pktqueue.c revision 1.12.4.1 1 /* $NetBSD: pktqueue.c,v 1.12.4.1 2021/04/03 21:45:01 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * The packet queue (pktqueue) interface is a lockless IP input queue
34 * which also abstracts and handles network ISR scheduling. It provides
35 * a mechanism to enable receiver-side packet steering (RPS).
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.12.4.1 2021/04/03 21:45:01 thorpej Exp $");
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43
44 #include <sys/atomic.h>
45 #include <sys/cpu.h>
46 #include <sys/pcq.h>
47 #include <sys/intr.h>
48 #include <sys/mbuf.h>
49 #include <sys/proc.h>
50 #include <sys/percpu.h>
51 #include <sys/xcall.h>
52
53 #include <net/pktqueue.h>
54
55 struct pktqueue {
56 /*
57 * The lock used for a barrier mechanism. The barrier counter,
58 * as well as the drop counter, are managed atomically though.
59 * Ensure this group is in a separate cache line.
60 */
61 union {
62 struct {
63 kmutex_t pq_lock;
64 volatile u_int pq_barrier;
65 };
66 uint8_t _pad[COHERENCY_UNIT];
67 };
68
69 /* The size of the queue, counters and the interrupt handler. */
70 u_int pq_maxlen;
71 percpu_t * pq_counters;
72 void * pq_sih;
73
74 /* Finally, per-CPU queues. */
75 struct percpu * pq_pcq; /* struct pcq * */
76 };
77
78 /* The counters of the packet queue. */
79 #define PQCNT_ENQUEUE 0
80 #define PQCNT_DEQUEUE 1
81 #define PQCNT_DROP 2
82 #define PQCNT_NCOUNTERS 3
83
84 typedef struct {
85 uint64_t count[PQCNT_NCOUNTERS];
86 } pktq_counters_t;
87
88 /* Special marker value used by pktq_barrier() mechanism. */
89 #define PKTQ_MARKER ((void *)(~0ULL))
90
91 static void
92 pktq_init_cpu(void *vqp, void *vpq, struct cpu_info *ci)
93 {
94 struct pcq **qp = vqp;
95 struct pktqueue *pq = vpq;
96
97 *qp = pcq_create(pq->pq_maxlen, KM_SLEEP);
98 }
99
100 static void
101 pktq_fini_cpu(void *vqp, void *vpq, struct cpu_info *ci)
102 {
103 struct pcq **qp = vqp, *q = *qp;
104
105 KASSERT(pcq_peek(q) == NULL);
106 pcq_destroy(q);
107 *qp = NULL; /* paranoia */
108 }
109
110 static struct pcq *
111 pktq_pcq(struct pktqueue *pq, struct cpu_info *ci)
112 {
113 struct pcq **qp, *q;
114
115 /*
116 * As long as preemption is disabled, the xcall to swap percpu
117 * buffers can't complete, so it is safe to read the pointer.
118 */
119 KASSERT(kpreempt_disabled());
120
121 qp = percpu_getptr_remote(pq->pq_pcq, ci);
122 q = *qp;
123
124 return q;
125 }
126
127 pktqueue_t *
128 pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
129 {
130 const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
131 pktqueue_t *pq;
132 percpu_t *pc;
133 void *sih;
134
135 pc = percpu_alloc(sizeof(pktq_counters_t));
136 if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
137 percpu_free(pc, sizeof(pktq_counters_t));
138 return NULL;
139 }
140
141 pq = kmem_zalloc(sizeof(*pq), KM_SLEEP);
142 mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
143 pq->pq_maxlen = maxlen;
144 pq->pq_counters = pc;
145 pq->pq_sih = sih;
146 pq->pq_pcq = percpu_create(sizeof(struct pcq *),
147 pktq_init_cpu, pktq_fini_cpu, pq);
148
149 return pq;
150 }
151
152 void
153 pktq_destroy(pktqueue_t *pq)
154 {
155
156 percpu_free(pq->pq_pcq, sizeof(struct pcq *));
157 percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
158 softint_disestablish(pq->pq_sih);
159 mutex_destroy(&pq->pq_lock);
160 kmem_free(pq, sizeof(*pq));
161 }
162
163 /*
164 * - pktq_inc_counter: increment the counter given an ID.
165 * - pktq_collect_counts: handler to sum up the counts from each CPU.
166 * - pktq_getcount: return the effective count given an ID.
167 */
168
169 static inline void
170 pktq_inc_count(pktqueue_t *pq, u_int i)
171 {
172 percpu_t *pc = pq->pq_counters;
173 pktq_counters_t *c;
174
175 c = percpu_getref(pc);
176 c->count[i]++;
177 percpu_putref(pc);
178 }
179
180 static void
181 pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
182 {
183 const pktq_counters_t *c = mem;
184 pktq_counters_t *sum = arg;
185
186 int s = splnet();
187
188 for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
189 sum->count[i] += c->count[i];
190 }
191
192 splx(s);
193 }
194
195 uint64_t
196 pktq_get_count(pktqueue_t *pq, pktq_count_t c)
197 {
198 pktq_counters_t sum;
199
200 if (c != PKTQ_MAXLEN) {
201 memset(&sum, 0, sizeof(sum));
202 percpu_foreach_xcall(pq->pq_counters,
203 XC_HIGHPRI_IPL(IPL_SOFTNET), pktq_collect_counts, &sum);
204 }
205 switch (c) {
206 case PKTQ_NITEMS:
207 return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
208 case PKTQ_DROPS:
209 return sum.count[PQCNT_DROP];
210 case PKTQ_MAXLEN:
211 return pq->pq_maxlen;
212 }
213 return 0;
214 }
215
216 uint32_t
217 pktq_rps_hash(const struct mbuf *m __unused)
218 {
219 /*
220 * XXX: No distribution yet; the softnet_lock contention
221 * XXX: must be eliminated first.
222 */
223 return 0;
224 }
225
226 /*
227 * pktq_enqueue: inject the packet into the end of the queue.
228 *
229 * => Must be called from the interrupt or with the preemption disabled.
230 * => Consumes the packet and returns true on success.
231 * => Returns false on failure; caller is responsible to free the packet.
232 */
233 bool
234 pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
235 {
236 #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI)
237 struct cpu_info *ci = curcpu();
238 #else
239 struct cpu_info *ci = cpu_lookup(hash % ncpu);
240 #endif
241
242 KASSERT(kpreempt_disabled());
243
244 if (__predict_false(!pcq_put(pktq_pcq(pq, ci), m))) {
245 pktq_inc_count(pq, PQCNT_DROP);
246 return false;
247 }
248 softint_schedule_cpu(pq->pq_sih, ci);
249 pktq_inc_count(pq, PQCNT_ENQUEUE);
250 return true;
251 }
252
253 /*
254 * pktq_dequeue: take a packet from the queue.
255 *
256 * => Must be called with preemption disabled.
257 * => Must ensure there are not concurrent dequeue calls.
258 */
259 struct mbuf *
260 pktq_dequeue(pktqueue_t *pq)
261 {
262 struct cpu_info *ci = curcpu();
263 struct mbuf *m;
264
265 KASSERT(kpreempt_disabled());
266
267 m = pcq_get(pktq_pcq(pq, ci));
268 if (__predict_false(m == PKTQ_MARKER)) {
269 /* Note the marker entry. */
270 atomic_inc_uint(&pq->pq_barrier);
271 return NULL;
272 }
273 if (__predict_true(m != NULL)) {
274 pktq_inc_count(pq, PQCNT_DEQUEUE);
275 }
276 return m;
277 }
278
279 /*
280 * pktq_barrier: waits for a grace period when all packets enqueued at
281 * the moment of calling this routine will be processed. This is used
282 * to ensure that e.g. packets referencing some interface were drained.
283 */
284 void
285 pktq_barrier(pktqueue_t *pq)
286 {
287 CPU_INFO_ITERATOR cii;
288 struct cpu_info *ci;
289 u_int pending = 0;
290
291 mutex_enter(&pq->pq_lock);
292 KASSERT(pq->pq_barrier == 0);
293
294 for (CPU_INFO_FOREACH(cii, ci)) {
295 struct pcq *q;
296
297 kpreempt_disable();
298 q = pktq_pcq(pq, ci);
299 kpreempt_enable();
300
301 /* If the queue is empty - nothing to do. */
302 if (pcq_peek(q) == NULL) {
303 continue;
304 }
305 /* Otherwise, put the marker and entry. */
306 while (!pcq_put(q, PKTQ_MARKER)) {
307 kpause("pktqsync", false, 1, NULL);
308 }
309 kpreempt_disable();
310 softint_schedule_cpu(pq->pq_sih, ci);
311 kpreempt_enable();
312 pending++;
313 }
314
315 /* Wait for each queue to process the markers. */
316 while (pq->pq_barrier != pending) {
317 kpause("pktqsync", false, 1, NULL);
318 }
319 pq->pq_barrier = 0;
320 mutex_exit(&pq->pq_lock);
321 }
322
323 /*
324 * pktq_flush: free mbufs in all queues.
325 *
326 * => The caller must ensure there are no concurrent writers or flush calls.
327 */
328 void
329 pktq_flush(pktqueue_t *pq)
330 {
331 CPU_INFO_ITERATOR cii;
332 struct cpu_info *ci;
333 struct mbuf *m;
334
335 for (CPU_INFO_FOREACH(cii, ci)) {
336 struct pcq *q;
337
338 kpreempt_disable();
339 q = pktq_pcq(pq, ci);
340 kpreempt_enable();
341
342 /*
343 * XXX This can't be right -- if the softint is running
344 * then pcq_get isn't safe here.
345 */
346 while ((m = pcq_get(q)) != NULL) {
347 pktq_inc_count(pq, PQCNT_DEQUEUE);
348 m_freem(m);
349 }
350 }
351 }
352
353 static void
354 pktq_set_maxlen_cpu(void *vpq, void *vqs)
355 {
356 struct pktqueue *pq = vpq;
357 struct pcq **qp, *q, **qs = vqs;
358 unsigned i = cpu_index(curcpu());
359 int s;
360
361 s = splnet();
362 qp = percpu_getref(pq->pq_pcq);
363 q = *qp;
364 *qp = qs[i];
365 qs[i] = q;
366 percpu_putref(pq->pq_pcq);
367 splx(s);
368 }
369
370 /*
371 * pktq_set_maxlen: create per-CPU queues using a new size and replace
372 * the existing queues without losing any packets.
373 *
374 * XXX ncpu must remain stable throughout.
375 */
376 int
377 pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
378 {
379 const u_int slotbytes = ncpu * sizeof(pcq_t *);
380 pcq_t **qs;
381
382 if (!maxlen || maxlen > PCQ_MAXLEN)
383 return EINVAL;
384 if (pq->pq_maxlen == maxlen)
385 return 0;
386
387 /* First, allocate the new queues. */
388 qs = kmem_zalloc(slotbytes, KM_SLEEP);
389 for (u_int i = 0; i < ncpu; i++) {
390 qs[i] = pcq_create(maxlen, KM_SLEEP);
391 }
392
393 /*
394 * Issue an xcall to replace the queue pointers on each CPU.
395 * This implies all the necessary memory barriers.
396 */
397 mutex_enter(&pq->pq_lock);
398 xc_wait(xc_broadcast(XC_HIGHPRI, pktq_set_maxlen_cpu, pq, qs));
399 pq->pq_maxlen = maxlen;
400 mutex_exit(&pq->pq_lock);
401
402 /*
403 * At this point, the new packets are flowing into the new
404 * queues. However, the old queues may have some packets
405 * present which are no longer being processed. We are going
406 * to re-enqueue them. This may change the order of packet
407 * arrival, but it is not considered an issue.
408 *
409 * There may be in-flight interrupts calling pktq_dequeue()
410 * which reference the old queues. Issue a barrier to ensure
411 * that we are going to be the only pcq_get() callers on the
412 * old queues.
413 */
414 pktq_barrier(pq);
415
416 for (u_int i = 0; i < ncpu; i++) {
417 struct pcq *q;
418 struct mbuf *m;
419
420 kpreempt_disable();
421 q = pktq_pcq(pq, cpu_lookup(i));
422 kpreempt_enable();
423
424 while ((m = pcq_get(qs[i])) != NULL) {
425 while (!pcq_put(q, m)) {
426 kpause("pktqrenq", false, 1, NULL);
427 }
428 }
429 pcq_destroy(qs[i]);
430 }
431
432 /* Well, that was fun. */
433 kmem_free(qs, slotbytes);
434 return 0;
435 }
436
437 int
438 sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
439 {
440 u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
441 struct sysctlnode node = *rnode;
442 int error;
443
444 node.sysctl_data = &nmaxlen;
445 error = sysctl_lookup(SYSCTLFN_CALL(&node));
446 if (error || newp == NULL)
447 return error;
448 return pktq_set_maxlen(pq, nmaxlen);
449 }
450
451 int
452 sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
453 {
454 uint64_t count = pktq_get_count(pq, count_id);
455 struct sysctlnode node = *rnode;
456
457 node.sysctl_data = &count;
458 return sysctl_lookup(SYSCTLFN_CALL(&node));
459 }
460