1 1.49 gson /* $NetBSD: radix.c,v 1.49 2020/10/18 13:07:31 gson Exp $ */ 2 1.7 cgd 3 1.1 cgd /* 4 1.6 mycroft * Copyright (c) 1988, 1989, 1993 5 1.6 mycroft * The Regents of the University of California. All rights reserved. 6 1.1 cgd * 7 1.1 cgd * Redistribution and use in source and binary forms, with or without 8 1.1 cgd * modification, are permitted provided that the following conditions 9 1.1 cgd * are met: 10 1.1 cgd * 1. Redistributions of source code must retain the above copyright 11 1.1 cgd * notice, this list of conditions and the following disclaimer. 12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 cgd * notice, this list of conditions and the following disclaimer in the 14 1.1 cgd * documentation and/or other materials provided with the distribution. 15 1.20 agc * 3. Neither the name of the University nor the names of its contributors 16 1.1 cgd * may be used to endorse or promote products derived from this software 17 1.1 cgd * without specific prior written permission. 18 1.1 cgd * 19 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 1.1 cgd * SUCH DAMAGE. 30 1.1 cgd * 31 1.13 fvdl * @(#)radix.c 8.6 (Berkeley) 10/17/95 32 1.1 cgd */ 33 1.1 cgd 34 1.1 cgd /* 35 1.1 cgd * Routines to build and maintain radix trees for routing lookups. 36 1.1 cgd */ 37 1.18 lukem 38 1.18 lukem #include <sys/cdefs.h> 39 1.49 gson __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.49 2020/10/18 13:07:31 gson Exp $"); 40 1.18 lukem 41 1.12 christos #ifndef _NET_RADIX_H_ 42 1.4 mycroft #include <sys/param.h> 43 1.43 pooka #include <sys/queue.h> 44 1.43 pooka #include <sys/kmem.h> 45 1.12 christos #ifdef _KERNEL 46 1.45 pooka #ifdef _KERNEL_OPT 47 1.27 enami #include "opt_inet.h" 48 1.45 pooka #endif 49 1.27 enami 50 1.4 mycroft #include <sys/systm.h> 51 1.4 mycroft #include <sys/malloc.h> 52 1.1 cgd #define M_DONTWAIT M_NOWAIT 53 1.6 mycroft #include <sys/domain.h> 54 1.9 mycroft #else 55 1.9 mycroft #include <stdlib.h> 56 1.6 mycroft #endif 57 1.9 mycroft #include <sys/syslog.h> 58 1.4 mycroft #include <net/radix.h> 59 1.12 christos #endif 60 1.6 mycroft 61 1.32 dyoung typedef void (*rn_printer_t)(void *, const char *fmt, ...); 62 1.32 dyoung 63 1.6 mycroft int max_keylen; 64 1.6 mycroft struct radix_mask *rn_mkfreelist; 65 1.1 cgd struct radix_node_head *mask_rnhead; 66 1.9 mycroft static char *addmask_key; 67 1.21 matt static const char normal_chars[] = 68 1.21 matt {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1}; 69 1.6 mycroft static char *rn_zeros, *rn_ones; 70 1.6 mycroft 71 1.6 mycroft #define rn_masktop (mask_rnhead->rnh_treetop) 72 1.10 christos 73 1.23 matt static int rn_satisfies_leaf(const char *, struct radix_node *, int); 74 1.23 matt static int rn_lexobetter(const void *, const void *); 75 1.23 matt static struct radix_mask *rn_new_radix_mask(struct radix_node *, 76 1.23 matt struct radix_mask *); 77 1.32 dyoung static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t, 78 1.32 dyoung void *); 79 1.32 dyoung static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t, 80 1.32 dyoung void *); 81 1.32 dyoung static void rn_nodeprint(struct radix_node *, rn_printer_t, void *, 82 1.32 dyoung const char *); 83 1.32 dyoung 84 1.32 dyoung #define SUBTREE_OPEN "[ " 85 1.32 dyoung #define SUBTREE_CLOSE " ]" 86 1.32 dyoung 87 1.32 dyoung #ifdef RN_DEBUG 88 1.32 dyoung static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *); 89 1.32 dyoung #endif /* RN_DEBUG */ 90 1.12 christos 91 1.1 cgd /* 92 1.1 cgd * The data structure for the keys is a radix tree with one way 93 1.1 cgd * branching removed. The index rn_b at an internal node n represents a bit 94 1.1 cgd * position to be tested. The tree is arranged so that all descendants 95 1.1 cgd * of a node n have keys whose bits all agree up to position rn_b - 1. 96 1.1 cgd * (We say the index of n is rn_b.) 97 1.1 cgd * 98 1.1 cgd * There is at least one descendant which has a one bit at position rn_b, 99 1.1 cgd * and at least one with a zero there. 100 1.1 cgd * 101 1.1 cgd * A route is determined by a pair of key and mask. We require that the 102 1.1 cgd * bit-wise logical and of the key and mask to be the key. 103 1.1 cgd * We define the index of a route to associated with the mask to be 104 1.1 cgd * the first bit number in the mask where 0 occurs (with bit number 0 105 1.1 cgd * representing the highest order bit). 106 1.28 perry * 107 1.1 cgd * We say a mask is normal if every bit is 0, past the index of the mask. 108 1.1 cgd * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b, 109 1.1 cgd * and m is a normal mask, then the route applies to every descendant of n. 110 1.1 cgd * If the index(m) < rn_b, this implies the trailing last few bits of k 111 1.1 cgd * before bit b are all 0, (and hence consequently true of every descendant 112 1.1 cgd * of n), so the route applies to all descendants of the node as well. 113 1.28 perry * 114 1.9 mycroft * Similar logic shows that a non-normal mask m such that 115 1.1 cgd * index(m) <= index(n) could potentially apply to many children of n. 116 1.1 cgd * Thus, for each non-host route, we attach its mask to a list at an internal 117 1.28 perry * node as high in the tree as we can go. 118 1.9 mycroft * 119 1.9 mycroft * The present version of the code makes use of normal routes in short- 120 1.31 wiz * circuiting an explicit mask and compare operation when testing whether 121 1.9 mycroft * a key satisfies a normal route, and also in remembering the unique leaf 122 1.9 mycroft * that governs a subtree. 123 1.1 cgd */ 124 1.1 cgd 125 1.1 cgd struct radix_node * 126 1.23 matt rn_search( 127 1.23 matt const void *v_arg, 128 1.23 matt struct radix_node *head) 129 1.1 cgd { 130 1.21 matt const u_char * const v = v_arg; 131 1.14 augustss struct radix_node *x; 132 1.1 cgd 133 1.21 matt for (x = head; x->rn_b >= 0;) { 134 1.1 cgd if (x->rn_bmask & v[x->rn_off]) 135 1.1 cgd x = x->rn_r; 136 1.1 cgd else 137 1.1 cgd x = x->rn_l; 138 1.1 cgd } 139 1.37 dyoung return x; 140 1.13 fvdl } 141 1.1 cgd 142 1.1 cgd struct radix_node * 143 1.23 matt rn_search_m( 144 1.23 matt const void *v_arg, 145 1.23 matt struct radix_node *head, 146 1.23 matt const void *m_arg) 147 1.1 cgd { 148 1.14 augustss struct radix_node *x; 149 1.21 matt const u_char * const v = v_arg; 150 1.21 matt const u_char * const m = m_arg; 151 1.1 cgd 152 1.1 cgd for (x = head; x->rn_b >= 0;) { 153 1.1 cgd if ((x->rn_bmask & m[x->rn_off]) && 154 1.1 cgd (x->rn_bmask & v[x->rn_off])) 155 1.1 cgd x = x->rn_r; 156 1.1 cgd else 157 1.1 cgd x = x->rn_l; 158 1.1 cgd } 159 1.1 cgd return x; 160 1.13 fvdl } 161 1.1 cgd 162 1.6 mycroft int 163 1.23 matt rn_refines( 164 1.23 matt const void *m_arg, 165 1.23 matt const void *n_arg) 166 1.6 mycroft { 167 1.21 matt const char *m = m_arg; 168 1.21 matt const char *n = n_arg; 169 1.29 christos const char *lim = n + *(const u_char *)n; 170 1.21 matt const char *lim2 = lim; 171 1.29 christos int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++); 172 1.6 mycroft int masks_are_equal = 1; 173 1.6 mycroft 174 1.6 mycroft if (longer > 0) 175 1.6 mycroft lim -= longer; 176 1.6 mycroft while (n < lim) { 177 1.6 mycroft if (*n & ~(*m)) 178 1.6 mycroft return 0; 179 1.6 mycroft if (*n++ != *m++) 180 1.6 mycroft masks_are_equal = 0; 181 1.6 mycroft } 182 1.6 mycroft while (n < lim2) 183 1.6 mycroft if (*n++) 184 1.6 mycroft return 0; 185 1.6 mycroft if (masks_are_equal && (longer < 0)) 186 1.6 mycroft for (lim2 = m - longer; m < lim2; ) 187 1.6 mycroft if (*m++) 188 1.6 mycroft return 1; 189 1.37 dyoung return !masks_are_equal; 190 1.6 mycroft } 191 1.1 cgd 192 1.9 mycroft struct radix_node * 193 1.23 matt rn_lookup( 194 1.23 matt const void *v_arg, 195 1.23 matt const void *m_arg, 196 1.23 matt struct radix_node_head *head) 197 1.9 mycroft { 198 1.14 augustss struct radix_node *x; 199 1.21 matt const char *netmask = NULL; 200 1.9 mycroft 201 1.9 mycroft if (m_arg) { 202 1.9 mycroft if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0) 203 1.37 dyoung return NULL; 204 1.9 mycroft netmask = x->rn_key; 205 1.9 mycroft } 206 1.9 mycroft x = rn_match(v_arg, head); 207 1.37 dyoung if (x != NULL && netmask != NULL) { 208 1.37 dyoung while (x != NULL && x->rn_mask != netmask) 209 1.9 mycroft x = x->rn_dupedkey; 210 1.9 mycroft } 211 1.9 mycroft return x; 212 1.9 mycroft } 213 1.9 mycroft 214 1.10 christos static int 215 1.23 matt rn_satisfies_leaf( 216 1.23 matt const char *trial, 217 1.23 matt struct radix_node *leaf, 218 1.23 matt int skip) 219 1.23 matt { 220 1.23 matt const char *cp = trial; 221 1.23 matt const char *cp2 = leaf->rn_key; 222 1.23 matt const char *cp3 = leaf->rn_mask; 223 1.21 matt const char *cplim; 224 1.48 riastrad int length = uimin(*(const u_char *)cp, *(const u_char *)cp2); 225 1.9 mycroft 226 1.9 mycroft if (cp3 == 0) 227 1.9 mycroft cp3 = rn_ones; 228 1.9 mycroft else 229 1.48 riastrad length = uimin(length, *(const u_char *)cp3); 230 1.9 mycroft cplim = cp + length; cp3 += skip; cp2 += skip; 231 1.9 mycroft for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 232 1.9 mycroft if ((*cp ^ *cp2) & *cp3) 233 1.9 mycroft return 0; 234 1.9 mycroft return 1; 235 1.9 mycroft } 236 1.1 cgd 237 1.1 cgd struct radix_node * 238 1.23 matt rn_match( 239 1.23 matt const void *v_arg, 240 1.23 matt struct radix_node_head *head) 241 1.1 cgd { 242 1.21 matt const char * const v = v_arg; 243 1.23 matt struct radix_node *t = head->rnh_treetop; 244 1.23 matt struct radix_node *top = t; 245 1.23 matt struct radix_node *x; 246 1.23 matt struct radix_node *saved_t; 247 1.21 matt const char *cp = v; 248 1.21 matt const char *cp2; 249 1.21 matt const char *cplim; 250 1.23 matt int off = t->rn_off; 251 1.29 christos int vlen = *(const u_char *)cp; 252 1.23 matt int matched_off; 253 1.14 augustss int test, b, rn_b; 254 1.1 cgd 255 1.1 cgd /* 256 1.6 mycroft * Open code rn_search(v, top) to avoid overhead of extra 257 1.1 cgd * subroutine call. 258 1.1 cgd */ 259 1.1 cgd for (; t->rn_b >= 0; ) { 260 1.1 cgd if (t->rn_bmask & cp[t->rn_off]) 261 1.1 cgd t = t->rn_r; 262 1.1 cgd else 263 1.1 cgd t = t->rn_l; 264 1.1 cgd } 265 1.1 cgd /* 266 1.1 cgd * See if we match exactly as a host destination 267 1.9 mycroft * or at least learn how many bits match, for normal mask finesse. 268 1.9 mycroft * 269 1.9 mycroft * It doesn't hurt us to limit how many bytes to check 270 1.9 mycroft * to the length of the mask, since if it matches we had a genuine 271 1.9 mycroft * match and the leaf we have is the most specific one anyway; 272 1.9 mycroft * if it didn't match with a shorter length it would fail 273 1.9 mycroft * with a long one. This wins big for class B&C netmasks which 274 1.9 mycroft * are probably the most common case... 275 1.1 cgd */ 276 1.9 mycroft if (t->rn_mask) 277 1.29 christos vlen = *(const u_char *)t->rn_mask; 278 1.1 cgd cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 279 1.1 cgd for (; cp < cplim; cp++, cp2++) 280 1.1 cgd if (*cp != *cp2) 281 1.1 cgd goto on1; 282 1.1 cgd /* 283 1.1 cgd * This extra grot is in case we are explicitly asked 284 1.1 cgd * to look up the default. Ugh! 285 1.1 cgd */ 286 1.1 cgd if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey) 287 1.1 cgd t = t->rn_dupedkey; 288 1.1 cgd return t; 289 1.1 cgd on1: 290 1.9 mycroft test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 291 1.9 mycroft for (b = 7; (test >>= 1) > 0;) 292 1.9 mycroft b--; 293 1.1 cgd matched_off = cp - v; 294 1.9 mycroft b += matched_off << 3; 295 1.9 mycroft rn_b = -1 - b; 296 1.9 mycroft /* 297 1.9 mycroft * If there is a host route in a duped-key chain, it will be first. 298 1.9 mycroft */ 299 1.9 mycroft if ((saved_t = t)->rn_mask == 0) 300 1.9 mycroft t = t->rn_dupedkey; 301 1.9 mycroft for (; t; t = t->rn_dupedkey) 302 1.1 cgd /* 303 1.9 mycroft * Even if we don't match exactly as a host, 304 1.1 cgd * we may match if the leaf we wound up at is 305 1.1 cgd * a route to a net. 306 1.1 cgd */ 307 1.9 mycroft if (t->rn_flags & RNF_NORMAL) { 308 1.9 mycroft if (rn_b <= t->rn_b) 309 1.9 mycroft return t; 310 1.15 itojun } else if (rn_satisfies_leaf(v, t, matched_off)) 311 1.9 mycroft return t; 312 1.1 cgd t = saved_t; 313 1.1 cgd /* start searching up the tree */ 314 1.1 cgd do { 315 1.14 augustss struct radix_mask *m; 316 1.1 cgd t = t->rn_p; 317 1.12 christos m = t->rn_mklist; 318 1.12 christos if (m) { 319 1.1 cgd /* 320 1.9 mycroft * If non-contiguous masks ever become important 321 1.9 mycroft * we can restore the masking and open coding of 322 1.9 mycroft * the search and satisfaction test and put the 323 1.9 mycroft * calculation of "off" back before the "do". 324 1.1 cgd */ 325 1.1 cgd do { 326 1.9 mycroft if (m->rm_flags & RNF_NORMAL) { 327 1.9 mycroft if (rn_b <= m->rm_b) 328 1.37 dyoung return m->rm_leaf; 329 1.9 mycroft } else { 330 1.48 riastrad off = uimin(t->rn_off, matched_off); 331 1.9 mycroft x = rn_search_m(v, t, m->rm_mask); 332 1.9 mycroft while (x && x->rn_mask != m->rm_mask) 333 1.9 mycroft x = x->rn_dupedkey; 334 1.15 itojun if (x && rn_satisfies_leaf(v, x, off)) 335 1.17 itojun return x; 336 1.9 mycroft } 337 1.15 itojun m = m->rm_mklist; 338 1.12 christos } while (m); 339 1.1 cgd } 340 1.6 mycroft } while (t != top); 341 1.37 dyoung return NULL; 342 1.13 fvdl } 343 1.28 perry 344 1.32 dyoung static void 345 1.32 dyoung rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg, 346 1.32 dyoung const char *delim) 347 1.32 dyoung { 348 1.32 dyoung (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)", 349 1.32 dyoung delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p, 350 1.32 dyoung rn->rn_l, rn->rn_r); 351 1.32 dyoung } 352 1.32 dyoung 353 1.1 cgd #ifdef RN_DEBUG 354 1.6 mycroft int rn_debug = 1; 355 1.32 dyoung 356 1.32 dyoung static void 357 1.32 dyoung rn_dbg_print(void *arg, const char *fmt, ...) 358 1.32 dyoung { 359 1.32 dyoung va_list ap; 360 1.32 dyoung 361 1.32 dyoung va_start(ap, fmt); 362 1.32 dyoung vlog(LOG_DEBUG, fmt, ap); 363 1.32 dyoung va_end(ap); 364 1.32 dyoung } 365 1.32 dyoung 366 1.32 dyoung static void 367 1.32 dyoung rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg) 368 1.32 dyoung { 369 1.32 dyoung struct radix_node *dup, *rn; 370 1.32 dyoung const char *delim; 371 1.32 dyoung 372 1.32 dyoung if (printer == NULL) 373 1.32 dyoung return; 374 1.32 dyoung 375 1.32 dyoung rn = rn_walkfirst(h->rnh_treetop, printer, arg); 376 1.32 dyoung for (;;) { 377 1.32 dyoung /* Process leaves */ 378 1.32 dyoung delim = ""; 379 1.32 dyoung for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) { 380 1.32 dyoung if ((dup->rn_flags & RNF_ROOT) != 0) 381 1.32 dyoung continue; 382 1.32 dyoung rn_nodeprint(dup, printer, arg, delim); 383 1.32 dyoung delim = ", "; 384 1.32 dyoung } 385 1.32 dyoung rn = rn_walknext(rn, printer, arg); 386 1.32 dyoung if (rn->rn_flags & RNF_ROOT) 387 1.32 dyoung return; 388 1.32 dyoung } 389 1.32 dyoung /* NOTREACHED */ 390 1.32 dyoung } 391 1.32 dyoung 392 1.32 dyoung #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn)) 393 1.32 dyoung #endif /* RN_DEBUG */ 394 1.1 cgd 395 1.1 cgd struct radix_node * 396 1.23 matt rn_newpair( 397 1.23 matt const void *v, 398 1.23 matt int b, 399 1.23 matt struct radix_node nodes[2]) 400 1.1 cgd { 401 1.23 matt struct radix_node *tt = nodes; 402 1.23 matt struct radix_node *t = tt + 1; 403 1.1 cgd t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7); 404 1.1 cgd t->rn_l = tt; t->rn_off = b >> 3; 405 1.21 matt tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t; 406 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ACTIVE; 407 1.1 cgd return t; 408 1.1 cgd } 409 1.1 cgd 410 1.1 cgd struct radix_node * 411 1.23 matt rn_insert( 412 1.23 matt const void *v_arg, 413 1.23 matt struct radix_node_head *head, 414 1.23 matt int *dupentry, 415 1.23 matt struct radix_node nodes[2]) 416 1.1 cgd { 417 1.6 mycroft struct radix_node *top = head->rnh_treetop; 418 1.14 augustss struct radix_node *t = rn_search(v_arg, top); 419 1.23 matt struct radix_node *tt; 420 1.23 matt const char *v = v_arg; 421 1.21 matt int head_off = top->rn_off; 422 1.29 christos int vlen = *((const u_char *)v); 423 1.21 matt const char *cp = v + head_off; 424 1.14 augustss int b; 425 1.1 cgd /* 426 1.9 mycroft * Find first bit at which v and t->rn_key differ 427 1.1 cgd */ 428 1.1 cgd { 429 1.21 matt const char *cp2 = t->rn_key + head_off; 430 1.21 matt const char *cplim = v + vlen; 431 1.14 augustss int cmp_res; 432 1.1 cgd 433 1.1 cgd while (cp < cplim) 434 1.1 cgd if (*cp2++ != *cp++) 435 1.1 cgd goto on1; 436 1.1 cgd *dupentry = 1; 437 1.1 cgd return t; 438 1.1 cgd on1: 439 1.1 cgd *dupentry = 0; 440 1.1 cgd cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 441 1.1 cgd for (b = (cp - v) << 3; cmp_res; b--) 442 1.1 cgd cmp_res >>= 1; 443 1.1 cgd } 444 1.1 cgd { 445 1.14 augustss struct radix_node *p, *x = top; 446 1.1 cgd cp = v; 447 1.1 cgd do { 448 1.1 cgd p = x; 449 1.28 perry if (cp[x->rn_off] & x->rn_bmask) 450 1.1 cgd x = x->rn_r; 451 1.1 cgd else x = x->rn_l; 452 1.1 cgd } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */ 453 1.1 cgd #ifdef RN_DEBUG 454 1.1 cgd if (rn_debug) 455 1.32 dyoung log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p); 456 1.1 cgd #endif 457 1.6 mycroft t = rn_newpair(v_arg, b, nodes); tt = t->rn_l; 458 1.1 cgd if ((cp[p->rn_off] & p->rn_bmask) == 0) 459 1.1 cgd p->rn_l = t; 460 1.1 cgd else 461 1.1 cgd p->rn_r = t; 462 1.1 cgd x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */ 463 1.1 cgd if ((cp[t->rn_off] & t->rn_bmask) == 0) { 464 1.1 cgd t->rn_r = x; 465 1.1 cgd } else { 466 1.1 cgd t->rn_r = tt; t->rn_l = x; 467 1.1 cgd } 468 1.1 cgd #ifdef RN_DEBUG 469 1.32 dyoung if (rn_debug) { 470 1.32 dyoung log(LOG_DEBUG, "%s: Coming Out:\n", __func__), 471 1.32 dyoung traverse(head, p); 472 1.32 dyoung } 473 1.32 dyoung #endif /* RN_DEBUG */ 474 1.1 cgd } 475 1.37 dyoung return tt; 476 1.1 cgd } 477 1.1 cgd 478 1.1 cgd struct radix_node * 479 1.23 matt rn_addmask( 480 1.23 matt const void *n_arg, 481 1.23 matt int search, 482 1.23 matt int skip) 483 1.1 cgd { 484 1.21 matt const char *netmask = n_arg; 485 1.21 matt const char *cp; 486 1.21 matt const char *cplim; 487 1.23 matt struct radix_node *x; 488 1.23 matt struct radix_node *saved_x; 489 1.14 augustss int b = 0, mlen, j; 490 1.9 mycroft int maskduplicated, m0, isnormal; 491 1.9 mycroft static int last_zeroed = 0; 492 1.9 mycroft 493 1.29 christos if ((mlen = *(const u_char *)netmask) > max_keylen) 494 1.9 mycroft mlen = max_keylen; 495 1.9 mycroft if (skip == 0) 496 1.9 mycroft skip = 1; 497 1.9 mycroft if (mlen <= skip) 498 1.37 dyoung return mask_rnhead->rnh_nodes; 499 1.9 mycroft if (skip > 1) 500 1.39 dyoung memmove(addmask_key + 1, rn_ones + 1, skip - 1); 501 1.9 mycroft if ((m0 = mlen) > skip) 502 1.39 dyoung memmove(addmask_key + skip, netmask + skip, mlen - skip); 503 1.9 mycroft /* 504 1.9 mycroft * Trim trailing zeroes. 505 1.9 mycroft */ 506 1.9 mycroft for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) 507 1.9 mycroft cp--; 508 1.9 mycroft mlen = cp - addmask_key; 509 1.9 mycroft if (mlen <= skip) { 510 1.9 mycroft if (m0 >= last_zeroed) 511 1.9 mycroft last_zeroed = mlen; 512 1.37 dyoung return mask_rnhead->rnh_nodes; 513 1.9 mycroft } 514 1.9 mycroft if (m0 < last_zeroed) 515 1.39 dyoung memset(addmask_key + m0, 0, last_zeroed - m0); 516 1.9 mycroft *addmask_key = last_zeroed = mlen; 517 1.9 mycroft x = rn_search(addmask_key, rn_masktop); 518 1.39 dyoung if (memcmp(addmask_key, x->rn_key, mlen) != 0) 519 1.9 mycroft x = 0; 520 1.9 mycroft if (x || search) 521 1.37 dyoung return x; 522 1.6 mycroft R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x)); 523 1.37 dyoung if ((saved_x = x) == NULL) 524 1.37 dyoung return NULL; 525 1.39 dyoung memset(x, 0, max_keylen + 2 * sizeof (*x)); 526 1.34 christos cp = netmask = (void *)(x + 2); 527 1.39 dyoung memmove(x + 2, addmask_key, mlen); 528 1.9 mycroft x = rn_insert(cp, mask_rnhead, &maskduplicated, x); 529 1.9 mycroft if (maskduplicated) { 530 1.16 enami log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n"); 531 1.9 mycroft Free(saved_x); 532 1.37 dyoung return x; 533 1.9 mycroft } 534 1.9 mycroft /* 535 1.9 mycroft * Calculate index of mask, and check for normalcy. 536 1.9 mycroft */ 537 1.9 mycroft cplim = netmask + mlen; isnormal = 1; 538 1.29 christos for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;) 539 1.9 mycroft cp++; 540 1.1 cgd if (cp != cplim) { 541 1.28 perry for (j = 0x80; (j & *cp) != 0; j >>= 1) 542 1.9 mycroft b++; 543 1.9 mycroft if (*cp != normal_chars[b] || cp != (cplim - 1)) 544 1.9 mycroft isnormal = 0; 545 1.1 cgd } 546 1.9 mycroft b += (cp - netmask) << 3; 547 1.1 cgd x->rn_b = -1 - b; 548 1.9 mycroft if (isnormal) 549 1.9 mycroft x->rn_flags |= RNF_NORMAL; 550 1.37 dyoung return x; 551 1.1 cgd } 552 1.1 cgd 553 1.9 mycroft static int /* XXX: arbitrary ordering for non-contiguous masks */ 554 1.23 matt rn_lexobetter( 555 1.23 matt const void *m_arg, 556 1.23 matt const void *n_arg) 557 1.23 matt { 558 1.23 matt const u_char *mp = m_arg; 559 1.23 matt const u_char *np = n_arg; 560 1.23 matt const u_char *lim; 561 1.9 mycroft 562 1.9 mycroft if (*mp > *np) 563 1.9 mycroft return 1; /* not really, but need to check longer one first */ 564 1.28 perry if (*mp == *np) 565 1.9 mycroft for (lim = mp + *mp; mp < lim;) 566 1.9 mycroft if (*mp++ > *np++) 567 1.9 mycroft return 1; 568 1.9 mycroft return 0; 569 1.9 mycroft } 570 1.9 mycroft 571 1.9 mycroft static struct radix_mask * 572 1.23 matt rn_new_radix_mask( 573 1.23 matt struct radix_node *tt, 574 1.23 matt struct radix_mask *next) 575 1.9 mycroft { 576 1.14 augustss struct radix_mask *m; 577 1.9 mycroft 578 1.9 mycroft MKGet(m); 579 1.37 dyoung if (m == NULL) { 580 1.9 mycroft log(LOG_ERR, "Mask for route not entered\n"); 581 1.37 dyoung return NULL; 582 1.9 mycroft } 583 1.39 dyoung memset(m, 0, sizeof(*m)); 584 1.9 mycroft m->rm_b = tt->rn_b; 585 1.9 mycroft m->rm_flags = tt->rn_flags; 586 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) 587 1.9 mycroft m->rm_leaf = tt; 588 1.9 mycroft else 589 1.9 mycroft m->rm_mask = tt->rn_mask; 590 1.9 mycroft m->rm_mklist = next; 591 1.9 mycroft tt->rn_mklist = m; 592 1.9 mycroft return m; 593 1.9 mycroft } 594 1.9 mycroft 595 1.1 cgd struct radix_node * 596 1.23 matt rn_addroute( 597 1.23 matt const void *v_arg, 598 1.23 matt const void *n_arg, 599 1.23 matt struct radix_node_head *head, 600 1.23 matt struct radix_node treenodes[2]) 601 1.1 cgd { 602 1.33 dyoung const char *v = v_arg, *netmask = n_arg; 603 1.33 dyoung struct radix_node *t, *x = NULL, *tt; 604 1.33 dyoung struct radix_node *saved_tt, *top = head->rnh_treetop; 605 1.10 christos short b = 0, b_leaf = 0; 606 1.9 mycroft int keyduplicated; 607 1.21 matt const char *mmask; 608 1.1 cgd struct radix_mask *m, **mp; 609 1.1 cgd 610 1.1 cgd /* 611 1.1 cgd * In dealing with non-contiguous masks, there may be 612 1.1 cgd * many different routes which have the same mask. 613 1.1 cgd * We will find it useful to have a unique pointer to 614 1.1 cgd * the mask to speed avoiding duplicate references at 615 1.1 cgd * nodes and possibly save time in calculating indices. 616 1.1 cgd */ 617 1.38 dyoung if (netmask != NULL) { 618 1.37 dyoung if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL) 619 1.37 dyoung return NULL; 620 1.9 mycroft b_leaf = x->rn_b; 621 1.9 mycroft b = -1 - x->rn_b; 622 1.1 cgd netmask = x->rn_key; 623 1.1 cgd } 624 1.1 cgd /* 625 1.1 cgd * Deal with duplicated keys: attach node to previous instance 626 1.1 cgd */ 627 1.1 cgd saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 628 1.1 cgd if (keyduplicated) { 629 1.38 dyoung for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) { 630 1.1 cgd if (tt->rn_mask == netmask) 631 1.37 dyoung return NULL; 632 1.38 dyoung if (netmask == NULL || 633 1.38 dyoung (tt->rn_mask != NULL && 634 1.38 dyoung (b_leaf < tt->rn_b || /* index(netmask) > node */ 635 1.9 mycroft rn_refines(netmask, tt->rn_mask) || 636 1.9 mycroft rn_lexobetter(netmask, tt->rn_mask)))) 637 1.6 mycroft break; 638 1.9 mycroft } 639 1.1 cgd /* 640 1.1 cgd * If the mask is not duplicated, we wouldn't 641 1.1 cgd * find it among possible duplicate key entries 642 1.1 cgd * anyway, so the above test doesn't hurt. 643 1.1 cgd * 644 1.6 mycroft * We sort the masks for a duplicated key the same way as 645 1.6 mycroft * in a masklist -- most specific to least specific. 646 1.6 mycroft * This may require the unfortunate nuisance of relocating 647 1.1 cgd * the head of the list. 648 1.12 christos * 649 1.12 christos * We also reverse, or doubly link the list through the 650 1.12 christos * parent pointer. 651 1.1 cgd */ 652 1.9 mycroft if (tt == saved_tt) { 653 1.6 mycroft struct radix_node *xx = x; 654 1.6 mycroft /* link in at head of list */ 655 1.6 mycroft (tt = treenodes)->rn_dupedkey = t; 656 1.6 mycroft tt->rn_flags = t->rn_flags; 657 1.6 mycroft tt->rn_p = x = t->rn_p; 658 1.12 christos t->rn_p = tt; 659 1.33 dyoung if (x->rn_l == t) 660 1.33 dyoung x->rn_l = tt; 661 1.33 dyoung else 662 1.33 dyoung x->rn_r = tt; 663 1.33 dyoung saved_tt = tt; 664 1.33 dyoung x = xx; 665 1.6 mycroft } else { 666 1.6 mycroft (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 667 1.6 mycroft t->rn_dupedkey = tt; 668 1.12 christos tt->rn_p = t; 669 1.12 christos if (tt->rn_dupedkey) 670 1.12 christos tt->rn_dupedkey->rn_p = tt; 671 1.6 mycroft } 672 1.36 dyoung tt->rn_key = v; 673 1.1 cgd tt->rn_b = -1; 674 1.9 mycroft tt->rn_flags = RNF_ACTIVE; 675 1.1 cgd } 676 1.1 cgd /* 677 1.1 cgd * Put mask in tree. 678 1.1 cgd */ 679 1.38 dyoung if (netmask != NULL) { 680 1.1 cgd tt->rn_mask = netmask; 681 1.1 cgd tt->rn_b = x->rn_b; 682 1.9 mycroft tt->rn_flags |= x->rn_flags & RNF_NORMAL; 683 1.1 cgd } 684 1.1 cgd t = saved_tt->rn_p; 685 1.9 mycroft if (keyduplicated) 686 1.9 mycroft goto on2; 687 1.1 cgd b_leaf = -1 - t->rn_b; 688 1.33 dyoung if (t->rn_r == saved_tt) 689 1.33 dyoung x = t->rn_l; 690 1.33 dyoung else 691 1.33 dyoung x = t->rn_r; 692 1.1 cgd /* Promote general routes from below */ 693 1.28 perry if (x->rn_b < 0) { 694 1.38 dyoung for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) { 695 1.38 dyoung if (x->rn_mask != NULL && x->rn_b >= b_leaf && 696 1.38 dyoung x->rn_mklist == NULL) { 697 1.38 dyoung *mp = m = rn_new_radix_mask(x, NULL); 698 1.38 dyoung if (m != NULL) 699 1.38 dyoung mp = &m->rm_mklist; 700 1.38 dyoung } 701 1.1 cgd } 702 1.38 dyoung } else if (x->rn_mklist != NULL) { 703 1.1 cgd /* 704 1.1 cgd * Skip over masks whose index is > that of new node 705 1.1 cgd */ 706 1.38 dyoung for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) 707 1.1 cgd if (m->rm_b >= b_leaf) 708 1.1 cgd break; 709 1.33 dyoung t->rn_mklist = m; 710 1.38 dyoung *mp = NULL; 711 1.1 cgd } 712 1.9 mycroft on2: 713 1.1 cgd /* Add new route to highest possible ancestor's list */ 714 1.38 dyoung if (netmask == NULL || b > t->rn_b) 715 1.1 cgd return tt; /* can't lift at all */ 716 1.1 cgd b_leaf = tt->rn_b; 717 1.1 cgd do { 718 1.1 cgd x = t; 719 1.1 cgd t = t->rn_p; 720 1.6 mycroft } while (b <= t->rn_b && x != top); 721 1.1 cgd /* 722 1.1 cgd * Search through routes associated with node to 723 1.1 cgd * insert new route according to index. 724 1.9 mycroft * Need same criteria as when sorting dupedkeys to avoid 725 1.9 mycroft * double loop on deletion. 726 1.1 cgd */ 727 1.38 dyoung for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { 728 1.1 cgd if (m->rm_b < b_leaf) 729 1.1 cgd continue; 730 1.1 cgd if (m->rm_b > b_leaf) 731 1.1 cgd break; 732 1.9 mycroft if (m->rm_flags & RNF_NORMAL) { 733 1.9 mycroft mmask = m->rm_leaf->rn_mask; 734 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) { 735 1.16 enami log(LOG_ERR, "Non-unique normal route," 736 1.16 enami " mask not entered\n"); 737 1.9 mycroft return tt; 738 1.9 mycroft } 739 1.9 mycroft } else 740 1.9 mycroft mmask = m->rm_mask; 741 1.9 mycroft if (mmask == netmask) { 742 1.1 cgd m->rm_refs++; 743 1.1 cgd tt->rn_mklist = m; 744 1.1 cgd return tt; 745 1.1 cgd } 746 1.9 mycroft if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) 747 1.6 mycroft break; 748 1.1 cgd } 749 1.9 mycroft *mp = rn_new_radix_mask(tt, *mp); 750 1.1 cgd return tt; 751 1.1 cgd } 752 1.1 cgd 753 1.1 cgd struct radix_node * 754 1.33 dyoung rn_delete1( 755 1.23 matt const void *v_arg, 756 1.23 matt const void *netmask_arg, 757 1.33 dyoung struct radix_node_head *head, 758 1.33 dyoung struct radix_node *rn) 759 1.23 matt { 760 1.33 dyoung struct radix_node *t, *p, *x, *tt; 761 1.33 dyoung struct radix_mask *m, *saved_m, **mp; 762 1.33 dyoung struct radix_node *dupedkey, *saved_tt, *top; 763 1.33 dyoung const char *v, *netmask; 764 1.6 mycroft int b, head_off, vlen; 765 1.1 cgd 766 1.33 dyoung v = v_arg; 767 1.33 dyoung netmask = netmask_arg; 768 1.6 mycroft x = head->rnh_treetop; 769 1.6 mycroft tt = rn_search(v, x); 770 1.6 mycroft head_off = x->rn_off; 771 1.29 christos vlen = *(const u_char *)v; 772 1.6 mycroft saved_tt = tt; 773 1.6 mycroft top = x; 774 1.38 dyoung if (tt == NULL || 775 1.39 dyoung memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0) 776 1.37 dyoung return NULL; 777 1.1 cgd /* 778 1.1 cgd * Delete our route from mask lists. 779 1.1 cgd */ 780 1.38 dyoung if (netmask != NULL) { 781 1.38 dyoung if ((x = rn_addmask(netmask, 1, head_off)) == NULL) 782 1.37 dyoung return NULL; 783 1.9 mycroft netmask = x->rn_key; 784 1.1 cgd while (tt->rn_mask != netmask) 785 1.38 dyoung if ((tt = tt->rn_dupedkey) == NULL) 786 1.37 dyoung return NULL; 787 1.1 cgd } 788 1.38 dyoung if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL) 789 1.1 cgd goto on1; 790 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) { 791 1.9 mycroft if (m->rm_leaf != tt || m->rm_refs > 0) { 792 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 793 1.37 dyoung return NULL; /* dangling ref could cause disaster */ 794 1.9 mycroft } 795 1.28 perry } else { 796 1.9 mycroft if (m->rm_mask != tt->rn_mask) { 797 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n"); 798 1.9 mycroft goto on1; 799 1.9 mycroft } 800 1.9 mycroft if (--m->rm_refs >= 0) 801 1.9 mycroft goto on1; 802 1.1 cgd } 803 1.1 cgd b = -1 - tt->rn_b; 804 1.1 cgd t = saved_tt->rn_p; 805 1.1 cgd if (b > t->rn_b) 806 1.1 cgd goto on1; /* Wasn't lifted at all */ 807 1.1 cgd do { 808 1.1 cgd x = t; 809 1.1 cgd t = t->rn_p; 810 1.6 mycroft } while (b <= t->rn_b && x != top); 811 1.38 dyoung for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { 812 1.1 cgd if (m == saved_m) { 813 1.1 cgd *mp = m->rm_mklist; 814 1.1 cgd MKFree(m); 815 1.1 cgd break; 816 1.1 cgd } 817 1.38 dyoung } 818 1.38 dyoung if (m == NULL) { 819 1.9 mycroft log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 820 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) 821 1.37 dyoung return NULL; /* Dangling ref to us */ 822 1.9 mycroft } 823 1.1 cgd on1: 824 1.1 cgd /* 825 1.1 cgd * Eliminate us from tree 826 1.1 cgd */ 827 1.1 cgd if (tt->rn_flags & RNF_ROOT) 828 1.37 dyoung return NULL; 829 1.1 cgd #ifdef RN_DEBUG 830 1.32 dyoung if (rn_debug) 831 1.32 dyoung log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt); 832 1.6 mycroft #endif 833 1.1 cgd t = tt->rn_p; 834 1.12 christos dupedkey = saved_tt->rn_dupedkey; 835 1.38 dyoung if (dupedkey != NULL) { 836 1.12 christos /* 837 1.12 christos * Here, tt is the deletion target, and 838 1.12 christos * saved_tt is the head of the dupedkey chain. 839 1.12 christos */ 840 1.1 cgd if (tt == saved_tt) { 841 1.33 dyoung x = dupedkey; 842 1.33 dyoung x->rn_p = t; 843 1.33 dyoung if (t->rn_l == tt) 844 1.33 dyoung t->rn_l = x; 845 1.33 dyoung else 846 1.33 dyoung t->rn_r = x; 847 1.6 mycroft } else { 848 1.12 christos /* find node in front of tt on the chain */ 849 1.38 dyoung for (x = p = saved_tt; 850 1.38 dyoung p != NULL && p->rn_dupedkey != tt;) 851 1.6 mycroft p = p->rn_dupedkey; 852 1.38 dyoung if (p != NULL) { 853 1.12 christos p->rn_dupedkey = tt->rn_dupedkey; 854 1.38 dyoung if (tt->rn_dupedkey != NULL) 855 1.12 christos tt->rn_dupedkey->rn_p = p; 856 1.38 dyoung } else 857 1.38 dyoung log(LOG_ERR, "rn_delete: couldn't find us\n"); 858 1.6 mycroft } 859 1.6 mycroft t = tt + 1; 860 1.6 mycroft if (t->rn_flags & RNF_ACTIVE) { 861 1.33 dyoung *++x = *t; 862 1.33 dyoung p = t->rn_p; 863 1.33 dyoung if (p->rn_l == t) 864 1.33 dyoung p->rn_l = x; 865 1.33 dyoung else 866 1.33 dyoung p->rn_r = x; 867 1.33 dyoung x->rn_l->rn_p = x; 868 1.33 dyoung x->rn_r->rn_p = x; 869 1.1 cgd } 870 1.1 cgd goto out; 871 1.1 cgd } 872 1.33 dyoung if (t->rn_l == tt) 873 1.33 dyoung x = t->rn_r; 874 1.33 dyoung else 875 1.33 dyoung x = t->rn_l; 876 1.1 cgd p = t->rn_p; 877 1.33 dyoung if (p->rn_r == t) 878 1.33 dyoung p->rn_r = x; 879 1.33 dyoung else 880 1.33 dyoung p->rn_l = x; 881 1.1 cgd x->rn_p = p; 882 1.1 cgd /* 883 1.1 cgd * Demote routes attached to us. 884 1.1 cgd */ 885 1.38 dyoung if (t->rn_mklist == NULL) 886 1.38 dyoung ; 887 1.38 dyoung else if (x->rn_b >= 0) { 888 1.38 dyoung for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) 889 1.38 dyoung ; 890 1.38 dyoung *mp = t->rn_mklist; 891 1.38 dyoung } else { 892 1.38 dyoung /* If there are any key,mask pairs in a sibling 893 1.38 dyoung duped-key chain, some subset will appear sorted 894 1.38 dyoung in the same order attached to our mklist */ 895 1.38 dyoung for (m = t->rn_mklist; 896 1.38 dyoung m != NULL && x != NULL; 897 1.38 dyoung x = x->rn_dupedkey) { 898 1.38 dyoung if (m == x->rn_mklist) { 899 1.38 dyoung struct radix_mask *mm = m->rm_mklist; 900 1.38 dyoung x->rn_mklist = NULL; 901 1.38 dyoung if (--(m->rm_refs) < 0) 902 1.38 dyoung MKFree(m); 903 1.38 dyoung m = mm; 904 1.38 dyoung } 905 1.38 dyoung } 906 1.38 dyoung if (m != NULL) { 907 1.38 dyoung log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n", 908 1.38 dyoung m, x); 909 1.1 cgd } 910 1.1 cgd } 911 1.1 cgd /* 912 1.1 cgd * We may be holding an active internal node in the tree. 913 1.1 cgd */ 914 1.1 cgd x = tt + 1; 915 1.1 cgd if (t != x) { 916 1.1 cgd *t = *x; 917 1.33 dyoung t->rn_l->rn_p = t; 918 1.33 dyoung t->rn_r->rn_p = t; 919 1.1 cgd p = x->rn_p; 920 1.33 dyoung if (p->rn_l == x) 921 1.33 dyoung p->rn_l = t; 922 1.33 dyoung else 923 1.33 dyoung p->rn_r = t; 924 1.1 cgd } 925 1.1 cgd out: 926 1.32 dyoung #ifdef RN_DEBUG 927 1.32 dyoung if (rn_debug) { 928 1.32 dyoung log(LOG_DEBUG, "%s: Coming Out:\n", __func__), 929 1.32 dyoung traverse(head, tt); 930 1.32 dyoung } 931 1.32 dyoung #endif /* RN_DEBUG */ 932 1.1 cgd tt->rn_flags &= ~RNF_ACTIVE; 933 1.1 cgd tt[1].rn_flags &= ~RNF_ACTIVE; 934 1.37 dyoung return tt; 935 1.1 cgd } 936 1.1 cgd 937 1.33 dyoung struct radix_node * 938 1.33 dyoung rn_delete( 939 1.33 dyoung const void *v_arg, 940 1.33 dyoung const void *netmask_arg, 941 1.33 dyoung struct radix_node_head *head) 942 1.33 dyoung { 943 1.33 dyoung return rn_delete1(v_arg, netmask_arg, head, NULL); 944 1.33 dyoung } 945 1.33 dyoung 946 1.32 dyoung static struct radix_node * 947 1.32 dyoung rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg) 948 1.32 dyoung { 949 1.32 dyoung /* If at right child go back up, otherwise, go right */ 950 1.32 dyoung while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) { 951 1.32 dyoung if (printer != NULL) 952 1.32 dyoung (*printer)(arg, SUBTREE_CLOSE); 953 1.32 dyoung rn = rn->rn_p; 954 1.32 dyoung } 955 1.32 dyoung if (printer) 956 1.32 dyoung rn_nodeprint(rn->rn_p, printer, arg, ""); 957 1.32 dyoung /* Find the next *leaf* since next node might vanish, too */ 958 1.32 dyoung for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) { 959 1.32 dyoung if (printer != NULL) 960 1.32 dyoung (*printer)(arg, SUBTREE_OPEN); 961 1.32 dyoung rn = rn->rn_l; 962 1.32 dyoung } 963 1.32 dyoung return rn; 964 1.32 dyoung } 965 1.32 dyoung 966 1.32 dyoung static struct radix_node * 967 1.32 dyoung rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg) 968 1.32 dyoung { 969 1.32 dyoung /* First time through node, go left */ 970 1.32 dyoung while (rn->rn_b >= 0) { 971 1.32 dyoung if (printer != NULL) 972 1.32 dyoung (*printer)(arg, SUBTREE_OPEN); 973 1.32 dyoung rn = rn->rn_l; 974 1.32 dyoung } 975 1.32 dyoung return rn; 976 1.32 dyoung } 977 1.32 dyoung 978 1.6 mycroft int 979 1.23 matt rn_walktree( 980 1.23 matt struct radix_node_head *h, 981 1.23 matt int (*f)(struct radix_node *, void *), 982 1.23 matt void *w) 983 1.6 mycroft { 984 1.6 mycroft int error; 985 1.32 dyoung struct radix_node *base, *next, *rn; 986 1.6 mycroft /* 987 1.6 mycroft * This gets complicated because we may delete the node 988 1.6 mycroft * while applying the function f to it, so we need to calculate 989 1.6 mycroft * the successor node in advance. 990 1.6 mycroft */ 991 1.32 dyoung rn = rn_walkfirst(h->rnh_treetop, NULL, NULL); 992 1.6 mycroft for (;;) { 993 1.6 mycroft base = rn; 994 1.32 dyoung next = rn_walknext(rn, NULL, NULL); 995 1.6 mycroft /* Process leaves */ 996 1.10 christos while ((rn = base) != NULL) { 997 1.6 mycroft base = rn->rn_dupedkey; 998 1.6 mycroft if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) 999 1.37 dyoung return error; 1000 1.6 mycroft } 1001 1.6 mycroft rn = next; 1002 1.6 mycroft if (rn->rn_flags & RNF_ROOT) 1003 1.37 dyoung return 0; 1004 1.6 mycroft } 1005 1.6 mycroft /* NOTREACHED */ 1006 1.6 mycroft } 1007 1.6 mycroft 1008 1.46 ozaki struct radix_node * 1009 1.46 ozaki rn_search_matched(struct radix_node_head *h, 1010 1.46 ozaki int (*matcher)(struct radix_node *, void *), void *w) 1011 1.46 ozaki { 1012 1.46 ozaki bool matched; 1013 1.46 ozaki struct radix_node *base, *next, *rn; 1014 1.46 ozaki /* 1015 1.46 ozaki * This gets complicated because we may delete the node 1016 1.46 ozaki * while applying the function f to it, so we need to calculate 1017 1.46 ozaki * the successor node in advance. 1018 1.46 ozaki */ 1019 1.46 ozaki rn = rn_walkfirst(h->rnh_treetop, NULL, NULL); 1020 1.46 ozaki for (;;) { 1021 1.46 ozaki base = rn; 1022 1.46 ozaki next = rn_walknext(rn, NULL, NULL); 1023 1.46 ozaki /* Process leaves */ 1024 1.46 ozaki while ((rn = base) != NULL) { 1025 1.46 ozaki base = rn->rn_dupedkey; 1026 1.46 ozaki if (!(rn->rn_flags & RNF_ROOT)) { 1027 1.46 ozaki matched = (*matcher)(rn, w); 1028 1.46 ozaki if (matched) 1029 1.46 ozaki return rn; 1030 1.46 ozaki } 1031 1.46 ozaki } 1032 1.46 ozaki rn = next; 1033 1.46 ozaki if (rn->rn_flags & RNF_ROOT) 1034 1.46 ozaki return NULL; 1035 1.46 ozaki } 1036 1.46 ozaki /* NOTREACHED */ 1037 1.46 ozaki } 1038 1.46 ozaki 1039 1.43 pooka struct delayinit { 1040 1.43 pooka void **head; 1041 1.43 pooka int off; 1042 1.43 pooka SLIST_ENTRY(delayinit) entries; 1043 1.43 pooka }; 1044 1.43 pooka static SLIST_HEAD(, delayinit) delayinits = SLIST_HEAD_INITIALIZER(delayheads); 1045 1.43 pooka static int radix_initialized; 1046 1.43 pooka 1047 1.43 pooka /* 1048 1.43 pooka * Initialize a radix tree once radix is initialized. Only for bootstrap. 1049 1.43 pooka * Assume that no concurrency protection is necessary at this stage. 1050 1.43 pooka */ 1051 1.43 pooka void 1052 1.43 pooka rn_delayedinit(void **head, int off) 1053 1.43 pooka { 1054 1.43 pooka struct delayinit *di; 1055 1.43 pooka 1056 1.47 ozaki if (radix_initialized) 1057 1.47 ozaki return; 1058 1.43 pooka 1059 1.43 pooka di = kmem_alloc(sizeof(*di), KM_SLEEP); 1060 1.43 pooka di->head = head; 1061 1.43 pooka di->off = off; 1062 1.43 pooka SLIST_INSERT_HEAD(&delayinits, di, entries); 1063 1.43 pooka } 1064 1.43 pooka 1065 1.6 mycroft int 1066 1.41 dsl rn_inithead(void **head, int off) 1067 1.1 cgd { 1068 1.14 augustss struct radix_node_head *rnh; 1069 1.15 itojun 1070 1.37 dyoung if (*head != NULL) 1071 1.37 dyoung return 1; 1072 1.1 cgd R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh)); 1073 1.37 dyoung if (rnh == NULL) 1074 1.37 dyoung return 0; 1075 1.15 itojun *head = rnh; 1076 1.15 itojun return rn_inithead0(rnh, off); 1077 1.15 itojun } 1078 1.15 itojun 1079 1.15 itojun int 1080 1.41 dsl rn_inithead0(struct radix_node_head *rnh, int off) 1081 1.15 itojun { 1082 1.23 matt struct radix_node *t; 1083 1.23 matt struct radix_node *tt; 1084 1.23 matt struct radix_node *ttt; 1085 1.15 itojun 1086 1.39 dyoung memset(rnh, 0, sizeof(*rnh)); 1087 1.1 cgd t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); 1088 1.1 cgd ttt = rnh->rnh_nodes + 2; 1089 1.1 cgd t->rn_r = ttt; 1090 1.1 cgd t->rn_p = t; 1091 1.1 cgd tt = t->rn_l; 1092 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1093 1.1 cgd tt->rn_b = -1 - off; 1094 1.1 cgd *ttt = *tt; 1095 1.1 cgd ttt->rn_key = rn_ones; 1096 1.6 mycroft rnh->rnh_addaddr = rn_addroute; 1097 1.6 mycroft rnh->rnh_deladdr = rn_delete; 1098 1.6 mycroft rnh->rnh_matchaddr = rn_match; 1099 1.9 mycroft rnh->rnh_lookup = rn_lookup; 1100 1.1 cgd rnh->rnh_treetop = t; 1101 1.37 dyoung return 1; 1102 1.6 mycroft } 1103 1.6 mycroft 1104 1.6 mycroft void 1105 1.42 cegger rn_init(void) 1106 1.6 mycroft { 1107 1.6 mycroft char *cp, *cplim; 1108 1.43 pooka struct delayinit *di; 1109 1.8 jtc #ifdef _KERNEL 1110 1.43 pooka struct domain *dp; 1111 1.6 mycroft 1112 1.43 pooka if (radix_initialized) 1113 1.43 pooka panic("radix already initialized"); 1114 1.43 pooka radix_initialized = 1; 1115 1.43 pooka 1116 1.43 pooka DOMAIN_FOREACH(dp) { 1117 1.43 pooka if (dp->dom_maxrtkey > max_keylen) 1118 1.43 pooka max_keylen = dp->dom_maxrtkey; 1119 1.27 enami } 1120 1.25 christos #endif 1121 1.6 mycroft if (max_keylen == 0) { 1122 1.49 gson #ifndef _KERNEL 1123 1.9 mycroft log(LOG_ERR, 1124 1.9 mycroft "rn_init: radix functions require max_keylen be set\n"); 1125 1.49 gson #endif 1126 1.6 mycroft return; 1127 1.6 mycroft } 1128 1.43 pooka 1129 1.6 mycroft R_Malloc(rn_zeros, char *, 3 * max_keylen); 1130 1.6 mycroft if (rn_zeros == NULL) 1131 1.6 mycroft panic("rn_init"); 1132 1.39 dyoung memset(rn_zeros, 0, 3 * max_keylen); 1133 1.6 mycroft rn_ones = cp = rn_zeros + max_keylen; 1134 1.9 mycroft addmask_key = cplim = rn_ones + max_keylen; 1135 1.6 mycroft while (cp < cplim) 1136 1.6 mycroft *cp++ = -1; 1137 1.19 thorpej if (rn_inithead((void *)&mask_rnhead, 0) == 0) 1138 1.6 mycroft panic("rn_init 2"); 1139 1.43 pooka 1140 1.43 pooka while ((di = SLIST_FIRST(&delayinits)) != NULL) { 1141 1.43 pooka if (!rn_inithead(di->head, di->off)) 1142 1.43 pooka panic("delayed rn_inithead failed"); 1143 1.43 pooka SLIST_REMOVE_HEAD(&delayinits, entries); 1144 1.43 pooka kmem_free(di, sizeof(*di)); 1145 1.43 pooka } 1146 1.1 cgd } 1147