133       1.1     rmind 		pcq_destroy(q);
    134       1.1     rmind 	}
    135       1.1     rmind 	percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
    136       1.1     rmind 	softint_disestablish(pq->pq_sih);
    137       1.1     rmind 	mutex_destroy(&pq->pq_lock);
    138       1.1     rmind 	kmem_free(pq, len);
    139       1.1     rmind }
    140       1.1     rmind 
    141       1.1     rmind /*
    142       1.1     rmind  * - pktq_inc_counter: increment the counter given an ID.
    143       1.1     rmind  * - pktq_collect_counts: handler to sum up the counts from each CPU.
    144       1.1     rmind  * - pktq_getcount: return the effective count given an ID.
    145       1.1     rmind  */
    146       1.1     rmind 
    147       1.1     rmind static inline void
    148       1.1     rmind pktq_inc_count(pktqueue_t *pq, u_int i)
    149       1.1     rmind {
    150       1.1     rmind 	percpu_t *pc = pq->pq_counters;
    151       1.1     rmind 	pktq_counters_t *c;
    152       1.1     rmind 
    153       1.1     rmind 	c = percpu_getref(pc);
    154       1.1     rmind 	c->count[i]++;
    155       1.1     rmind 	percpu_putref(pc);
    156       1.1     rmind }
    157       1.1     rmind 
    158       1.1     rmind static void
    159       1.1     rmind pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
    160       1.1     rmind {
    161       1.1     rmind 	const pktq_counters_t *c = mem;
    162       1.1     rmind 	pktq_counters_t *sum = arg;
    163       1.1     rmind 
    164       1.1     rmind 	for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
    165       1.1     rmind 		sum->count[i] += c->count[i];
    166       1.1     rmind 	}
    167       1.1     rmind }
    168       1.1     rmind 
    169       1.1     rmind uint64_t
    170       1.1     rmind pktq_get_count(pktqueue_t *pq, pktq_count_t c)
    171       1.1     rmind {
    172       1.1     rmind 	pktq_counters_t sum;
    173       1.1     rmind 
    174       1.1     rmind 	if (c != PKTQ_MAXLEN) {
    175       1.1     rmind 		memset(&sum, 0, sizeof(sum));
    176       1.1     rmind 		percpu_foreach(pq->pq_counters, pktq_collect_counts, &sum);
    177       1.1     rmind 	}
    178       1.1     rmind 	switch (c) {
    179       1.1     rmind 	case PKTQ_NITEMS:
    180       1.1     rmind 		return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
    181       1.1     rmind 	case PKTQ_DROPS:
    182       1.1     rmind 		return sum.count[PQCNT_DROP];
    183       1.1     rmind 	case PKTQ_MAXLEN:
    184       1.1     rmind 		return pq->pq_maxlen;
    185       1.1     rmind 	}
    186       1.1     rmind 	return 0;
    187       1.1     rmind }
    188       1.1     rmind 
    189       1.1     rmind uint32_t
    190       1.1     rmind pktq_rps_hash(const struct mbuf *m __unused)
    191       1.1     rmind {
    192       1.1     rmind 	/*
    193       1.1     rmind 	 * XXX: No distribution yet; the softnet_lock contention
    194       1.1     rmind 	 * XXX: must be eliminated first.
    195       1.1     rmind 	 */
    196       1.1     rmind 	return 0;
    197       1.1     rmind }
    198       1.1     rmind 
    199       1.1     rmind /*
    200       1.1     rmind  * pktq_enqueue: inject the packet into the end of the queue.
    201       1.1     rmind  *
    202       1.1     rmind  * => Must be called from the interrupt or with the preemption disabled.
    203       1.1     rmind  * => Consumes the packet and returns true on success.
    204       1.1     rmind  * => Returns false on failure; caller is responsible to free the packet.
    205       1.1     rmind  */
    206       1.1     rmind bool
    207       1.3     rmind pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
    208       1.1     rmind {
    209       1.8     ozaki #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
    210       1.7     ozaki 	const unsigned cpuid = curcpu()->ci_index;
    211       1.7     ozaki #else
    212       1.7     ozaki 	const unsigned cpuid = hash % ncpu;
    213       1.7     ozaki #endif
    214       1.1     rmind 
    215       1.1     rmind 	KASSERT(kpreempt_disabled());
    216       1.1     rmind 
    217       1.1     rmind 	if (__predict_false(!pcq_put(pq->pq_queue[cpuid], m))) {
    218       1.1     rmind 		pktq_inc_count(pq, PQCNT_DROP);
    219       1.1     rmind 		return false;
    220       1.1     rmind 	}
    221       1.1     rmind 	softint_schedule_cpu(pq->pq_sih, cpu_lookup(cpuid));
    222       1.1     rmind 	pktq_inc_count(pq, PQCNT_ENQUEUE);
    223       1.1     rmind 	return true;
    224       1.1     rmind }
    225       1.1     rmind 
    226       1.1     rmind /*
    227       1.1     rmind  * pktq_dequeue: take a packet from the queue.
    228       1.1     rmind  *
    229       1.1     rmind  * => Must be called with preemption disabled.
    230       1.1     rmind  * => Must ensure there are not concurrent dequeue calls.
    231       1.1     rmind  */
    232       1.1     rmind struct mbuf *
    233       1.1     rmind pktq_dequeue(pktqueue_t *pq)
    234       1.1     rmind {
    235       1.1     rmind 	const struct cpu_info *ci = curcpu();
    236       1.1     rmind 	const unsigned cpuid = cpu_index(ci);
    237       1.1     rmind 	struct mbuf *m;
    238       1.1     rmind 
    239       1.1     rmind 	m = pcq_get(pq->pq_queue[cpuid]);
    240       1.1     rmind 	if (__predict_false(m == PKTQ_MARKER)) {
    241       1.1     rmind 		/* Note the marker entry. */
    242       1.1     rmind 		atomic_inc_uint(&pq->pq_barrier);
    243       1.1     rmind 		return NULL;
    244       1.1     rmind 	}
    245       1.1     rmind 	if (__predict_true(m != NULL)) {
    246       1.1     rmind 		pktq_inc_count(pq, PQCNT_DEQUEUE);
    247       1.1     rmind 	}
    248       1.1     rmind 	return m;
    249       1.1     rmind }
    250       1.1     rmind 
    251       1.1     rmind /*
    252       1.1     rmind  * pktq_barrier: waits for a grace period when all packets enqueued at
    253       1.1     rmind  * the moment of calling this routine will be processed.  This is used
    254       1.1     rmind  * to ensure that e.g. packets referencing some interface were drained.
    255       1.1     rmind  */
    256       1.1     rmind void
    257       1.1     rmind pktq_barrier(pktqueue_t *pq)
    258       1.1     rmind {
    259       1.1     rmind 	u_int pending = 0;
    260       1.1     rmind 
    261       1.1     rmind 	mutex_enter(&pq->pq_lock);
    262       1.1     rmind 	KASSERT(pq->pq_barrier == 0);
    263       1.1     rmind 
    264       1.1     rmind 	for (u_int i = 0; i < ncpu; i++) {
    265       1.1     rmind 		pcq_t *q = pq->pq_queue[i];
    266       1.1     rmind 
    267       1.1     rmind 		/* If the queue is empty - nothing to do. */
    268       1.1     rmind 		if (pcq_peek(q) == NULL) {
    269       1.1     rmind 			continue;
    270       1.1     rmind 		}
    271       1.1     rmind 		/* Otherwise, put the marker and entry. */
    272       1.1     rmind 		while (!pcq_put(q, PKTQ_MARKER)) {
    273       1.1     rmind 			kpause("pktqsync", false, 1, NULL);
    274       1.1     rmind 		}
    275       1.1     rmind 		kpreempt_disable();
    276       1.1     rmind 		softint_schedule_cpu(pq->pq_sih, cpu_lookup(i));
    277       1.1     rmind 		kpreempt_enable();
    278       1.1     rmind 		pending++;
    279       1.1     rmind 	}
    280       1.1     rmind 
    281       1.1     rmind 	/* Wait for each queue to process the markers. */
    282       1.1     rmind 	while (pq->pq_barrier != pending) {
    283       1.1     rmind 		kpause("pktqsync", false, 1, NULL);
    284       1.1     rmind 	}
    285       1.1     rmind 	pq->pq_barrier = 0;
    286       1.1     rmind 	mutex_exit(&pq->pq_lock);
    287       1.1     rmind }
    288       1.1     rmind 
    289       1.1     rmind /*
    290       1.1     rmind  * pktq_flush: free mbufs in all queues.
    291       1.1     rmind  *
    292       1.4     rmind  * => The caller must ensure there are no concurrent writers or flush calls.
    293       1.1     rmind  */
    294       1.1     rmind void
    295       1.1     rmind pktq_flush(pktqueue_t *pq)
    296       1.1     rmind {
    297       1.1     rmind 	struct mbuf *m;
    298       1.1     rmind 
    299       1.1     rmind 	for (u_int i = 0; i < ncpu; i++) {
    300       1.1     rmind 		while ((m = pcq_get(pq->pq_queue[i])) != NULL) {
    301       1.1     rmind 			pktq_inc_count(pq, PQCNT_DEQUEUE);
    302       1.1     rmind 			m_freem(m);
    303       1.1     rmind 		}
    304       1.1     rmind 	}
    305       1.1     rmind }
    306       1.2     rmind 
    307       1.2     rmind /*
    308       1.2     rmind  * pktq_set_maxlen: create per-CPU queues using a new size and replace
    309       1.2     rmind  * the existing queues without losing any packets.
    310       1.2     rmind  */
    311       1.2     rmind int
    312       1.2     rmind pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
    313       1.2     rmind {
    314       1.2     rmind 	const u_int slotbytes = ncpu * sizeof(pcq_t *);
    315       1.2     rmind 	pcq_t **qs;
    316       1.2     rmind 
    317       1.2     rmind 	if (!maxlen || maxlen > PCQ_MAXLEN)
    318       1.2     rmind 		return EINVAL;
    319       1.2     rmind 	if (pq->pq_maxlen == maxlen)
    320       1.2     rmind 		return 0;
    321       1.2     rmind 
    322       1.2     rmind 	/* First, allocate the new queues and replace them. */
    323       1.2     rmind 	qs = kmem_zalloc(slotbytes, KM_SLEEP);
    324       1.2     rmind 	for (u_int i = 0; i < ncpu; i++) {
    325       1.2     rmind 		qs[i] = pcq_create(maxlen, KM_SLEEP);
    326       1.2     rmind 	}
    327       1.2     rmind 	mutex_enter(&pq->pq_lock);
    328       1.2     rmind 	for (u_int i = 0; i < ncpu; i++) {
    329       1.2     rmind 		/* Swap: store of a word is atomic. */
    330       1.2     rmind 		pcq_t *q = pq->pq_queue[i];
    331       1.2     rmind 		pq->pq_queue[i] = qs[i];
    332       1.2     rmind 		qs[i] = q;
    333       1.2     rmind 	}
    334       1.2     rmind 	pq->pq_maxlen = maxlen;
    335       1.2     rmind 	mutex_exit(&pq->pq_lock);
    336       1.2     rmind 
    337       1.2     rmind 	/*
    338       1.2     rmind 	 * At this point, the new packets are flowing into the new
    339       1.4     rmind 	 * queues.  However, the old queues may have some packets
    340       1.4     rmind 	 * present which are no longer being processed.  We are going
    341       1.2     rmind 	 * to re-enqueue them.  This may change the order of packet
    342       1.2     rmind 	 * arrival, but it is not considered an issue.
    343       1.2     rmind 	 *
    344       1.4     rmind 	 * There may be in-flight interrupts calling pktq_dequeue()
    345       1.2     rmind 	 * which reference the old queues.  Issue a barrier to ensure
    346       1.2     rmind 	 * that we are going to be the only pcq_get() callers on the
    347       1.2     rmind 	 * old queues.
    348       1.2     rmind 	 */
    349       1.2     rmind 	pktq_barrier(pq);
    350       1.2     rmind 
    351       1.2     rmind 	for (u_int i = 0; i < ncpu; i++) {
    352       1.2     rmind 		struct mbuf *m;
    353       1.2     rmind 
    354       1.2     rmind 		while ((m = pcq_get(qs[i])) != NULL) {
    355       1.2     rmind 			while (!pcq_put(pq->pq_queue[i], m)) {
    356       1.2     rmind 				kpause("pktqrenq", false, 1, NULL);
    357       1.2     rmind 			}
    358       1.2     rmind 		}
    359       1.2     rmind 		pcq_destroy(qs[i]);
    360       1.2     rmind 	}
    361       1.2     rmind 
    362       1.2     rmind 	/* Well, that was fun. */
    363       1.2     rmind 	kmem_free(qs, slotbytes);
    364       1.2     rmind 	return 0;
    365       1.2     rmind }
    366       1.6     ozaki 
    367       1.6     ozaki int
    368       1.6     ozaki sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
    369       1.6     ozaki {
    370       1.6     ozaki 	u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
    371       1.6     ozaki 	struct sysctlnode node = *rnode;
    372       1.6     ozaki 	int error;
    373       1.6     ozaki 
    374       1.6     ozaki 	node.sysctl_data = &nmaxlen;
    375       1.6     ozaki 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    376       1.6     ozaki 	if (error || newp == NULL)
    377       1.6     ozaki 		return error;
    378       1.6     ozaki 	return pktq_set_maxlen(pq, nmaxlen);
    379       1.6     ozaki }
    380       1.6     ozaki 
    381       1.6     ozaki int
    382       1.6     ozaki sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
    383       1.6     ozaki {
    384  1.9.10.1  christos 	uint64_t count = pktq_get_count(pq, count_id);
    385       1.6     ozaki 	struct sysctlnode node = *rnode;
    386  1.9.10.1  christos 
    387       1.6     ozaki 	node.sysctl_data = &count;
    388       1.6     ozaki 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    389       1.6     ozaki }
    390