Home | History | Annotate | Line # | Download | only in net
      1  1.49      gson /*	$NetBSD: radix.c,v 1.49 2020/10/18 13:07:31 gson Exp $	*/
      2   1.7       cgd 
      3   1.1       cgd /*
      4   1.6   mycroft  * Copyright (c) 1988, 1989, 1993
      5   1.6   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1       cgd  *
      7   1.1       cgd  * Redistribution and use in source and binary forms, with or without
      8   1.1       cgd  * modification, are permitted provided that the following conditions
      9   1.1       cgd  * are met:
     10   1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     11   1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     12   1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     14   1.1       cgd  *    documentation and/or other materials provided with the distribution.
     15  1.20       agc  * 3. Neither the name of the University nor the names of its contributors
     16   1.1       cgd  *    may be used to endorse or promote products derived from this software
     17   1.1       cgd  *    without specific prior written permission.
     18   1.1       cgd  *
     19   1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20   1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21   1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22   1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23   1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25   1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26   1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27   1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28   1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1       cgd  * SUCH DAMAGE.
     30   1.1       cgd  *
     31  1.13      fvdl  *	@(#)radix.c	8.6 (Berkeley) 10/17/95
     32   1.1       cgd  */
     33   1.1       cgd 
     34   1.1       cgd /*
     35   1.1       cgd  * Routines to build and maintain radix trees for routing lookups.
     36   1.1       cgd  */
     37  1.18     lukem 
     38  1.18     lukem #include <sys/cdefs.h>
     39  1.49      gson __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.49 2020/10/18 13:07:31 gson Exp $");
     40  1.18     lukem 
     41  1.12  christos #ifndef _NET_RADIX_H_
     42   1.4   mycroft #include <sys/param.h>
     43  1.43     pooka #include <sys/queue.h>
     44  1.43     pooka #include <sys/kmem.h>
     45  1.12  christos #ifdef	_KERNEL
     46  1.45     pooka #ifdef _KERNEL_OPT
     47  1.27     enami #include "opt_inet.h"
     48  1.45     pooka #endif
     49  1.27     enami 
     50   1.4   mycroft #include <sys/systm.h>
     51   1.4   mycroft #include <sys/malloc.h>
     52   1.1       cgd #define	M_DONTWAIT M_NOWAIT
     53   1.6   mycroft #include <sys/domain.h>
     54   1.9   mycroft #else
     55   1.9   mycroft #include <stdlib.h>
     56   1.6   mycroft #endif
     57   1.9   mycroft #include <sys/syslog.h>
     58   1.4   mycroft #include <net/radix.h>
     59  1.12  christos #endif
     60   1.6   mycroft 
     61  1.32    dyoung typedef void (*rn_printer_t)(void *, const char *fmt, ...);
     62  1.32    dyoung 
     63   1.6   mycroft int	max_keylen;
     64   1.6   mycroft struct radix_mask *rn_mkfreelist;
     65   1.1       cgd struct radix_node_head *mask_rnhead;
     66   1.9   mycroft static char *addmask_key;
     67  1.21      matt static const char normal_chars[] =
     68  1.21      matt     {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
     69   1.6   mycroft static char *rn_zeros, *rn_ones;
     70   1.6   mycroft 
     71   1.6   mycroft #define rn_masktop (mask_rnhead->rnh_treetop)
     72  1.10  christos 
     73  1.23      matt static int rn_satisfies_leaf(const char *, struct radix_node *, int);
     74  1.23      matt static int rn_lexobetter(const void *, const void *);
     75  1.23      matt static struct radix_mask *rn_new_radix_mask(struct radix_node *,
     76  1.23      matt     struct radix_mask *);
     77  1.32    dyoung static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
     78  1.32    dyoung     void *);
     79  1.32    dyoung static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
     80  1.32    dyoung     void *);
     81  1.32    dyoung static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
     82  1.32    dyoung     const char *);
     83  1.32    dyoung 
     84  1.32    dyoung #define	SUBTREE_OPEN	"[ "
     85  1.32    dyoung #define	SUBTREE_CLOSE	" ]"
     86  1.32    dyoung 
     87  1.32    dyoung #ifdef RN_DEBUG
     88  1.32    dyoung static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
     89  1.32    dyoung #endif /* RN_DEBUG */
     90  1.12  christos 
     91   1.1       cgd /*
     92   1.1       cgd  * The data structure for the keys is a radix tree with one way
     93   1.1       cgd  * branching removed.  The index rn_b at an internal node n represents a bit
     94   1.1       cgd  * position to be tested.  The tree is arranged so that all descendants
     95   1.1       cgd  * of a node n have keys whose bits all agree up to position rn_b - 1.
     96   1.1       cgd  * (We say the index of n is rn_b.)
     97   1.1       cgd  *
     98   1.1       cgd  * There is at least one descendant which has a one bit at position rn_b,
     99   1.1       cgd  * and at least one with a zero there.
    100   1.1       cgd  *
    101   1.1       cgd  * A route is determined by a pair of key and mask.  We require that the
    102   1.1       cgd  * bit-wise logical and of the key and mask to be the key.
    103   1.1       cgd  * We define the index of a route to associated with the mask to be
    104   1.1       cgd  * the first bit number in the mask where 0 occurs (with bit number 0
    105   1.1       cgd  * representing the highest order bit).
    106  1.28     perry  *
    107   1.1       cgd  * We say a mask is normal if every bit is 0, past the index of the mask.
    108   1.1       cgd  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
    109   1.1       cgd  * and m is a normal mask, then the route applies to every descendant of n.
    110   1.1       cgd  * If the index(m) < rn_b, this implies the trailing last few bits of k
    111   1.1       cgd  * before bit b are all 0, (and hence consequently true of every descendant
    112   1.1       cgd  * of n), so the route applies to all descendants of the node as well.
    113  1.28     perry  *
    114   1.9   mycroft  * Similar logic shows that a non-normal mask m such that
    115   1.1       cgd  * index(m) <= index(n) could potentially apply to many children of n.
    116   1.1       cgd  * Thus, for each non-host route, we attach its mask to a list at an internal
    117  1.28     perry  * node as high in the tree as we can go.
    118   1.9   mycroft  *
    119   1.9   mycroft  * The present version of the code makes use of normal routes in short-
    120  1.31       wiz  * circuiting an explicit mask and compare operation when testing whether
    121   1.9   mycroft  * a key satisfies a normal route, and also in remembering the unique leaf
    122   1.9   mycroft  * that governs a subtree.
    123   1.1       cgd  */
    124   1.1       cgd 
    125   1.1       cgd struct radix_node *
    126  1.23      matt rn_search(
    127  1.23      matt 	const void *v_arg,
    128  1.23      matt 	struct radix_node *head)
    129   1.1       cgd {
    130  1.21      matt 	const u_char * const v = v_arg;
    131  1.14  augustss 	struct radix_node *x;
    132   1.1       cgd 
    133  1.21      matt 	for (x = head; x->rn_b >= 0;) {
    134   1.1       cgd 		if (x->rn_bmask & v[x->rn_off])
    135   1.1       cgd 			x = x->rn_r;
    136   1.1       cgd 		else
    137   1.1       cgd 			x = x->rn_l;
    138   1.1       cgd 	}
    139  1.37    dyoung 	return x;
    140  1.13      fvdl }
    141   1.1       cgd 
    142   1.1       cgd struct radix_node *
    143  1.23      matt rn_search_m(
    144  1.23      matt 	const void *v_arg,
    145  1.23      matt 	struct radix_node *head,
    146  1.23      matt 	const void *m_arg)
    147   1.1       cgd {
    148  1.14  augustss 	struct radix_node *x;
    149  1.21      matt 	const u_char * const v = v_arg;
    150  1.21      matt 	const u_char * const m = m_arg;
    151   1.1       cgd 
    152   1.1       cgd 	for (x = head; x->rn_b >= 0;) {
    153   1.1       cgd 		if ((x->rn_bmask & m[x->rn_off]) &&
    154   1.1       cgd 		    (x->rn_bmask & v[x->rn_off]))
    155   1.1       cgd 			x = x->rn_r;
    156   1.1       cgd 		else
    157   1.1       cgd 			x = x->rn_l;
    158   1.1       cgd 	}
    159   1.1       cgd 	return x;
    160  1.13      fvdl }
    161   1.1       cgd 
    162   1.6   mycroft int
    163  1.23      matt rn_refines(
    164  1.23      matt 	const void *m_arg,
    165  1.23      matt 	const void *n_arg)
    166   1.6   mycroft {
    167  1.21      matt 	const char *m = m_arg;
    168  1.21      matt 	const char *n = n_arg;
    169  1.29  christos 	const char *lim = n + *(const u_char *)n;
    170  1.21      matt 	const char *lim2 = lim;
    171  1.29  christos 	int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
    172   1.6   mycroft 	int masks_are_equal = 1;
    173   1.6   mycroft 
    174   1.6   mycroft 	if (longer > 0)
    175   1.6   mycroft 		lim -= longer;
    176   1.6   mycroft 	while (n < lim) {
    177   1.6   mycroft 		if (*n & ~(*m))
    178   1.6   mycroft 			return 0;
    179   1.6   mycroft 		if (*n++ != *m++)
    180   1.6   mycroft 			masks_are_equal = 0;
    181   1.6   mycroft 	}
    182   1.6   mycroft 	while (n < lim2)
    183   1.6   mycroft 		if (*n++)
    184   1.6   mycroft 			return 0;
    185   1.6   mycroft 	if (masks_are_equal && (longer < 0))
    186   1.6   mycroft 		for (lim2 = m - longer; m < lim2; )
    187   1.6   mycroft 			if (*m++)
    188   1.6   mycroft 				return 1;
    189  1.37    dyoung 	return !masks_are_equal;
    190   1.6   mycroft }
    191   1.1       cgd 
    192   1.9   mycroft struct radix_node *
    193  1.23      matt rn_lookup(
    194  1.23      matt 	const void *v_arg,
    195  1.23      matt 	const void *m_arg,
    196  1.23      matt 	struct radix_node_head *head)
    197   1.9   mycroft {
    198  1.14  augustss 	struct radix_node *x;
    199  1.21      matt 	const char *netmask = NULL;
    200   1.9   mycroft 
    201   1.9   mycroft 	if (m_arg) {
    202   1.9   mycroft 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
    203  1.37    dyoung 			return NULL;
    204   1.9   mycroft 		netmask = x->rn_key;
    205   1.9   mycroft 	}
    206   1.9   mycroft 	x = rn_match(v_arg, head);
    207  1.37    dyoung 	if (x != NULL && netmask != NULL) {
    208  1.37    dyoung 		while (x != NULL && x->rn_mask != netmask)
    209   1.9   mycroft 			x = x->rn_dupedkey;
    210   1.9   mycroft 	}
    211   1.9   mycroft 	return x;
    212   1.9   mycroft }
    213   1.9   mycroft 
    214  1.10  christos static int
    215  1.23      matt rn_satisfies_leaf(
    216  1.23      matt 	const char *trial,
    217  1.23      matt 	struct radix_node *leaf,
    218  1.23      matt 	int skip)
    219  1.23      matt {
    220  1.23      matt 	const char *cp = trial;
    221  1.23      matt 	const char *cp2 = leaf->rn_key;
    222  1.23      matt 	const char *cp3 = leaf->rn_mask;
    223  1.21      matt 	const char *cplim;
    224  1.48  riastrad 	int length = uimin(*(const u_char *)cp, *(const u_char *)cp2);
    225   1.9   mycroft 
    226   1.9   mycroft 	if (cp3 == 0)
    227   1.9   mycroft 		cp3 = rn_ones;
    228   1.9   mycroft 	else
    229  1.48  riastrad 		length = uimin(length, *(const u_char *)cp3);
    230   1.9   mycroft 	cplim = cp + length; cp3 += skip; cp2 += skip;
    231   1.9   mycroft 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
    232   1.9   mycroft 		if ((*cp ^ *cp2) & *cp3)
    233   1.9   mycroft 			return 0;
    234   1.9   mycroft 	return 1;
    235   1.9   mycroft }
    236   1.1       cgd 
    237   1.1       cgd struct radix_node *
    238  1.23      matt rn_match(
    239  1.23      matt 	const void *v_arg,
    240  1.23      matt 	struct radix_node_head *head)
    241   1.1       cgd {
    242  1.21      matt 	const char * const v = v_arg;
    243  1.23      matt 	struct radix_node *t = head->rnh_treetop;
    244  1.23      matt 	struct radix_node *top = t;
    245  1.23      matt 	struct radix_node *x;
    246  1.23      matt 	struct radix_node *saved_t;
    247  1.21      matt 	const char *cp = v;
    248  1.21      matt 	const char *cp2;
    249  1.21      matt 	const char *cplim;
    250  1.23      matt 	int off = t->rn_off;
    251  1.29  christos 	int vlen = *(const u_char *)cp;
    252  1.23      matt 	int matched_off;
    253  1.14  augustss 	int test, b, rn_b;
    254   1.1       cgd 
    255   1.1       cgd 	/*
    256   1.6   mycroft 	 * Open code rn_search(v, top) to avoid overhead of extra
    257   1.1       cgd 	 * subroutine call.
    258   1.1       cgd 	 */
    259   1.1       cgd 	for (; t->rn_b >= 0; ) {
    260   1.1       cgd 		if (t->rn_bmask & cp[t->rn_off])
    261   1.1       cgd 			t = t->rn_r;
    262   1.1       cgd 		else
    263   1.1       cgd 			t = t->rn_l;
    264   1.1       cgd 	}
    265   1.1       cgd 	/*
    266   1.1       cgd 	 * See if we match exactly as a host destination
    267   1.9   mycroft 	 * or at least learn how many bits match, for normal mask finesse.
    268   1.9   mycroft 	 *
    269   1.9   mycroft 	 * It doesn't hurt us to limit how many bytes to check
    270   1.9   mycroft 	 * to the length of the mask, since if it matches we had a genuine
    271   1.9   mycroft 	 * match and the leaf we have is the most specific one anyway;
    272   1.9   mycroft 	 * if it didn't match with a shorter length it would fail
    273   1.9   mycroft 	 * with a long one.  This wins big for class B&C netmasks which
    274   1.9   mycroft 	 * are probably the most common case...
    275   1.1       cgd 	 */
    276   1.9   mycroft 	if (t->rn_mask)
    277  1.29  christos 		vlen = *(const u_char *)t->rn_mask;
    278   1.1       cgd 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
    279   1.1       cgd 	for (; cp < cplim; cp++, cp2++)
    280   1.1       cgd 		if (*cp != *cp2)
    281   1.1       cgd 			goto on1;
    282   1.1       cgd 	/*
    283   1.1       cgd 	 * This extra grot is in case we are explicitly asked
    284   1.1       cgd 	 * to look up the default.  Ugh!
    285   1.1       cgd 	 */
    286   1.1       cgd 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
    287   1.1       cgd 		t = t->rn_dupedkey;
    288   1.1       cgd 	return t;
    289   1.1       cgd on1:
    290   1.9   mycroft 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
    291   1.9   mycroft 	for (b = 7; (test >>= 1) > 0;)
    292   1.9   mycroft 		b--;
    293   1.1       cgd 	matched_off = cp - v;
    294   1.9   mycroft 	b += matched_off << 3;
    295   1.9   mycroft 	rn_b = -1 - b;
    296   1.9   mycroft 	/*
    297   1.9   mycroft 	 * If there is a host route in a duped-key chain, it will be first.
    298   1.9   mycroft 	 */
    299   1.9   mycroft 	if ((saved_t = t)->rn_mask == 0)
    300   1.9   mycroft 		t = t->rn_dupedkey;
    301   1.9   mycroft 	for (; t; t = t->rn_dupedkey)
    302   1.1       cgd 		/*
    303   1.9   mycroft 		 * Even if we don't match exactly as a host,
    304   1.1       cgd 		 * we may match if the leaf we wound up at is
    305   1.1       cgd 		 * a route to a net.
    306   1.1       cgd 		 */
    307   1.9   mycroft 		if (t->rn_flags & RNF_NORMAL) {
    308   1.9   mycroft 			if (rn_b <= t->rn_b)
    309   1.9   mycroft 				return t;
    310  1.15    itojun 		} else if (rn_satisfies_leaf(v, t, matched_off))
    311   1.9   mycroft 				return t;
    312   1.1       cgd 	t = saved_t;
    313   1.1       cgd 	/* start searching up the tree */
    314   1.1       cgd 	do {
    315  1.14  augustss 		struct radix_mask *m;
    316   1.1       cgd 		t = t->rn_p;
    317  1.12  christos 		m = t->rn_mklist;
    318  1.12  christos 		if (m) {
    319   1.1       cgd 			/*
    320   1.9   mycroft 			 * If non-contiguous masks ever become important
    321   1.9   mycroft 			 * we can restore the masking and open coding of
    322   1.9   mycroft 			 * the search and satisfaction test and put the
    323   1.9   mycroft 			 * calculation of "off" back before the "do".
    324   1.1       cgd 			 */
    325   1.1       cgd 			do {
    326   1.9   mycroft 				if (m->rm_flags & RNF_NORMAL) {
    327   1.9   mycroft 					if (rn_b <= m->rm_b)
    328  1.37    dyoung 						return m->rm_leaf;
    329   1.9   mycroft 				} else {
    330  1.48  riastrad 					off = uimin(t->rn_off, matched_off);
    331   1.9   mycroft 					x = rn_search_m(v, t, m->rm_mask);
    332   1.9   mycroft 					while (x && x->rn_mask != m->rm_mask)
    333   1.9   mycroft 						x = x->rn_dupedkey;
    334  1.15    itojun 					if (x && rn_satisfies_leaf(v, x, off))
    335  1.17    itojun 						return x;
    336   1.9   mycroft 				}
    337  1.15    itojun 				m = m->rm_mklist;
    338  1.12  christos 			} while (m);
    339   1.1       cgd 		}
    340   1.6   mycroft 	} while (t != top);
    341  1.37    dyoung 	return NULL;
    342  1.13      fvdl }
    343  1.28     perry 
    344  1.32    dyoung static void
    345  1.32    dyoung rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
    346  1.32    dyoung     const char *delim)
    347  1.32    dyoung {
    348  1.32    dyoung 	(*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
    349  1.32    dyoung 	    delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
    350  1.32    dyoung 	    rn->rn_l, rn->rn_r);
    351  1.32    dyoung }
    352  1.32    dyoung 
    353   1.1       cgd #ifdef RN_DEBUG
    354   1.6   mycroft int	rn_debug =  1;
    355  1.32    dyoung 
    356  1.32    dyoung static void
    357  1.32    dyoung rn_dbg_print(void *arg, const char *fmt, ...)
    358  1.32    dyoung {
    359  1.32    dyoung 	va_list ap;
    360  1.32    dyoung 
    361  1.32    dyoung 	va_start(ap, fmt);
    362  1.32    dyoung 	vlog(LOG_DEBUG, fmt, ap);
    363  1.32    dyoung 	va_end(ap);
    364  1.32    dyoung }
    365  1.32    dyoung 
    366  1.32    dyoung static void
    367  1.32    dyoung rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
    368  1.32    dyoung {
    369  1.32    dyoung 	struct radix_node *dup, *rn;
    370  1.32    dyoung 	const char *delim;
    371  1.32    dyoung 
    372  1.32    dyoung 	if (printer == NULL)
    373  1.32    dyoung 		return;
    374  1.32    dyoung 
    375  1.32    dyoung 	rn = rn_walkfirst(h->rnh_treetop, printer, arg);
    376  1.32    dyoung 	for (;;) {
    377  1.32    dyoung 		/* Process leaves */
    378  1.32    dyoung 		delim = "";
    379  1.32    dyoung 		for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
    380  1.32    dyoung 			if ((dup->rn_flags & RNF_ROOT) != 0)
    381  1.32    dyoung 				continue;
    382  1.32    dyoung 			rn_nodeprint(dup, printer, arg, delim);
    383  1.32    dyoung 			delim = ", ";
    384  1.32    dyoung 		}
    385  1.32    dyoung 		rn = rn_walknext(rn, printer, arg);
    386  1.32    dyoung 		if (rn->rn_flags & RNF_ROOT)
    387  1.32    dyoung 			return;
    388  1.32    dyoung 	}
    389  1.32    dyoung 	/* NOTREACHED */
    390  1.32    dyoung }
    391  1.32    dyoung 
    392  1.32    dyoung #define	traverse(__head, __rn)	rn_treeprint((__head), rn_dbg_print, (__rn))
    393  1.32    dyoung #endif /* RN_DEBUG */
    394   1.1       cgd 
    395   1.1       cgd struct radix_node *
    396  1.23      matt rn_newpair(
    397  1.23      matt 	const void *v,
    398  1.23      matt 	int b,
    399  1.23      matt 	struct radix_node nodes[2])
    400   1.1       cgd {
    401  1.23      matt 	struct radix_node *tt = nodes;
    402  1.23      matt 	struct radix_node *t = tt + 1;
    403   1.1       cgd 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
    404   1.1       cgd 	t->rn_l = tt; t->rn_off = b >> 3;
    405  1.21      matt 	tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
    406   1.1       cgd 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
    407   1.1       cgd 	return t;
    408   1.1       cgd }
    409   1.1       cgd 
    410   1.1       cgd struct radix_node *
    411  1.23      matt rn_insert(
    412  1.23      matt 	const void *v_arg,
    413  1.23      matt 	struct radix_node_head *head,
    414  1.23      matt 	int *dupentry,
    415  1.23      matt 	struct radix_node nodes[2])
    416   1.1       cgd {
    417   1.6   mycroft 	struct radix_node *top = head->rnh_treetop;
    418  1.14  augustss 	struct radix_node *t = rn_search(v_arg, top);
    419  1.23      matt 	struct radix_node *tt;
    420  1.23      matt 	const char *v = v_arg;
    421  1.21      matt 	int head_off = top->rn_off;
    422  1.29  christos 	int vlen = *((const u_char *)v);
    423  1.21      matt 	const char *cp = v + head_off;
    424  1.14  augustss 	int b;
    425   1.1       cgd     	/*
    426   1.9   mycroft 	 * Find first bit at which v and t->rn_key differ
    427   1.1       cgd 	 */
    428   1.1       cgd     {
    429  1.21      matt 	const char *cp2 = t->rn_key + head_off;
    430  1.21      matt 	const char *cplim = v + vlen;
    431  1.14  augustss 	int cmp_res;
    432   1.1       cgd 
    433   1.1       cgd 	while (cp < cplim)
    434   1.1       cgd 		if (*cp2++ != *cp++)
    435   1.1       cgd 			goto on1;
    436   1.1       cgd 	*dupentry = 1;
    437   1.1       cgd 	return t;
    438   1.1       cgd on1:
    439   1.1       cgd 	*dupentry = 0;
    440   1.1       cgd 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
    441   1.1       cgd 	for (b = (cp - v) << 3; cmp_res; b--)
    442   1.1       cgd 		cmp_res >>= 1;
    443   1.1       cgd     }
    444   1.1       cgd     {
    445  1.14  augustss 	struct radix_node *p, *x = top;
    446   1.1       cgd 	cp = v;
    447   1.1       cgd 	do {
    448   1.1       cgd 		p = x;
    449  1.28     perry 		if (cp[x->rn_off] & x->rn_bmask)
    450   1.1       cgd 			x = x->rn_r;
    451   1.1       cgd 		else x = x->rn_l;
    452   1.1       cgd 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
    453   1.1       cgd #ifdef RN_DEBUG
    454   1.1       cgd 	if (rn_debug)
    455  1.32    dyoung 		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
    456   1.1       cgd #endif
    457   1.6   mycroft 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
    458   1.1       cgd 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
    459   1.1       cgd 		p->rn_l = t;
    460   1.1       cgd 	else
    461   1.1       cgd 		p->rn_r = t;
    462   1.1       cgd 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
    463   1.1       cgd 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
    464   1.1       cgd 		t->rn_r = x;
    465   1.1       cgd 	} else {
    466   1.1       cgd 		t->rn_r = tt; t->rn_l = x;
    467   1.1       cgd 	}
    468   1.1       cgd #ifdef RN_DEBUG
    469  1.32    dyoung 	if (rn_debug) {
    470  1.32    dyoung 		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
    471  1.32    dyoung 		    traverse(head, p);
    472  1.32    dyoung 	}
    473  1.32    dyoung #endif /* RN_DEBUG */
    474   1.1       cgd     }
    475  1.37    dyoung 	return tt;
    476   1.1       cgd }
    477   1.1       cgd 
    478   1.1       cgd struct radix_node *
    479  1.23      matt rn_addmask(
    480  1.23      matt 	const void *n_arg,
    481  1.23      matt 	int search,
    482  1.23      matt 	int skip)
    483   1.1       cgd {
    484  1.21      matt 	const char *netmask = n_arg;
    485  1.21      matt 	const char *cp;
    486  1.21      matt 	const char *cplim;
    487  1.23      matt 	struct radix_node *x;
    488  1.23      matt 	struct radix_node *saved_x;
    489  1.14  augustss 	int b = 0, mlen, j;
    490   1.9   mycroft 	int maskduplicated, m0, isnormal;
    491   1.9   mycroft 	static int last_zeroed = 0;
    492   1.9   mycroft 
    493  1.29  christos 	if ((mlen = *(const u_char *)netmask) > max_keylen)
    494   1.9   mycroft 		mlen = max_keylen;
    495   1.9   mycroft 	if (skip == 0)
    496   1.9   mycroft 		skip = 1;
    497   1.9   mycroft 	if (mlen <= skip)
    498  1.37    dyoung 		return mask_rnhead->rnh_nodes;
    499   1.9   mycroft 	if (skip > 1)
    500  1.39    dyoung 		memmove(addmask_key + 1, rn_ones + 1, skip - 1);
    501   1.9   mycroft 	if ((m0 = mlen) > skip)
    502  1.39    dyoung 		memmove(addmask_key + skip, netmask + skip, mlen - skip);
    503   1.9   mycroft 	/*
    504   1.9   mycroft 	 * Trim trailing zeroes.
    505   1.9   mycroft 	 */
    506   1.9   mycroft 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
    507   1.9   mycroft 		cp--;
    508   1.9   mycroft 	mlen = cp - addmask_key;
    509   1.9   mycroft 	if (mlen <= skip) {
    510   1.9   mycroft 		if (m0 >= last_zeroed)
    511   1.9   mycroft 			last_zeroed = mlen;
    512  1.37    dyoung 		return mask_rnhead->rnh_nodes;
    513   1.9   mycroft 	}
    514   1.9   mycroft 	if (m0 < last_zeroed)
    515  1.39    dyoung 		memset(addmask_key + m0, 0, last_zeroed - m0);
    516   1.9   mycroft 	*addmask_key = last_zeroed = mlen;
    517   1.9   mycroft 	x = rn_search(addmask_key, rn_masktop);
    518  1.39    dyoung 	if (memcmp(addmask_key, x->rn_key, mlen) != 0)
    519   1.9   mycroft 		x = 0;
    520   1.9   mycroft 	if (x || search)
    521  1.37    dyoung 		return x;
    522   1.6   mycroft 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
    523  1.37    dyoung 	if ((saved_x = x) == NULL)
    524  1.37    dyoung 		return NULL;
    525  1.39    dyoung 	memset(x, 0, max_keylen + 2 * sizeof (*x));
    526  1.34  christos 	cp = netmask = (void *)(x + 2);
    527  1.39    dyoung 	memmove(x + 2, addmask_key, mlen);
    528   1.9   mycroft 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
    529   1.9   mycroft 	if (maskduplicated) {
    530  1.16     enami 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
    531   1.9   mycroft 		Free(saved_x);
    532  1.37    dyoung 		return x;
    533   1.9   mycroft 	}
    534   1.9   mycroft 	/*
    535   1.9   mycroft 	 * Calculate index of mask, and check for normalcy.
    536   1.9   mycroft 	 */
    537   1.9   mycroft 	cplim = netmask + mlen; isnormal = 1;
    538  1.29  christos 	for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
    539   1.9   mycroft 		cp++;
    540   1.1       cgd 	if (cp != cplim) {
    541  1.28     perry 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
    542   1.9   mycroft 			b++;
    543   1.9   mycroft 		if (*cp != normal_chars[b] || cp != (cplim - 1))
    544   1.9   mycroft 			isnormal = 0;
    545   1.1       cgd 	}
    546   1.9   mycroft 	b += (cp - netmask) << 3;
    547   1.1       cgd 	x->rn_b = -1 - b;
    548   1.9   mycroft 	if (isnormal)
    549   1.9   mycroft 		x->rn_flags |= RNF_NORMAL;
    550  1.37    dyoung 	return x;
    551   1.1       cgd }
    552   1.1       cgd 
    553   1.9   mycroft static int	/* XXX: arbitrary ordering for non-contiguous masks */
    554  1.23      matt rn_lexobetter(
    555  1.23      matt 	const void *m_arg,
    556  1.23      matt 	const void *n_arg)
    557  1.23      matt {
    558  1.23      matt 	const u_char *mp = m_arg;
    559  1.23      matt 	const u_char *np = n_arg;
    560  1.23      matt 	const u_char *lim;
    561   1.9   mycroft 
    562   1.9   mycroft 	if (*mp > *np)
    563   1.9   mycroft 		return 1;  /* not really, but need to check longer one first */
    564  1.28     perry 	if (*mp == *np)
    565   1.9   mycroft 		for (lim = mp + *mp; mp < lim;)
    566   1.9   mycroft 			if (*mp++ > *np++)
    567   1.9   mycroft 				return 1;
    568   1.9   mycroft 	return 0;
    569   1.9   mycroft }
    570   1.9   mycroft 
    571   1.9   mycroft static struct radix_mask *
    572  1.23      matt rn_new_radix_mask(
    573  1.23      matt 	struct radix_node *tt,
    574  1.23      matt 	struct radix_mask *next)
    575   1.9   mycroft {
    576  1.14  augustss 	struct radix_mask *m;
    577   1.9   mycroft 
    578   1.9   mycroft 	MKGet(m);
    579  1.37    dyoung 	if (m == NULL) {
    580   1.9   mycroft 		log(LOG_ERR, "Mask for route not entered\n");
    581  1.37    dyoung 		return NULL;
    582   1.9   mycroft 	}
    583  1.39    dyoung 	memset(m, 0, sizeof(*m));
    584   1.9   mycroft 	m->rm_b = tt->rn_b;
    585   1.9   mycroft 	m->rm_flags = tt->rn_flags;
    586   1.9   mycroft 	if (tt->rn_flags & RNF_NORMAL)
    587   1.9   mycroft 		m->rm_leaf = tt;
    588   1.9   mycroft 	else
    589   1.9   mycroft 		m->rm_mask = tt->rn_mask;
    590   1.9   mycroft 	m->rm_mklist = next;
    591   1.9   mycroft 	tt->rn_mklist = m;
    592   1.9   mycroft 	return m;
    593   1.9   mycroft }
    594   1.9   mycroft 
    595   1.1       cgd struct radix_node *
    596  1.23      matt rn_addroute(
    597  1.23      matt 	const void *v_arg,
    598  1.23      matt 	const void *n_arg,
    599  1.23      matt 	struct radix_node_head *head,
    600  1.23      matt 	struct radix_node treenodes[2])
    601   1.1       cgd {
    602  1.33    dyoung 	const char *v = v_arg, *netmask = n_arg;
    603  1.33    dyoung 	struct radix_node *t, *x = NULL, *tt;
    604  1.33    dyoung 	struct radix_node *saved_tt, *top = head->rnh_treetop;
    605  1.10  christos 	short b = 0, b_leaf = 0;
    606   1.9   mycroft 	int keyduplicated;
    607  1.21      matt 	const char *mmask;
    608   1.1       cgd 	struct radix_mask *m, **mp;
    609   1.1       cgd 
    610   1.1       cgd 	/*
    611   1.1       cgd 	 * In dealing with non-contiguous masks, there may be
    612   1.1       cgd 	 * many different routes which have the same mask.
    613   1.1       cgd 	 * We will find it useful to have a unique pointer to
    614   1.1       cgd 	 * the mask to speed avoiding duplicate references at
    615   1.1       cgd 	 * nodes and possibly save time in calculating indices.
    616   1.1       cgd 	 */
    617  1.38    dyoung 	if (netmask != NULL) {
    618  1.37    dyoung 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
    619  1.37    dyoung 			return NULL;
    620   1.9   mycroft 		b_leaf = x->rn_b;
    621   1.9   mycroft 		b = -1 - x->rn_b;
    622   1.1       cgd 		netmask = x->rn_key;
    623   1.1       cgd 	}
    624   1.1       cgd 	/*
    625   1.1       cgd 	 * Deal with duplicated keys: attach node to previous instance
    626   1.1       cgd 	 */
    627   1.1       cgd 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
    628   1.1       cgd 	if (keyduplicated) {
    629  1.38    dyoung 		for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
    630   1.1       cgd 			if (tt->rn_mask == netmask)
    631  1.37    dyoung 				return NULL;
    632  1.38    dyoung 			if (netmask == NULL ||
    633  1.38    dyoung 			    (tt->rn_mask != NULL &&
    634  1.38    dyoung 			     (b_leaf < tt->rn_b || /* index(netmask) > node */
    635   1.9   mycroft 			       rn_refines(netmask, tt->rn_mask) ||
    636   1.9   mycroft 			       rn_lexobetter(netmask, tt->rn_mask))))
    637   1.6   mycroft 				break;
    638   1.9   mycroft 		}
    639   1.1       cgd 		/*
    640   1.1       cgd 		 * If the mask is not duplicated, we wouldn't
    641   1.1       cgd 		 * find it among possible duplicate key entries
    642   1.1       cgd 		 * anyway, so the above test doesn't hurt.
    643   1.1       cgd 		 *
    644   1.6   mycroft 		 * We sort the masks for a duplicated key the same way as
    645   1.6   mycroft 		 * in a masklist -- most specific to least specific.
    646   1.6   mycroft 		 * This may require the unfortunate nuisance of relocating
    647   1.1       cgd 		 * the head of the list.
    648  1.12  christos 		 *
    649  1.12  christos 		 * We also reverse, or doubly link the list through the
    650  1.12  christos 		 * parent pointer.
    651   1.1       cgd 		 */
    652   1.9   mycroft 		if (tt == saved_tt) {
    653   1.6   mycroft 			struct	radix_node *xx = x;
    654   1.6   mycroft 			/* link in at head of list */
    655   1.6   mycroft 			(tt = treenodes)->rn_dupedkey = t;
    656   1.6   mycroft 			tt->rn_flags = t->rn_flags;
    657   1.6   mycroft 			tt->rn_p = x = t->rn_p;
    658  1.12  christos 			t->rn_p = tt;
    659  1.33    dyoung 			if (x->rn_l == t)
    660  1.33    dyoung 				x->rn_l = tt;
    661  1.33    dyoung 			else
    662  1.33    dyoung 				x->rn_r = tt;
    663  1.33    dyoung 			saved_tt = tt;
    664  1.33    dyoung 			x = xx;
    665   1.6   mycroft 		} else {
    666   1.6   mycroft 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
    667   1.6   mycroft 			t->rn_dupedkey = tt;
    668  1.12  christos 			tt->rn_p = t;
    669  1.12  christos 			if (tt->rn_dupedkey)
    670  1.12  christos 				tt->rn_dupedkey->rn_p = tt;
    671   1.6   mycroft 		}
    672  1.36    dyoung 		tt->rn_key = v;
    673   1.1       cgd 		tt->rn_b = -1;
    674   1.9   mycroft 		tt->rn_flags = RNF_ACTIVE;
    675   1.1       cgd 	}
    676   1.1       cgd 	/*
    677   1.1       cgd 	 * Put mask in tree.
    678   1.1       cgd 	 */
    679  1.38    dyoung 	if (netmask != NULL) {
    680   1.1       cgd 		tt->rn_mask = netmask;
    681   1.1       cgd 		tt->rn_b = x->rn_b;
    682   1.9   mycroft 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
    683   1.1       cgd 	}
    684   1.1       cgd 	t = saved_tt->rn_p;
    685   1.9   mycroft 	if (keyduplicated)
    686   1.9   mycroft 		goto on2;
    687   1.1       cgd 	b_leaf = -1 - t->rn_b;
    688  1.33    dyoung 	if (t->rn_r == saved_tt)
    689  1.33    dyoung 		x = t->rn_l;
    690  1.33    dyoung 	else
    691  1.33    dyoung 		x = t->rn_r;
    692   1.1       cgd 	/* Promote general routes from below */
    693  1.28     perry 	if (x->rn_b < 0) {
    694  1.38    dyoung 		for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
    695  1.38    dyoung 			if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
    696  1.38    dyoung 			    x->rn_mklist == NULL) {
    697  1.38    dyoung 				*mp = m = rn_new_radix_mask(x, NULL);
    698  1.38    dyoung 				if (m != NULL)
    699  1.38    dyoung 					mp = &m->rm_mklist;
    700  1.38    dyoung 			}
    701   1.1       cgd 		}
    702  1.38    dyoung 	} else if (x->rn_mklist != NULL) {
    703   1.1       cgd 		/*
    704   1.1       cgd 		 * Skip over masks whose index is > that of new node
    705   1.1       cgd 		 */
    706  1.38    dyoung 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
    707   1.1       cgd 			if (m->rm_b >= b_leaf)
    708   1.1       cgd 				break;
    709  1.33    dyoung 		t->rn_mklist = m;
    710  1.38    dyoung 		*mp = NULL;
    711   1.1       cgd 	}
    712   1.9   mycroft on2:
    713   1.1       cgd 	/* Add new route to highest possible ancestor's list */
    714  1.38    dyoung 	if (netmask == NULL || b > t->rn_b)
    715   1.1       cgd 		return tt; /* can't lift at all */
    716   1.1       cgd 	b_leaf = tt->rn_b;
    717   1.1       cgd 	do {
    718   1.1       cgd 		x = t;
    719   1.1       cgd 		t = t->rn_p;
    720   1.6   mycroft 	} while (b <= t->rn_b && x != top);
    721   1.1       cgd 	/*
    722   1.1       cgd 	 * Search through routes associated with node to
    723   1.1       cgd 	 * insert new route according to index.
    724   1.9   mycroft 	 * Need same criteria as when sorting dupedkeys to avoid
    725   1.9   mycroft 	 * double loop on deletion.
    726   1.1       cgd 	 */
    727  1.38    dyoung 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
    728   1.1       cgd 		if (m->rm_b < b_leaf)
    729   1.1       cgd 			continue;
    730   1.1       cgd 		if (m->rm_b > b_leaf)
    731   1.1       cgd 			break;
    732   1.9   mycroft 		if (m->rm_flags & RNF_NORMAL) {
    733   1.9   mycroft 			mmask = m->rm_leaf->rn_mask;
    734   1.9   mycroft 			if (tt->rn_flags & RNF_NORMAL) {
    735  1.16     enami 				log(LOG_ERR, "Non-unique normal route,"
    736  1.16     enami 				    " mask not entered\n");
    737   1.9   mycroft 				return tt;
    738   1.9   mycroft 			}
    739   1.9   mycroft 		} else
    740   1.9   mycroft 			mmask = m->rm_mask;
    741   1.9   mycroft 		if (mmask == netmask) {
    742   1.1       cgd 			m->rm_refs++;
    743   1.1       cgd 			tt->rn_mklist = m;
    744   1.1       cgd 			return tt;
    745   1.1       cgd 		}
    746   1.9   mycroft 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
    747   1.6   mycroft 			break;
    748   1.1       cgd 	}
    749   1.9   mycroft 	*mp = rn_new_radix_mask(tt, *mp);
    750   1.1       cgd 	return tt;
    751   1.1       cgd }
    752   1.1       cgd 
    753   1.1       cgd struct radix_node *
    754  1.33    dyoung rn_delete1(
    755  1.23      matt 	const void *v_arg,
    756  1.23      matt 	const void *netmask_arg,
    757  1.33    dyoung 	struct radix_node_head *head,
    758  1.33    dyoung 	struct radix_node *rn)
    759  1.23      matt {
    760  1.33    dyoung 	struct radix_node *t, *p, *x, *tt;
    761  1.33    dyoung 	struct radix_mask *m, *saved_m, **mp;
    762  1.33    dyoung 	struct radix_node *dupedkey, *saved_tt, *top;
    763  1.33    dyoung 	const char *v, *netmask;
    764   1.6   mycroft 	int b, head_off, vlen;
    765   1.1       cgd 
    766  1.33    dyoung 	v = v_arg;
    767  1.33    dyoung 	netmask = netmask_arg;
    768   1.6   mycroft 	x = head->rnh_treetop;
    769   1.6   mycroft 	tt = rn_search(v, x);
    770   1.6   mycroft 	head_off = x->rn_off;
    771  1.29  christos 	vlen =  *(const u_char *)v;
    772   1.6   mycroft 	saved_tt = tt;
    773   1.6   mycroft 	top = x;
    774  1.38    dyoung 	if (tt == NULL ||
    775  1.39    dyoung 	    memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
    776  1.37    dyoung 		return NULL;
    777   1.1       cgd 	/*
    778   1.1       cgd 	 * Delete our route from mask lists.
    779   1.1       cgd 	 */
    780  1.38    dyoung 	if (netmask != NULL) {
    781  1.38    dyoung 		if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
    782  1.37    dyoung 			return NULL;
    783   1.9   mycroft 		netmask = x->rn_key;
    784   1.1       cgd 		while (tt->rn_mask != netmask)
    785  1.38    dyoung 			if ((tt = tt->rn_dupedkey) == NULL)
    786  1.37    dyoung 				return NULL;
    787   1.1       cgd 	}
    788  1.38    dyoung 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
    789   1.1       cgd 		goto on1;
    790   1.9   mycroft 	if (tt->rn_flags & RNF_NORMAL) {
    791   1.9   mycroft 		if (m->rm_leaf != tt || m->rm_refs > 0) {
    792   1.9   mycroft 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
    793  1.37    dyoung 			return NULL;  /* dangling ref could cause disaster */
    794   1.9   mycroft 		}
    795  1.28     perry 	} else {
    796   1.9   mycroft 		if (m->rm_mask != tt->rn_mask) {
    797   1.9   mycroft 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
    798   1.9   mycroft 			goto on1;
    799   1.9   mycroft 		}
    800   1.9   mycroft 		if (--m->rm_refs >= 0)
    801   1.9   mycroft 			goto on1;
    802   1.1       cgd 	}
    803   1.1       cgd 	b = -1 - tt->rn_b;
    804   1.1       cgd 	t = saved_tt->rn_p;
    805   1.1       cgd 	if (b > t->rn_b)
    806   1.1       cgd 		goto on1; /* Wasn't lifted at all */
    807   1.1       cgd 	do {
    808   1.1       cgd 		x = t;
    809   1.1       cgd 		t = t->rn_p;
    810   1.6   mycroft 	} while (b <= t->rn_b && x != top);
    811  1.38    dyoung 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
    812   1.1       cgd 		if (m == saved_m) {
    813   1.1       cgd 			*mp = m->rm_mklist;
    814   1.1       cgd 			MKFree(m);
    815   1.1       cgd 			break;
    816   1.1       cgd 		}
    817  1.38    dyoung 	}
    818  1.38    dyoung 	if (m == NULL) {
    819   1.9   mycroft 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
    820   1.9   mycroft 		if (tt->rn_flags & RNF_NORMAL)
    821  1.37    dyoung 			return NULL; /* Dangling ref to us */
    822   1.9   mycroft 	}
    823   1.1       cgd on1:
    824   1.1       cgd 	/*
    825   1.1       cgd 	 * Eliminate us from tree
    826   1.1       cgd 	 */
    827   1.1       cgd 	if (tt->rn_flags & RNF_ROOT)
    828  1.37    dyoung 		return NULL;
    829   1.1       cgd #ifdef RN_DEBUG
    830  1.32    dyoung 	if (rn_debug)
    831  1.32    dyoung 		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
    832   1.6   mycroft #endif
    833   1.1       cgd 	t = tt->rn_p;
    834  1.12  christos 	dupedkey = saved_tt->rn_dupedkey;
    835  1.38    dyoung 	if (dupedkey != NULL) {
    836  1.12  christos 		/*
    837  1.12  christos 		 * Here, tt is the deletion target, and
    838  1.12  christos 		 * saved_tt is the head of the dupedkey chain.
    839  1.12  christos 		 */
    840   1.1       cgd 		if (tt == saved_tt) {
    841  1.33    dyoung 			x = dupedkey;
    842  1.33    dyoung 			x->rn_p = t;
    843  1.33    dyoung 			if (t->rn_l == tt)
    844  1.33    dyoung 				t->rn_l = x;
    845  1.33    dyoung 			else
    846  1.33    dyoung 				t->rn_r = x;
    847   1.6   mycroft 		} else {
    848  1.12  christos 			/* find node in front of tt on the chain */
    849  1.38    dyoung 			for (x = p = saved_tt;
    850  1.38    dyoung 			     p != NULL && p->rn_dupedkey != tt;)
    851   1.6   mycroft 				p = p->rn_dupedkey;
    852  1.38    dyoung 			if (p != NULL) {
    853  1.12  christos 				p->rn_dupedkey = tt->rn_dupedkey;
    854  1.38    dyoung 				if (tt->rn_dupedkey != NULL)
    855  1.12  christos 					tt->rn_dupedkey->rn_p = p;
    856  1.38    dyoung 			} else
    857  1.38    dyoung 				log(LOG_ERR, "rn_delete: couldn't find us\n");
    858   1.6   mycroft 		}
    859   1.6   mycroft 		t = tt + 1;
    860   1.6   mycroft 		if  (t->rn_flags & RNF_ACTIVE) {
    861  1.33    dyoung 			*++x = *t;
    862  1.33    dyoung 			p = t->rn_p;
    863  1.33    dyoung 			if (p->rn_l == t)
    864  1.33    dyoung 				p->rn_l = x;
    865  1.33    dyoung 			else
    866  1.33    dyoung 				p->rn_r = x;
    867  1.33    dyoung 			x->rn_l->rn_p = x;
    868  1.33    dyoung 			x->rn_r->rn_p = x;
    869   1.1       cgd 		}
    870   1.1       cgd 		goto out;
    871   1.1       cgd 	}
    872  1.33    dyoung 	if (t->rn_l == tt)
    873  1.33    dyoung 		x = t->rn_r;
    874  1.33    dyoung 	else
    875  1.33    dyoung 		x = t->rn_l;
    876   1.1       cgd 	p = t->rn_p;
    877  1.33    dyoung 	if (p->rn_r == t)
    878  1.33    dyoung 		p->rn_r = x;
    879  1.33    dyoung 	else
    880  1.33    dyoung 		p->rn_l = x;
    881   1.1       cgd 	x->rn_p = p;
    882   1.1       cgd 	/*
    883   1.1       cgd 	 * Demote routes attached to us.
    884   1.1       cgd 	 */
    885  1.38    dyoung 	if (t->rn_mklist == NULL)
    886  1.38    dyoung 		;
    887  1.38    dyoung 	else if (x->rn_b >= 0) {
    888  1.38    dyoung 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
    889  1.38    dyoung 			;
    890  1.38    dyoung 		*mp = t->rn_mklist;
    891  1.38    dyoung 	} else {
    892  1.38    dyoung 		/* If there are any key,mask pairs in a sibling
    893  1.38    dyoung 		   duped-key chain, some subset will appear sorted
    894  1.38    dyoung 		   in the same order attached to our mklist */
    895  1.38    dyoung 		for (m = t->rn_mklist;
    896  1.38    dyoung 		     m != NULL && x != NULL;
    897  1.38    dyoung 		     x = x->rn_dupedkey) {
    898  1.38    dyoung 			if (m == x->rn_mklist) {
    899  1.38    dyoung 				struct radix_mask *mm = m->rm_mklist;
    900  1.38    dyoung 				x->rn_mklist = NULL;
    901  1.38    dyoung 				if (--(m->rm_refs) < 0)
    902  1.38    dyoung 					MKFree(m);
    903  1.38    dyoung 				m = mm;
    904  1.38    dyoung 			}
    905  1.38    dyoung 		}
    906  1.38    dyoung 		if (m != NULL) {
    907  1.38    dyoung 			log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
    908  1.38    dyoung 			    m, x);
    909   1.1       cgd 		}
    910   1.1       cgd 	}
    911   1.1       cgd 	/*
    912   1.1       cgd 	 * We may be holding an active internal node in the tree.
    913   1.1       cgd 	 */
    914   1.1       cgd 	x = tt + 1;
    915   1.1       cgd 	if (t != x) {
    916   1.1       cgd 		*t = *x;
    917  1.33    dyoung 		t->rn_l->rn_p = t;
    918  1.33    dyoung 		t->rn_r->rn_p = t;
    919   1.1       cgd 		p = x->rn_p;
    920  1.33    dyoung 		if (p->rn_l == x)
    921  1.33    dyoung 			p->rn_l = t;
    922  1.33    dyoung 		else
    923  1.33    dyoung 			p->rn_r = t;
    924   1.1       cgd 	}
    925   1.1       cgd out:
    926  1.32    dyoung #ifdef RN_DEBUG
    927  1.32    dyoung 	if (rn_debug) {
    928  1.32    dyoung 		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
    929  1.32    dyoung 		    traverse(head, tt);
    930  1.32    dyoung 	}
    931  1.32    dyoung #endif /* RN_DEBUG */
    932   1.1       cgd 	tt->rn_flags &= ~RNF_ACTIVE;
    933   1.1       cgd 	tt[1].rn_flags &= ~RNF_ACTIVE;
    934  1.37    dyoung 	return tt;
    935   1.1       cgd }
    936   1.1       cgd 
    937  1.33    dyoung struct radix_node *
    938  1.33    dyoung rn_delete(
    939  1.33    dyoung 	const void *v_arg,
    940  1.33    dyoung 	const void *netmask_arg,
    941  1.33    dyoung 	struct radix_node_head *head)
    942  1.33    dyoung {
    943  1.33    dyoung 	return rn_delete1(v_arg, netmask_arg, head, NULL);
    944  1.33    dyoung }
    945  1.33    dyoung 
    946  1.32    dyoung static struct radix_node *
    947  1.32    dyoung rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
    948  1.32    dyoung {
    949  1.32    dyoung 	/* If at right child go back up, otherwise, go right */
    950  1.32    dyoung 	while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
    951  1.32    dyoung 		if (printer != NULL)
    952  1.32    dyoung 			(*printer)(arg, SUBTREE_CLOSE);
    953  1.32    dyoung 		rn = rn->rn_p;
    954  1.32    dyoung 	}
    955  1.32    dyoung 	if (printer)
    956  1.32    dyoung 		rn_nodeprint(rn->rn_p, printer, arg, "");
    957  1.32    dyoung 	/* Find the next *leaf* since next node might vanish, too */
    958  1.32    dyoung 	for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
    959  1.32    dyoung 		if (printer != NULL)
    960  1.32    dyoung 			(*printer)(arg, SUBTREE_OPEN);
    961  1.32    dyoung 		rn = rn->rn_l;
    962  1.32    dyoung 	}
    963  1.32    dyoung 	return rn;
    964  1.32    dyoung }
    965  1.32    dyoung 
    966  1.32    dyoung static struct radix_node *
    967  1.32    dyoung rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
    968  1.32    dyoung {
    969  1.32    dyoung 	/* First time through node, go left */
    970  1.32    dyoung 	while (rn->rn_b >= 0) {
    971  1.32    dyoung 		if (printer != NULL)
    972  1.32    dyoung 			(*printer)(arg, SUBTREE_OPEN);
    973  1.32    dyoung 		rn = rn->rn_l;
    974  1.32    dyoung 	}
    975  1.32    dyoung 	return rn;
    976  1.32    dyoung }
    977  1.32    dyoung 
    978   1.6   mycroft int
    979  1.23      matt rn_walktree(
    980  1.23      matt 	struct radix_node_head *h,
    981  1.23      matt 	int (*f)(struct radix_node *, void *),
    982  1.23      matt 	void *w)
    983   1.6   mycroft {
    984   1.6   mycroft 	int error;
    985  1.32    dyoung 	struct radix_node *base, *next, *rn;
    986   1.6   mycroft 	/*
    987   1.6   mycroft 	 * This gets complicated because we may delete the node
    988   1.6   mycroft 	 * while applying the function f to it, so we need to calculate
    989   1.6   mycroft 	 * the successor node in advance.
    990   1.6   mycroft 	 */
    991  1.32    dyoung 	rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
    992   1.6   mycroft 	for (;;) {
    993   1.6   mycroft 		base = rn;
    994  1.32    dyoung 		next = rn_walknext(rn, NULL, NULL);
    995   1.6   mycroft 		/* Process leaves */
    996  1.10  christos 		while ((rn = base) != NULL) {
    997   1.6   mycroft 			base = rn->rn_dupedkey;
    998   1.6   mycroft 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
    999  1.37    dyoung 				return error;
   1000   1.6   mycroft 		}
   1001   1.6   mycroft 		rn = next;
   1002   1.6   mycroft 		if (rn->rn_flags & RNF_ROOT)
   1003  1.37    dyoung 			return 0;
   1004   1.6   mycroft 	}
   1005   1.6   mycroft 	/* NOTREACHED */
   1006   1.6   mycroft }
   1007   1.6   mycroft 
   1008  1.46     ozaki struct radix_node *
   1009  1.46     ozaki rn_search_matched(struct radix_node_head *h,
   1010  1.46     ozaki     int (*matcher)(struct radix_node *, void *), void *w)
   1011  1.46     ozaki {
   1012  1.46     ozaki 	bool matched;
   1013  1.46     ozaki 	struct radix_node *base, *next, *rn;
   1014  1.46     ozaki 	/*
   1015  1.46     ozaki 	 * This gets complicated because we may delete the node
   1016  1.46     ozaki 	 * while applying the function f to it, so we need to calculate
   1017  1.46     ozaki 	 * the successor node in advance.
   1018  1.46     ozaki 	 */
   1019  1.46     ozaki 	rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
   1020  1.46     ozaki 	for (;;) {
   1021  1.46     ozaki 		base = rn;
   1022  1.46     ozaki 		next = rn_walknext(rn, NULL, NULL);
   1023  1.46     ozaki 		/* Process leaves */
   1024  1.46     ozaki 		while ((rn = base) != NULL) {
   1025  1.46     ozaki 			base = rn->rn_dupedkey;
   1026  1.46     ozaki 			if (!(rn->rn_flags & RNF_ROOT)) {
   1027  1.46     ozaki 				matched = (*matcher)(rn, w);
   1028  1.46     ozaki 				if (matched)
   1029  1.46     ozaki 					return rn;
   1030  1.46     ozaki 			}
   1031  1.46     ozaki 		}
   1032  1.46     ozaki 		rn = next;
   1033  1.46     ozaki 		if (rn->rn_flags & RNF_ROOT)
   1034  1.46     ozaki 			return NULL;
   1035  1.46     ozaki 	}
   1036  1.46     ozaki 	/* NOTREACHED */
   1037  1.46     ozaki }
   1038  1.46     ozaki 
   1039  1.43     pooka struct delayinit {
   1040  1.43     pooka 	void **head;
   1041  1.43     pooka 	int off;
   1042  1.43     pooka 	SLIST_ENTRY(delayinit) entries;
   1043  1.43     pooka };
   1044  1.43     pooka static SLIST_HEAD(, delayinit) delayinits = SLIST_HEAD_INITIALIZER(delayheads);
   1045  1.43     pooka static int radix_initialized;
   1046  1.43     pooka 
   1047  1.43     pooka /*
   1048  1.43     pooka  * Initialize a radix tree once radix is initialized.  Only for bootstrap.
   1049  1.43     pooka  * Assume that no concurrency protection is necessary at this stage.
   1050  1.43     pooka  */
   1051  1.43     pooka void
   1052  1.43     pooka rn_delayedinit(void **head, int off)
   1053  1.43     pooka {
   1054  1.43     pooka 	struct delayinit *di;
   1055  1.43     pooka 
   1056  1.47     ozaki 	if (radix_initialized)
   1057  1.47     ozaki 		return;
   1058  1.43     pooka 
   1059  1.43     pooka 	di = kmem_alloc(sizeof(*di), KM_SLEEP);
   1060  1.43     pooka 	di->head = head;
   1061  1.43     pooka 	di->off = off;
   1062  1.43     pooka 	SLIST_INSERT_HEAD(&delayinits, di, entries);
   1063  1.43     pooka }
   1064  1.43     pooka 
   1065   1.6   mycroft int
   1066  1.41       dsl rn_inithead(void **head, int off)
   1067   1.1       cgd {
   1068  1.14  augustss 	struct radix_node_head *rnh;
   1069  1.15    itojun 
   1070  1.37    dyoung 	if (*head != NULL)
   1071  1.37    dyoung 		return 1;
   1072   1.1       cgd 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
   1073  1.37    dyoung 	if (rnh == NULL)
   1074  1.37    dyoung 		return 0;
   1075  1.15    itojun 	*head = rnh;
   1076  1.15    itojun 	return rn_inithead0(rnh, off);
   1077  1.15    itojun }
   1078  1.15    itojun 
   1079  1.15    itojun int
   1080  1.41       dsl rn_inithead0(struct radix_node_head *rnh, int off)
   1081  1.15    itojun {
   1082  1.23      matt 	struct radix_node *t;
   1083  1.23      matt 	struct radix_node *tt;
   1084  1.23      matt 	struct radix_node *ttt;
   1085  1.15    itojun 
   1086  1.39    dyoung 	memset(rnh, 0, sizeof(*rnh));
   1087   1.1       cgd 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
   1088   1.1       cgd 	ttt = rnh->rnh_nodes + 2;
   1089   1.1       cgd 	t->rn_r = ttt;
   1090   1.1       cgd 	t->rn_p = t;
   1091   1.1       cgd 	tt = t->rn_l;
   1092   1.1       cgd 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
   1093   1.1       cgd 	tt->rn_b = -1 - off;
   1094   1.1       cgd 	*ttt = *tt;
   1095   1.1       cgd 	ttt->rn_key = rn_ones;
   1096   1.6   mycroft 	rnh->rnh_addaddr = rn_addroute;
   1097   1.6   mycroft 	rnh->rnh_deladdr = rn_delete;
   1098   1.6   mycroft 	rnh->rnh_matchaddr = rn_match;
   1099   1.9   mycroft 	rnh->rnh_lookup = rn_lookup;
   1100   1.1       cgd 	rnh->rnh_treetop = t;
   1101  1.37    dyoung 	return 1;
   1102   1.6   mycroft }
   1103   1.6   mycroft 
   1104   1.6   mycroft void
   1105  1.42    cegger rn_init(void)
   1106   1.6   mycroft {
   1107   1.6   mycroft 	char *cp, *cplim;
   1108  1.43     pooka 	struct delayinit *di;
   1109   1.8       jtc #ifdef _KERNEL
   1110  1.43     pooka 	struct domain *dp;
   1111   1.6   mycroft 
   1112  1.43     pooka 	if (radix_initialized)
   1113  1.43     pooka 		panic("radix already initialized");
   1114  1.43     pooka 	radix_initialized = 1;
   1115  1.43     pooka 
   1116  1.43     pooka 	DOMAIN_FOREACH(dp) {
   1117  1.43     pooka 		if (dp->dom_maxrtkey > max_keylen)
   1118  1.43     pooka 			max_keylen = dp->dom_maxrtkey;
   1119  1.27     enami 	}
   1120  1.25  christos #endif
   1121   1.6   mycroft 	if (max_keylen == 0) {
   1122  1.49      gson #ifndef _KERNEL
   1123   1.9   mycroft 		log(LOG_ERR,
   1124   1.9   mycroft 		    "rn_init: radix functions require max_keylen be set\n");
   1125  1.49      gson #endif
   1126   1.6   mycroft 		return;
   1127   1.6   mycroft 	}
   1128  1.43     pooka 
   1129   1.6   mycroft 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
   1130   1.6   mycroft 	if (rn_zeros == NULL)
   1131   1.6   mycroft 		panic("rn_init");
   1132  1.39    dyoung 	memset(rn_zeros, 0, 3 * max_keylen);
   1133   1.6   mycroft 	rn_ones = cp = rn_zeros + max_keylen;
   1134   1.9   mycroft 	addmask_key = cplim = rn_ones + max_keylen;
   1135   1.6   mycroft 	while (cp < cplim)
   1136   1.6   mycroft 		*cp++ = -1;
   1137  1.19   thorpej 	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
   1138   1.6   mycroft 		panic("rn_init 2");
   1139  1.43     pooka 
   1140  1.43     pooka 	while ((di = SLIST_FIRST(&delayinits)) != NULL) {
   1141  1.43     pooka 		if (!rn_inithead(di->head, di->off))
   1142  1.43     pooka 			panic("delayed rn_inithead failed");
   1143  1.43     pooka 		SLIST_REMOVE_HEAD(&delayinits, entries);
   1144  1.43     pooka 		kmem_free(di, sizeof(*di));
   1145  1.43     pooka 	}
   1146   1.1       cgd }
   1147