Home | History | Annotate | Line # | Download | only in net
pktqueue.c revision 1.7
      1 /*	$NetBSD: pktqueue.c,v 1.7 2014/07/02 07:30:37 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * The packet queue (pktqueue) interface is a lockless IP input queue
     34  * which also abstracts and handles network ISR scheduling.  It provides
     35  * a mechanism to enable receiver-side packet steering (RPS).
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.7 2014/07/02 07:30:37 ozaki-r Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/types.h>
     43 
     44 #include <sys/atomic.h>
     45 #include <sys/cpu.h>
     46 #include <sys/pcq.h>
     47 #include <sys/intr.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/proc.h>
     50 #include <sys/percpu.h>
     51 
     52 #include <net/pktqueue.h>
     53 
     54 /*
     55  * WARNING: update this if struct pktqueue changes.
     56  */
     57 #define	PKTQ_CLPAD	\
     58     MAX(COHERENCY_UNIT, COHERENCY_UNIT - sizeof(kmutex_t) - sizeof(u_int))
     59 
     60 struct pktqueue {
     61 	/*
     62 	 * The lock used for a barrier mechanism.  The barrier counter,
     63 	 * as well as the drop counter, are managed atomically though.
     64 	 * Ensure this group is in a separate cache line.
     65 	 */
     66 	kmutex_t	pq_lock;
     67 	volatile u_int	pq_barrier;
     68 	uint8_t		_pad[PKTQ_CLPAD];
     69 
     70 	/* The size of the queue, counters and the interrupt handler. */
     71 	u_int		pq_maxlen;
     72 	percpu_t *	pq_counters;
     73 	void *		pq_sih;
     74 
     75 	/* Finally, per-CPU queues. */
     76 	pcq_t *		pq_queue[];
     77 };
     78 
     79 /* The counters of the packet queue. */
     80 #define	PQCNT_ENQUEUE	0
     81 #define	PQCNT_DEQUEUE	1
     82 #define	PQCNT_DROP	2
     83 #define	PQCNT_NCOUNTERS	3
     84 
     85 typedef struct {
     86 	uint64_t	count[PQCNT_NCOUNTERS];
     87 } pktq_counters_t;
     88 
     89 /* Special marker value used by pktq_barrier() mechanism. */
     90 #define	PKTQ_MARKER	((void *)(~0ULL))
     91 
     92 /*
     93  * The total size of pktqueue_t which depends on the number of CPUs.
     94  */
     95 #define	PKTQUEUE_STRUCT_LEN(ncpu)	\
     96     roundup2(offsetof(pktqueue_t, pq_queue[ncpu]), coherency_unit)
     97 
     98 pktqueue_t *
     99 pktq_create(size_t maxlen, void (*intrh)(void *), void *sc)
    100 {
    101 	const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU;
    102 	const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
    103 	pktqueue_t *pq;
    104 	percpu_t *pc;
    105 	void *sih;
    106 
    107 	if ((pc = percpu_alloc(sizeof(pktq_counters_t))) == NULL) {
    108 		return NULL;
    109 	}
    110 	if ((sih = softint_establish(sflags, intrh, sc)) == NULL) {
    111 		percpu_free(pc, sizeof(pktq_counters_t));
    112 		return NULL;
    113 	}
    114 
    115 	pq = kmem_zalloc(len, KM_SLEEP);
    116 	for (u_int i = 0; i < ncpu; i++) {
    117 		pq->pq_queue[i] = pcq_create(maxlen, KM_SLEEP);
    118 	}
    119 	mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE);
    120 	pq->pq_maxlen = maxlen;
    121 	pq->pq_counters = pc;
    122 	pq->pq_sih = sih;
    123 
    124 	return pq;
    125 }
    126 
    127 void
    128 pktq_destroy(pktqueue_t *pq)
    129 {
    130 	const size_t len = PKTQUEUE_STRUCT_LEN(ncpu);
    131 
    132 	for (u_int i = 0; i < ncpu; i++) {
    133 		pcq_t *q = pq->pq_queue[i];
    134 		KASSERT(pcq_peek(q) == NULL);
    135 		pcq_destroy(q);
    136 	}
    137 	percpu_free(pq->pq_counters, sizeof(pktq_counters_t));
    138 	softint_disestablish(pq->pq_sih);
    139 	mutex_destroy(&pq->pq_lock);
    140 	kmem_free(pq, len);
    141 }
    142 
    143 /*
    144  * - pktq_inc_counter: increment the counter given an ID.
    145  * - pktq_collect_counts: handler to sum up the counts from each CPU.
    146  * - pktq_getcount: return the effective count given an ID.
    147  */
    148 
    149 static inline void
    150 pktq_inc_count(pktqueue_t *pq, u_int i)
    151 {
    152 	percpu_t *pc = pq->pq_counters;
    153 	pktq_counters_t *c;
    154 
    155 	c = percpu_getref(pc);
    156 	c->count[i]++;
    157 	percpu_putref(pc);
    158 }
    159 
    160 static void
    161 pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci)
    162 {
    163 	const pktq_counters_t *c = mem;
    164 	pktq_counters_t *sum = arg;
    165 
    166 	for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) {
    167 		sum->count[i] += c->count[i];
    168 	}
    169 }
    170 
    171 uint64_t
    172 pktq_get_count(pktqueue_t *pq, pktq_count_t c)
    173 {
    174 	pktq_counters_t sum;
    175 
    176 	if (c != PKTQ_MAXLEN) {
    177 		memset(&sum, 0, sizeof(sum));
    178 		percpu_foreach(pq->pq_counters, pktq_collect_counts, &sum);
    179 	}
    180 	switch (c) {
    181 	case PKTQ_NITEMS:
    182 		return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE];
    183 	case PKTQ_DROPS:
    184 		return sum.count[PQCNT_DROP];
    185 	case PKTQ_MAXLEN:
    186 		return pq->pq_maxlen;
    187 	}
    188 	return 0;
    189 }
    190 
    191 uint32_t
    192 pktq_rps_hash(const struct mbuf *m __unused)
    193 {
    194 	/*
    195 	 * XXX: No distribution yet; the softnet_lock contention
    196 	 * XXX: must be eliminated first.
    197 	 */
    198 	return 0;
    199 }
    200 
    201 /*
    202  * pktq_enqueue: inject the packet into the end of the queue.
    203  *
    204  * => Must be called from the interrupt or with the preemption disabled.
    205  * => Consumes the packet and returns true on success.
    206  * => Returns false on failure; caller is responsible to free the packet.
    207  */
    208 bool
    209 pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused)
    210 {
    211 #ifdef _RUMPKERNEL
    212 	const unsigned cpuid = curcpu()->ci_index;
    213 #else
    214 	const unsigned cpuid = hash % ncpu;
    215 #endif
    216 
    217 	KASSERT(kpreempt_disabled());
    218 
    219 	if (__predict_false(!pcq_put(pq->pq_queue[cpuid], m))) {
    220 		pktq_inc_count(pq, PQCNT_DROP);
    221 		return false;
    222 	}
    223 	softint_schedule_cpu(pq->pq_sih, cpu_lookup(cpuid));
    224 	pktq_inc_count(pq, PQCNT_ENQUEUE);
    225 	return true;
    226 }
    227 
    228 /*
    229  * pktq_dequeue: take a packet from the queue.
    230  *
    231  * => Must be called with preemption disabled.
    232  * => Must ensure there are not concurrent dequeue calls.
    233  */
    234 struct mbuf *
    235 pktq_dequeue(pktqueue_t *pq)
    236 {
    237 	const struct cpu_info *ci = curcpu();
    238 	const unsigned cpuid = cpu_index(ci);
    239 	struct mbuf *m;
    240 
    241 	m = pcq_get(pq->pq_queue[cpuid]);
    242 	if (__predict_false(m == PKTQ_MARKER)) {
    243 		/* Note the marker entry. */
    244 		atomic_inc_uint(&pq->pq_barrier);
    245 		return NULL;
    246 	}
    247 	if (__predict_true(m != NULL)) {
    248 		pktq_inc_count(pq, PQCNT_DEQUEUE);
    249 	}
    250 	return m;
    251 }
    252 
    253 /*
    254  * pktq_barrier: waits for a grace period when all packets enqueued at
    255  * the moment of calling this routine will be processed.  This is used
    256  * to ensure that e.g. packets referencing some interface were drained.
    257  */
    258 void
    259 pktq_barrier(pktqueue_t *pq)
    260 {
    261 	u_int pending = 0;
    262 
    263 	mutex_enter(&pq->pq_lock);
    264 	KASSERT(pq->pq_barrier == 0);
    265 
    266 	for (u_int i = 0; i < ncpu; i++) {
    267 		pcq_t *q = pq->pq_queue[i];
    268 
    269 		/* If the queue is empty - nothing to do. */
    270 		if (pcq_peek(q) == NULL) {
    271 			continue;
    272 		}
    273 		/* Otherwise, put the marker and entry. */
    274 		while (!pcq_put(q, PKTQ_MARKER)) {
    275 			kpause("pktqsync", false, 1, NULL);
    276 		}
    277 		kpreempt_disable();
    278 		softint_schedule_cpu(pq->pq_sih, cpu_lookup(i));
    279 		kpreempt_enable();
    280 		pending++;
    281 	}
    282 
    283 	/* Wait for each queue to process the markers. */
    284 	while (pq->pq_barrier != pending) {
    285 		kpause("pktqsync", false, 1, NULL);
    286 	}
    287 	pq->pq_barrier = 0;
    288 	mutex_exit(&pq->pq_lock);
    289 }
    290 
    291 /*
    292  * pktq_flush: free mbufs in all queues.
    293  *
    294  * => The caller must ensure there are no concurrent writers or flush calls.
    295  */
    296 void
    297 pktq_flush(pktqueue_t *pq)
    298 {
    299 	struct mbuf *m;
    300 
    301 	for (u_int i = 0; i < ncpu; i++) {
    302 		while ((m = pcq_get(pq->pq_queue[i])) != NULL) {
    303 			pktq_inc_count(pq, PQCNT_DEQUEUE);
    304 			m_freem(m);
    305 		}
    306 	}
    307 }
    308 
    309 /*
    310  * pktq_set_maxlen: create per-CPU queues using a new size and replace
    311  * the existing queues without losing any packets.
    312  */
    313 int
    314 pktq_set_maxlen(pktqueue_t *pq, size_t maxlen)
    315 {
    316 	const u_int slotbytes = ncpu * sizeof(pcq_t *);
    317 	pcq_t **qs;
    318 
    319 	if (!maxlen || maxlen > PCQ_MAXLEN)
    320 		return EINVAL;
    321 	if (pq->pq_maxlen == maxlen)
    322 		return 0;
    323 
    324 	/* First, allocate the new queues and replace them. */
    325 	qs = kmem_zalloc(slotbytes, KM_SLEEP);
    326 	for (u_int i = 0; i < ncpu; i++) {
    327 		qs[i] = pcq_create(maxlen, KM_SLEEP);
    328 	}
    329 	mutex_enter(&pq->pq_lock);
    330 	for (u_int i = 0; i < ncpu; i++) {
    331 		/* Swap: store of a word is atomic. */
    332 		pcq_t *q = pq->pq_queue[i];
    333 		pq->pq_queue[i] = qs[i];
    334 		qs[i] = q;
    335 	}
    336 	pq->pq_maxlen = maxlen;
    337 	mutex_exit(&pq->pq_lock);
    338 
    339 	/*
    340 	 * At this point, the new packets are flowing into the new
    341 	 * queues.  However, the old queues may have some packets
    342 	 * present which are no longer being processed.  We are going
    343 	 * to re-enqueue them.  This may change the order of packet
    344 	 * arrival, but it is not considered an issue.
    345 	 *
    346 	 * There may be in-flight interrupts calling pktq_dequeue()
    347 	 * which reference the old queues.  Issue a barrier to ensure
    348 	 * that we are going to be the only pcq_get() callers on the
    349 	 * old queues.
    350 	 */
    351 	pktq_barrier(pq);
    352 
    353 	for (u_int i = 0; i < ncpu; i++) {
    354 		struct mbuf *m;
    355 
    356 		while ((m = pcq_get(qs[i])) != NULL) {
    357 			while (!pcq_put(pq->pq_queue[i], m)) {
    358 				kpause("pktqrenq", false, 1, NULL);
    359 			}
    360 		}
    361 		pcq_destroy(qs[i]);
    362 	}
    363 
    364 	/* Well, that was fun. */
    365 	kmem_free(qs, slotbytes);
    366 	return 0;
    367 }
    368 
    369 int
    370 sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq)
    371 {
    372 	u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN);
    373 	struct sysctlnode node = *rnode;
    374 	int error;
    375 
    376 	node.sysctl_data = &nmaxlen;
    377 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    378 	if (error || newp == NULL)
    379 		return error;
    380 	return pktq_set_maxlen(pq, nmaxlen);
    381 }
    382 
    383 int
    384 sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id)
    385 {
    386 	int count = pktq_get_count(pq, count_id);
    387 	struct sysctlnode node = *rnode;
    388 	node.sysctl_data = &count;
    389 	return sysctl_lookup(SYSCTLFN_CALL(&node));
    390 }
    391