pktqueue.c revision 1.12 1 /* $NetBSD: pktqueue.c,v 1.12 2020/09/11 14:29:00 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * The packet queue (pktqueue) interface is a lockless IP input queue
34 * which also abstracts and handles network ISR scheduling. It provides
35 * a mechanism to enable receiver-side packet steering (RPS).
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.12 2020/09/11 14:29:00 riastradh Exp $");
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43
44 #include <sys/atomic.h>
45 #include <sys/cpu.h>
46 #include <sys/pcq.h>
47 #include <sys/intr.h>
48 #include <sys/mbuf.h>
49 #include <sys/proc.h>
50 #include <sys/percpu.h>
51 #include <sys/xcall.h>
52
53 #include <net/pktqueue.h>
54
55 /*
56 * WARNING: update this if struct pktqueue changes.
57 */
58 #define PKTQ_CLPAD \
59 MAX(COHERENCY_UNIT, COHERENCY_UNIT - sizeof(kmutex_t) - sizeof(u_int))
60
61 struct pktqueue {
62 /*
63 * The lock used for a barrier mechanism. The barrier counter,
64 * as well as the drop counter, are managed atomically though.
65 * Ensure this group is in a separate cache line.
66 */
67 kmutex_t pq_lock;
68 volatile u_int pq_barrier;
69 uint8_t _pad[PKTQ_CLPAD];
70
71 /* The size of the queue, counters and the interrupt handler. */
72 u_int pq_maxlen;
73 percpu_t * pq_counters;
74 void * pq_sih;
75
76 /* Finally, per-CPU queues. */
77 struct percpu * pq_pcq; /* struct pcq * */
78 };
79
80 /* The counters of the packet queue. */
81 #define PQCNT_ENQUEUE 0
82 #define PQCNT_DEQUEUE 1
83 #define PQCNT_DROP 2
84 #define PQCNT_NCOUNTERS 3
85
86 typedef struct {
87 uint64_t count[PQCNT_NCOUNTERS];
88 } pktq_counters_t;
89
90 /* Special marker value used by pktq_barrier() mechanism. */
91 #define PKTQ_MARKER ((void *)(~0ULL))
92
93 static void
94 pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci)
95 {
96 struct pcq **qp = vqp;
97 struct pktqueue *pq = vpq;
98
99 *qp = pcq_create(pq->pq_maxlen, KM_SLEEP);
100 }
101
102 static void
103 pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci)
104 {
105 struct pcq **qp = vqp, *q = *qp;
106
107 KASSERT(pcq_peek(q) == NULL);
108 pcq_destroy(q);
109 *qp = NULL; /* paranoia */
110 }
111
112 static struct pcq *
113 pktq_pcq(struct pktqueue *pq, struct cpu_info *ci)
114 {
115 struct pcq **qp, *q;
116
117 /*
118 * As long as preemption is disabled, the xcall to swap percpu
119 * buffers can't complete, so it is safe to read the pointer.
120 */
121 KASSERT(kpreempt_disabled());
122
123 qp = percpu_getptr_remote(pq->pq_pcq, ci);
124 q = *qp;
125
126 return q;
127 }
128
129 pktqueue_t *
130 pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
131 {
132 const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
133 pktqueue_t *pq;
134 percpu_t *pc;
135 void *sih;
136
137 pc = percpu_alloc(sizeof(pktq_counters_t));
138 if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
139 percpu_free(pc, sizeof(pktq_counters_t));
140 return NULL;
141 }
142
143 pq = kmem_zalloc(sizeof(*pq), KM_SLEEP);
144 mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
145 pq->pq_maxlen = maxlen;
146 pq->pq_counters = pc;
147 pq->pq_sih = sih;
148 pq->pq_pcq = percpu_create(sizeof(struct pcq *),
149 pktq_init_cpu, pktq_fini_cpu, pq);
150
151 return pq;
152 }
153
154 void
155 pktq_destroy(pktqueue_t *pq)
156 {
157
158 percpu_free(pq->pq_pcq, sizeof(struct pcq *));
159 percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
160 softint_disestablish(pq->pq_sih);
161 mutex_destroy(&pq->pq_lock);
162 kmem_free(pq, sizeof(*pq));
163 }
164
165 /*
166 * - pktq_inc_counter: increment the counter given an ID.
167 * - pktq_collect_counts: handler to sum up the counts from each CPU.
168 * - pktq_getcount: return the effective count given an ID.
169 */
170
171 static inline void
172 pktq_inc_count(pktqueue_t *pq, u_int i)
173 {
174 percpu_t *pc = pq->pq_counters;
175 pktq_counters_t *c;
176
177 c = percpu_getref(pc);
178 c->count[i]++;
179 percpu_putref(pc);
180 }
181
182 static void
183 pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
184 {
185 const pktq_counters_t *c = mem;
186 pktq_counters_t *sum = arg;
187
188 int s = splnet();
189
190 for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
191 sum->count[i] += c->count[i];
192 }
193
194 splx(s);
195 }
196
197 uint64_t
198 pktq_get_count(pktqueue_t *pq, pktq_count_t c)
199 {
200 pktq_counters_t sum;
201
202 if (c != PKTQ_MAXLEN) {
203 memset(&sum, 0, sizeof(sum));
204 percpu_foreach_xcall(pq->pq_counters,
205 XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
206 }
207 switch (c) {
208 case PKTQ_NITEMS:
209 return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
210 case PKTQ_DROPS:
211 return sum.count[PQCNT_DROP];
212 case PKTQ_MAXLEN:
213 return pq->pq_maxlen;
214 }
215 return 0;
216 }
217
218 uint32_t
219 pktq_rps_hash(const struct mbuf *m __unused)
220 {
221 /*
222 * XXX: No distribution yet; the softnet_lock contention
223 * XXX: must be eliminated first.
224 */
225 return 0;
226 }
227
228 /*
229 * pktq_enqueue: inject the packet into the end of the queue.
230 *
231 * => Must be called from the interrupt or with the preemption disabled.
232 * => Consumes the packet and returns true on success.
233 * => Returns false on failure; caller is responsible to free the packet.
234 */
235 bool
236 pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
237 {
238 #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
239 struct cpu_info *ci = curcpu();
240 #else
241 struct cpu_info *ci = cpu_lookup(hash % ncpu);
242 #endif
243
244 KASSERT(kpreempt_disabled());
245
246 if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) {
247 pktq_inc_count(pq, PQCNT_DROP);
248 return false;
249 }
250 softint_schedule_cpu(pq->pq_sih, ci);
251 pktq_inc_count(pq, PQCNT_ENQUEUE);
252 return true;
253 }
254
255 /*
256 * pktq_dequeue: take a packet from the queue.
257 *
258 * => Must be called with preemption disabled.
259 * => Must ensure there are not concurrent dequeue calls.
260 */
261 struct mbuf *
262 pktq_dequeue(pktqueue_t *pq)
263 {
264 struct cpu_info *ci = curcpu();
265 struct mbuf *m;
266
267 KASSERT(kpreempt_disabled());
268
269 m = pcq_get(pktq_pcq(pq, ci));
270 if (__predict_false(m == PKTQ_MARKER)) {
271 /* Note the marker entry. */
272 atomic_inc_uint(&pq->pq_barrier);
273 return NULL;
274 }
275 if (__predict_true(m != NULL)) {
276 pktq_inc_count(pq, PQCNT_DEQUEUE);
277 }
278 return m;
279 }
280
281 /*
282 * pktq_barrier: waits for a grace period when all packets enqueued at
283 * the moment of calling this routine will be processed. This is used
284 * to ensure that e.g. packets referencing some interface were drained.
285 */
286 void
287 pktq_barrier(pktqueue_t *pq)
288 {
289 CPU_INFO_ITERATOR cii;
290 struct cpu_info *ci;
291 u_int pending = 0;
292
293 mutex_enter(&pq->pq_lock);
294 KASSERT(pq->pq_barrier == 0);
295
296 for (CPU_INFO_FOREACH(cii, ci)) {
297 struct pcq *q;
298
299 kpreempt_disable();
300 q = pktq_pcq(pq, ci);
301 kpreempt_enable();
302
303 /* If the queue is empty - nothing to do. */
304 if (pcq_peek(q) == NULL) {
305 continue;
306 }
307 /* Otherwise, put the marker and entry. */
308 while (!pcq_put(q, PKTQ_MARKER)) {
309 kpause("pktqsync", false, 1, NULL);
310 }
311 kpreempt_disable();
312 softint_schedule_cpu(pq->pq_sih, ci);
313 kpreempt_enable();
314 pending++;
315 }
316
317 /* Wait for each queue to process the markers. */
318 while (pq->pq_barrier != pending) {
319 kpause("pktqsync", false, 1, NULL);
320 }
321 pq->pq_barrier = 0;
322 mutex_exit(&pq->pq_lock);
323 }
324
325 /*
326 * pktq_flush: free mbufs in all queues.
327 *
328 * => The caller must ensure there are no concurrent writers or flush calls.
329 */
330 void
331 pktq_flush(pktqueue_t *pq)
332 {
333 CPU_INFO_ITERATOR cii;
334 struct cpu_info *ci;
335 struct mbuf *m;
336
337 for (CPU_INFO_FOREACH(cii, ci)) {
338 struct pcq *q;
339
340 kpreempt_disable();
341 q = pktq_pcq(pq, ci);
342 kpreempt_enable();
343
344 /*
345 * XXX This can't be right -- if the softint is running
346 * then pcq_get isn't safe here.
347 */
348 while ((m = pcq_get(q)) != NULL) {
349 pktq_inc_count(pq, PQCNT_DEQUEUE);
350 m_freem(m);
351 }
352 }
353 }
354
355 static void
356 pktq_set_maxlen_cpu(void *vpq, void *vqs)
357 {
358 struct pktqueue *pq = vpq;
359 struct pcq **qp, *q, **qs = vqs;
360 unsigned i = cpu_index(curcpu());
361 int s;
362
363 s = splnet();
364 qp = percpu_getref(pq->pq_pcq);
365 q = *qp;
366 *qp = qs[i];
367 qs[i] = q;
368 percpu_putref(pq->pq_pcq);
369 splx(s);
370 }
371
372 /*
373 * pktq_set_maxlen: create per-CPU queues using a new size and replace
374 * the existing queues without losing any packets.
375 *
376 * XXX ncpu must remain stable throughout.
377 */
378 int
379 pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
380 {
381 const u_int slotbytes = ncpu * sizeof(pcq_t *);
382 pcq_t **qs;
383
384 if (!maxlen || maxlen > PCQ_MAXLEN)
385 return EINVAL;
386 if (pq->pq_maxlen == maxlen)
387 return 0;
388
389 /* First, allocate the new queues. */
390 qs = kmem_zalloc(slotbytes, KM_SLEEP);
391 for (u_int i = 0; i < ncpu; i++) {
392 qs[i] = pcq_create(maxlen, KM_SLEEP);
393 }
394
395 /*
396 * Issue an xcall to replace the queue pointers on each CPU.
397 * This implies all the necessary memory barriers.
398 */
399 mutex_enter(&pq->pq_lock);
400 xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs));
401 pq->pq_maxlen = maxlen;
402 mutex_exit(&pq->pq_lock);
403
404 /*
405 * At this point, the new packets are flowing into the new
406 * queues. However, the old queues may have some packets
407 * present which are no longer being processed. We are going
408 * to re-enqueue them. This may change the order of packet
409 * arrival, but it is not considered an issue.
410 *
411 * There may be in-flight interrupts calling pktq_dequeue()
412 * which reference the old queues. Issue a barrier to ensure
413 * that we are going to be the only pcq_get() callers on the
414 * old queues.
415 */
416 pktq_barrier(pq);
417
418 for (u_int i = 0; i < ncpu; i++) {
419 struct pcq *q;
420 struct mbuf *m;
421
422 kpreempt_disable();
423 q = pktq_pcq(pq, cpu_lookup(i));
424 kpreempt_enable();
425
426 while ((m = pcq_get(qs[i])) != NULL) {
427 while (!pcq_put(q, m)) {
428 kpause("pktqrenq", false, 1, NULL);
429 }
430 }
431 pcq_destroy(qs[i]);
432 }
433
434 /* Well, that was fun. */
435 kmem_free(qs, slotbytes);
436 return 0;
437 }
438
439 int
440 sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
441 {
442 u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
443 struct sysctlnode node = *rnode;
444 int error;
445
446 node.sysctl_data = &nmaxlen;
447 error = sysctl_lookup(SYSCTLFN_CALL(&node));
448 if (error || newp == NULL)
449 return error;
450 return pktq_set_maxlen(pq, nmaxlen);
451 }
452
453 int
454 sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
455 {
456 uint64_t count = pktq_get_count(pq, count_id);
457 struct sysctlnode node = *rnode;
458
459 node.sysctl_data = &count;
460 return sysctl_lookup(SYSCTLFN_CALL(&node));
461 }
462