Home | History | Annotate | Line # | Download | only in net
pktqueue.c revision 1.11
      1 /*	$NetBSD: pktqueue.c,v 1.11 2020/02/07 12:35:33 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * The packet queue (pktqueue) interface is a lockless IP input queue
     34  * which also abstracts and handles network ISR scheduling.  It provides
     35  * a mechanism to enable receiver-side packet steering (RPS).
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.11 2020/02/07 12:35:33 thorpej Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 
     44 #include <sys/atomic.h>
     45 #include <sys/cpu.h>
     46 #include <sys/pcq.h>
     47 #include <sys/intr.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/proc.h>
     50 #include <sys/percpu.h>
     51 #include <sys/xcall.h>
     52 
     53 #include <net/pktqueue.h>
     54 
     55 /*
     56  * WARNING: update this if struct pktqueue changes.
     57  */
     58 #define	PKTQ_CLPAD	\
     59     MAX(COHERENCY_UNIT, COHERENCY_UNIT - sizeof(kmutex_t) - sizeof(u_int))
     60 
     61 struct pktqueue {
     62 	/*
     63 	 * The lock used for a barrier mechanism.  The barrier counter,
     64 	 * as well as the drop counter, are managed atomically though.
     65 	 * Ensure this group is in a separate cache line.
     66 	 */
     67 	kmutex_t	pq_lock;
     68 	volatile u_int	pq_barrier;
     69 	uint8_t		_pad[PKTQ_CLPAD];
     70 
     71 	/* The size of the queue, counters and the interrupt handler. */
     72 	u_int		pq_maxlen;
     73 	percpu_t *	pq_counters;
     74 	void *		pq_sih;
     75 
     76 	/* Finally, per-CPU queues. */
     77 	pcq_t *		pq_queue[];
     78 };
     79 
     80 /* The counters of the packet queue. */
     81 #define	PQCNT_ENQUEUE	0
     82 #define	PQCNT_DEQUEUE	1
     83 #define	PQCNT_DROP	2
     84 #define	PQCNT_NCOUNTERS	3
     85 
     86 typedef struct {
     87 	uint64_t	count[PQCNT_NCOUNTERS];
     88 } pktq_counters_t;
     89 
     90 /* Special marker value used by pktq_barrier() mechanism. */
     91 #define	PKTQ_MARKER	((void *)(~0ULL))
     92 
     93 /*
     94  * The total size of pktqueue_t which depends on the number of CPUs.
     95  */
     96 #define	PKTQUEUE_STRUCT_LEN(ncpu)	\
     97     roundup2(offsetof(pktqueue_t, pq_queue[ncpu]), coherency_unit)
     98 
     99 pktqueue_t *
    100 pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
    101 {
    102 	const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
    103 	const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
    104 	pktqueue_t *pq;
    105 	percpu_t *pc;
    106 	void *sih;
    107 
    108 	pc = percpu_alloc(sizeof(pktq_counters_t));
    109 	if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
    110 		percpu_free(pc, sizeof(pktq_counters_t));
    111 		return NULL;
    112 	}
    113 
    114 	pq = kmem_zalloc(len, KM_SLEEP);
    115 	for (u_int i = 0; i < ncpu; i++) {
    116 		pq->pq_queue[i] = pcq_create(maxlen, KM_SLEEP);
    117 	}
    118 	mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
    119 	pq->pq_maxlen = maxlen;
    120 	pq->pq_counters = pc;
    121 	pq->pq_sih = sih;
    122 
    123 	return pq;
    124 }
    125 
    126 void
    127 pktq_destroy(pktqueue_t *pq)
    128 {
    129 	const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
    130 
    131 	for (u_int i = 0; i < ncpu; i++) {
    132 		pcq_t *q = pq->pq_queue[i];
    133 		KASSERT(pcq_peek(q) == NULL);
    134 		pcq_destroy(q);
    135 	}
    136 	percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
    137 	softint_disestablish(pq->pq_sih);
    138 	mutex_destroy(&pq->pq_lock);
    139 	kmem_free(pq, len);
    140 }
    141 
    142 /*
    143  * - pktq_inc_counter: increment the counter given an ID.
    144  * - pktq_collect_counts: handler to sum up the counts from each CPU.
    145  * - pktq_getcount: return the effective count given an ID.
    146  */
    147 
    148 static inline void
    149 pktq_inc_count(pktqueue_t *pq, u_int i)
    150 {
    151 	percpu_t *pc = pq->pq_counters;
    152 	pktq_counters_t *c;
    153 
    154 	c = percpu_getref(pc);
    155 	c->count[i]++;
    156 	percpu_putref(pc);
    157 }
    158 
    159 static void
    160 pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
    161 {
    162 	const pktq_counters_t *c = mem;
    163 	pktq_counters_t *sum = arg;
    164 
    165 	int s = splnet();
    166 
    167 	for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
    168 		sum->count[i] += c->count[i];
    169 	}
    170 
    171 	splx(s);
    172 }
    173 
    174 uint64_t
    175 pktq_get_count(pktqueue_t *pq, pktq_count_t c)
    176 {
    177 	pktq_counters_t sum;
    178 
    179 	if (c != PKTQ_MAXLEN) {
    180 		memset(&sum, 0, sizeof(sum));
    181 		percpu_foreach_xcall(pq->pq_counters,
    182 		    XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
    183 	}
    184 	switch (c) {
    185 	case PKTQ_NITEMS:
    186 		return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
    187 	case PKTQ_DROPS:
    188 		return sum.count[PQCNT_DROP];
    189 	case PKTQ_MAXLEN:
    190 		return pq->pq_maxlen;
    191 	}
    192 	return 0;
    193 }
    194 
    195 uint32_t
    196 pktq_rps_hash(const struct mbuf *m __unused)
    197 {
    198 	/*
    199 	 * XXX: No distribution yet; the softnet_lock contention
    200 	 * XXX: must be eliminated first.
    201 	 */
    202 	return 0;
    203 }
    204 
    205 /*
    206  * pktq_enqueue: inject the packet into the end of the queue.
    207  *
    208  * => Must be called from the interrupt or with the preemption disabled.
    209  * => Consumes the packet and returns true on success.
    210  * => Returns false on failure; caller is responsible to free the packet.
    211  */
    212 bool
    213 pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
    214 {
    215 #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
    216 	const unsigned cpuid = curcpu()->ci_index;
    217 #else
    218 	const unsigned cpuid = hash % ncpu;
    219 #endif
    220 
    221 	KASSERT(kpreempt_disabled());
    222 
    223 	if (__predict_false(!pcq_put(pq->pq_queue[cpuid], m))) {
    224 		pktq_inc_count(pq, PQCNT_DROP);
    225 		return false;
    226 	}
    227 	softint_schedule_cpu(pq->pq_sih, cpu_lookup(cpuid));
    228 	pktq_inc_count(pq, PQCNT_ENQUEUE);
    229 	return true;
    230 }
    231 
    232 /*
    233  * pktq_dequeue: take a packet from the queue.
    234  *
    235  * => Must be called with preemption disabled.
    236  * => Must ensure there are not concurrent dequeue calls.
    237  */
    238 struct mbuf *
    239 pktq_dequeue(pktqueue_t *pq)
    240 {
    241 	const struct cpu_info *ci = curcpu();
    242 	const unsigned cpuid = cpu_index(ci);
    243 	struct mbuf *m;
    244 
    245 	m = pcq_get(pq->pq_queue[cpuid]);
    246 	if (__predict_false(m == PKTQ_MARKER)) {
    247 		/* Note the marker entry. */
    248 		atomic_inc_uint(&pq->pq_barrier);
    249 		return NULL;
    250 	}
    251 	if (__predict_true(m != NULL)) {
    252 		pktq_inc_count(pq, PQCNT_DEQUEUE);
    253 	}
    254 	return m;
    255 }
    256 
    257 /*
    258  * pktq_barrier: waits for a grace period when all packets enqueued at
    259  * the moment of calling this routine will be processed.  This is used
    260  * to ensure that e.g. packets referencing some interface were drained.
    261  */
    262 void
    263 pktq_barrier(pktqueue_t *pq)
    264 {
    265 	u_int pending = 0;
    266 
    267 	mutex_enter(&pq->pq_lock);
    268 	KASSERT(pq->pq_barrier == 0);
    269 
    270 	for (u_int i = 0; i < ncpu; i++) {
    271 		pcq_t *q = pq->pq_queue[i];
    272 
    273 		/* If the queue is empty - nothing to do. */
    274 		if (pcq_peek(q) == NULL) {
    275 			continue;
    276 		}
    277 		/* Otherwise, put the marker and entry. */
    278 		while (!pcq_put(q, PKTQ_MARKER)) {
    279 			kpause("pktqsync", false, 1, NULL);
    280 		}
    281 		kpreempt_disable();
    282 		softint_schedule_cpu(pq->pq_sih, cpu_lookup(i));
    283 		kpreempt_enable();
    284 		pending++;
    285 	}
    286 
    287 	/* Wait for each queue to process the markers. */
    288 	while (pq->pq_barrier != pending) {
    289 		kpause("pktqsync", false, 1, NULL);
    290 	}
    291 	pq->pq_barrier = 0;
    292 	mutex_exit(&pq->pq_lock);
    293 }
    294 
    295 /*
    296  * pktq_flush: free mbufs in all queues.
    297  *
    298  * => The caller must ensure there are no concurrent writers or flush calls.
    299  */
    300 void
    301 pktq_flush(pktqueue_t *pq)
    302 {
    303 	struct mbuf *m;
    304 
    305 	for (u_int i = 0; i < ncpu; i++) {
    306 		while ((m = pcq_get(pq->pq_queue[i])) != NULL) {
    307 			pktq_inc_count(pq, PQCNT_DEQUEUE);
    308 			m_freem(m);
    309 		}
    310 	}
    311 }
    312 
    313 /*
    314  * pktq_set_maxlen: create per-CPU queues using a new size and replace
    315  * the existing queues without losing any packets.
    316  */
    317 int
    318 pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
    319 {
    320 	const u_int slotbytes = ncpu * sizeof(pcq_t *);
    321 	pcq_t **qs;
    322 
    323 	if (!maxlen || maxlen > PCQ_MAXLEN)
    324 		return EINVAL;
    325 	if (pq->pq_maxlen == maxlen)
    326 		return 0;
    327 
    328 	/* First, allocate the new queues and replace them. */
    329 	qs = kmem_zalloc(slotbytes, KM_SLEEP);
    330 	for (u_int i = 0; i < ncpu; i++) {
    331 		qs[i] = pcq_create(maxlen, KM_SLEEP);
    332 	}
    333 	mutex_enter(&pq->pq_lock);
    334 	for (u_int i = 0; i < ncpu; i++) {
    335 		/* Swap: store of a word is atomic. */
    336 		pcq_t *q = pq->pq_queue[i];
    337 		pq->pq_queue[i] = qs[i];
    338 		qs[i] = q;
    339 	}
    340 	pq->pq_maxlen = maxlen;
    341 	mutex_exit(&pq->pq_lock);
    342 
    343 	/*
    344 	 * At this point, the new packets are flowing into the new
    345 	 * queues.  However, the old queues may have some packets
    346 	 * present which are no longer being processed.  We are going
    347 	 * to re-enqueue them.  This may change the order of packet
    348 	 * arrival, but it is not considered an issue.
    349 	 *
    350 	 * There may be in-flight interrupts calling pktq_dequeue()
    351 	 * which reference the old queues.  Issue a barrier to ensure
    352 	 * that we are going to be the only pcq_get() callers on the
    353 	 * old queues.
    354 	 */
    355 	pktq_barrier(pq);
    356 
    357 	for (u_int i = 0; i < ncpu; i++) {
    358 		struct mbuf *m;
    359 
    360 		while ((m = pcq_get(qs[i])) != NULL) {
    361 			while (!pcq_put(pq->pq_queue[i], m)) {
    362 				kpause("pktqrenq", false, 1, NULL);
    363 			}
    364 		}
    365 		pcq_destroy(qs[i]);
    366 	}
    367 
    368 	/* Well, that was fun. */
    369 	kmem_free(qs, slotbytes);
    370 	return 0;
    371 }
    372 
    373 int
    374 sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
    375 {
    376 	u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
    377 	struct sysctlnode node = *rnode;
    378 	int error;
    379 
    380 	node.sysctl_data = &nmaxlen;
    381 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    382 	if (error || newp == NULL)
    383 		return error;
    384 	return pktq_set_maxlen(pq, nmaxlen);
    385 }
    386 
    387 int
    388 sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
    389 {
    390 	uint64_t count = pktq_get_count(pq, count_id);
    391 	struct sysctlnode node = *rnode;
    392 
    393 	node.sysctl_data = &count;
    394 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    395 }
    396