radix.c revision 1.21 1 1.21 matt /* $NetBSD: radix.c,v 1.21 2004/04/21 04:17:28 matt Exp $ */
2 1.7 cgd
3 1.1 cgd /*
4 1.6 mycroft * Copyright (c) 1988, 1989, 1993
5 1.6 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.20 agc * 3. Neither the name of the University nor the names of its contributors
16 1.1 cgd * may be used to endorse or promote products derived from this software
17 1.1 cgd * without specific prior written permission.
18 1.1 cgd *
19 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 cgd * SUCH DAMAGE.
30 1.1 cgd *
31 1.13 fvdl * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 1.1 cgd */
33 1.1 cgd
34 1.1 cgd /*
35 1.1 cgd * Routines to build and maintain radix trees for routing lookups.
36 1.1 cgd */
37 1.18 lukem
38 1.18 lukem #include <sys/cdefs.h>
39 1.21 matt __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.21 2004/04/21 04:17:28 matt Exp $");
40 1.18 lukem
41 1.12 christos #ifndef _NET_RADIX_H_
42 1.4 mycroft #include <sys/param.h>
43 1.12 christos #ifdef _KERNEL
44 1.4 mycroft #include <sys/systm.h>
45 1.4 mycroft #include <sys/malloc.h>
46 1.1 cgd #define M_DONTWAIT M_NOWAIT
47 1.6 mycroft #include <sys/domain.h>
48 1.9 mycroft #else
49 1.9 mycroft #include <stdlib.h>
50 1.6 mycroft #endif
51 1.9 mycroft #include <sys/syslog.h>
52 1.4 mycroft #include <net/radix.h>
53 1.12 christos #endif
54 1.6 mycroft
55 1.6 mycroft int max_keylen;
56 1.6 mycroft struct radix_mask *rn_mkfreelist;
57 1.1 cgd struct radix_node_head *mask_rnhead;
58 1.9 mycroft static char *addmask_key;
59 1.21 matt static const char normal_chars[] =
60 1.21 matt {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
61 1.6 mycroft static char *rn_zeros, *rn_ones;
62 1.6 mycroft
63 1.6 mycroft #define rn_masktop (mask_rnhead->rnh_treetop)
64 1.1 cgd #undef Bcmp
65 1.1 cgd #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
66 1.10 christos
67 1.21 matt static int rn_satisfies_leaf __P((const char *, struct radix_node *, int));
68 1.21 matt static int rn_lexobetter __P((const void *, const void *));
69 1.10 christos static struct radix_mask *rn_new_radix_mask __P((struct radix_node *,
70 1.12 christos struct radix_mask *));
71 1.12 christos
72 1.1 cgd /*
73 1.1 cgd * The data structure for the keys is a radix tree with one way
74 1.1 cgd * branching removed. The index rn_b at an internal node n represents a bit
75 1.1 cgd * position to be tested. The tree is arranged so that all descendants
76 1.1 cgd * of a node n have keys whose bits all agree up to position rn_b - 1.
77 1.1 cgd * (We say the index of n is rn_b.)
78 1.1 cgd *
79 1.1 cgd * There is at least one descendant which has a one bit at position rn_b,
80 1.1 cgd * and at least one with a zero there.
81 1.1 cgd *
82 1.1 cgd * A route is determined by a pair of key and mask. We require that the
83 1.1 cgd * bit-wise logical and of the key and mask to be the key.
84 1.1 cgd * We define the index of a route to associated with the mask to be
85 1.1 cgd * the first bit number in the mask where 0 occurs (with bit number 0
86 1.1 cgd * representing the highest order bit).
87 1.1 cgd *
88 1.1 cgd * We say a mask is normal if every bit is 0, past the index of the mask.
89 1.1 cgd * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
90 1.1 cgd * and m is a normal mask, then the route applies to every descendant of n.
91 1.1 cgd * If the index(m) < rn_b, this implies the trailing last few bits of k
92 1.1 cgd * before bit b are all 0, (and hence consequently true of every descendant
93 1.1 cgd * of n), so the route applies to all descendants of the node as well.
94 1.9 mycroft *
95 1.9 mycroft * Similar logic shows that a non-normal mask m such that
96 1.1 cgd * index(m) <= index(n) could potentially apply to many children of n.
97 1.1 cgd * Thus, for each non-host route, we attach its mask to a list at an internal
98 1.1 cgd * node as high in the tree as we can go.
99 1.9 mycroft *
100 1.9 mycroft * The present version of the code makes use of normal routes in short-
101 1.9 mycroft * circuiting an explict mask and compare operation when testing whether
102 1.9 mycroft * a key satisfies a normal route, and also in remembering the unique leaf
103 1.9 mycroft * that governs a subtree.
104 1.1 cgd */
105 1.1 cgd
106 1.1 cgd struct radix_node *
107 1.6 mycroft rn_search(v_arg, head)
108 1.21 matt const void *v_arg;
109 1.1 cgd struct radix_node *head;
110 1.1 cgd {
111 1.21 matt const u_char * const v = v_arg;
112 1.14 augustss struct radix_node *x;
113 1.1 cgd
114 1.21 matt for (x = head; x->rn_b >= 0;) {
115 1.1 cgd if (x->rn_bmask & v[x->rn_off])
116 1.1 cgd x = x->rn_r;
117 1.1 cgd else
118 1.1 cgd x = x->rn_l;
119 1.1 cgd }
120 1.6 mycroft return (x);
121 1.13 fvdl }
122 1.1 cgd
123 1.1 cgd struct radix_node *
124 1.6 mycroft rn_search_m(v_arg, head, m_arg)
125 1.1 cgd struct radix_node *head;
126 1.21 matt const void *v_arg, *m_arg;
127 1.1 cgd {
128 1.14 augustss struct radix_node *x;
129 1.21 matt const u_char * const v = v_arg;
130 1.21 matt const u_char * const m = m_arg;
131 1.1 cgd
132 1.1 cgd for (x = head; x->rn_b >= 0;) {
133 1.1 cgd if ((x->rn_bmask & m[x->rn_off]) &&
134 1.1 cgd (x->rn_bmask & v[x->rn_off]))
135 1.1 cgd x = x->rn_r;
136 1.1 cgd else
137 1.1 cgd x = x->rn_l;
138 1.1 cgd }
139 1.1 cgd return x;
140 1.13 fvdl }
141 1.1 cgd
142 1.6 mycroft int
143 1.6 mycroft rn_refines(m_arg, n_arg)
144 1.21 matt const void *m_arg, *n_arg;
145 1.6 mycroft {
146 1.21 matt const char *m = m_arg;
147 1.21 matt const char *n = n_arg;
148 1.21 matt const char *lim = n + *(u_char *)n;
149 1.21 matt const char *lim2 = lim;
150 1.6 mycroft int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
151 1.6 mycroft int masks_are_equal = 1;
152 1.6 mycroft
153 1.6 mycroft if (longer > 0)
154 1.6 mycroft lim -= longer;
155 1.6 mycroft while (n < lim) {
156 1.6 mycroft if (*n & ~(*m))
157 1.6 mycroft return 0;
158 1.6 mycroft if (*n++ != *m++)
159 1.6 mycroft masks_are_equal = 0;
160 1.6 mycroft }
161 1.6 mycroft while (n < lim2)
162 1.6 mycroft if (*n++)
163 1.6 mycroft return 0;
164 1.6 mycroft if (masks_are_equal && (longer < 0))
165 1.6 mycroft for (lim2 = m - longer; m < lim2; )
166 1.6 mycroft if (*m++)
167 1.6 mycroft return 1;
168 1.6 mycroft return (!masks_are_equal);
169 1.6 mycroft }
170 1.1 cgd
171 1.9 mycroft struct radix_node *
172 1.9 mycroft rn_lookup(v_arg, m_arg, head)
173 1.21 matt const void *v_arg, *m_arg;
174 1.9 mycroft struct radix_node_head *head;
175 1.9 mycroft {
176 1.14 augustss struct radix_node *x;
177 1.21 matt const char *netmask = NULL;
178 1.9 mycroft
179 1.9 mycroft if (m_arg) {
180 1.9 mycroft if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
181 1.9 mycroft return (0);
182 1.9 mycroft netmask = x->rn_key;
183 1.9 mycroft }
184 1.9 mycroft x = rn_match(v_arg, head);
185 1.9 mycroft if (x && netmask) {
186 1.9 mycroft while (x && x->rn_mask != netmask)
187 1.9 mycroft x = x->rn_dupedkey;
188 1.9 mycroft }
189 1.9 mycroft return x;
190 1.9 mycroft }
191 1.9 mycroft
192 1.10 christos static int
193 1.15 itojun rn_satisfies_leaf(trial, leaf, skip)
194 1.21 matt const char *trial;
195 1.14 augustss struct radix_node *leaf;
196 1.9 mycroft int skip;
197 1.9 mycroft {
198 1.21 matt const char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
199 1.21 matt const char *cplim;
200 1.9 mycroft int length = min(*(u_char *)cp, *(u_char *)cp2);
201 1.9 mycroft
202 1.9 mycroft if (cp3 == 0)
203 1.9 mycroft cp3 = rn_ones;
204 1.9 mycroft else
205 1.9 mycroft length = min(length, *(u_char *)cp3);
206 1.9 mycroft cplim = cp + length; cp3 += skip; cp2 += skip;
207 1.9 mycroft for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
208 1.9 mycroft if ((*cp ^ *cp2) & *cp3)
209 1.9 mycroft return 0;
210 1.9 mycroft return 1;
211 1.9 mycroft }
212 1.1 cgd
213 1.1 cgd struct radix_node *
214 1.6 mycroft rn_match(v_arg, head)
215 1.21 matt const void *v_arg;
216 1.6 mycroft struct radix_node_head *head;
217 1.1 cgd {
218 1.21 matt const char * const v = v_arg;
219 1.14 augustss struct radix_node *t = head->rnh_treetop, *x;
220 1.21 matt const char *cp = v;
221 1.21 matt const char *cp2;
222 1.21 matt const char *cplim;
223 1.6 mycroft struct radix_node *saved_t, *top = t;
224 1.1 cgd int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
225 1.14 augustss int test, b, rn_b;
226 1.1 cgd
227 1.1 cgd /*
228 1.6 mycroft * Open code rn_search(v, top) to avoid overhead of extra
229 1.1 cgd * subroutine call.
230 1.1 cgd */
231 1.1 cgd for (; t->rn_b >= 0; ) {
232 1.1 cgd if (t->rn_bmask & cp[t->rn_off])
233 1.1 cgd t = t->rn_r;
234 1.1 cgd else
235 1.1 cgd t = t->rn_l;
236 1.1 cgd }
237 1.1 cgd /*
238 1.1 cgd * See if we match exactly as a host destination
239 1.9 mycroft * or at least learn how many bits match, for normal mask finesse.
240 1.9 mycroft *
241 1.9 mycroft * It doesn't hurt us to limit how many bytes to check
242 1.9 mycroft * to the length of the mask, since if it matches we had a genuine
243 1.9 mycroft * match and the leaf we have is the most specific one anyway;
244 1.9 mycroft * if it didn't match with a shorter length it would fail
245 1.9 mycroft * with a long one. This wins big for class B&C netmasks which
246 1.9 mycroft * are probably the most common case...
247 1.1 cgd */
248 1.9 mycroft if (t->rn_mask)
249 1.9 mycroft vlen = *(u_char *)t->rn_mask;
250 1.1 cgd cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
251 1.1 cgd for (; cp < cplim; cp++, cp2++)
252 1.1 cgd if (*cp != *cp2)
253 1.1 cgd goto on1;
254 1.1 cgd /*
255 1.1 cgd * This extra grot is in case we are explicitly asked
256 1.1 cgd * to look up the default. Ugh!
257 1.1 cgd */
258 1.1 cgd if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
259 1.1 cgd t = t->rn_dupedkey;
260 1.1 cgd return t;
261 1.1 cgd on1:
262 1.9 mycroft test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
263 1.9 mycroft for (b = 7; (test >>= 1) > 0;)
264 1.9 mycroft b--;
265 1.1 cgd matched_off = cp - v;
266 1.9 mycroft b += matched_off << 3;
267 1.9 mycroft rn_b = -1 - b;
268 1.9 mycroft /*
269 1.9 mycroft * If there is a host route in a duped-key chain, it will be first.
270 1.9 mycroft */
271 1.9 mycroft if ((saved_t = t)->rn_mask == 0)
272 1.9 mycroft t = t->rn_dupedkey;
273 1.9 mycroft for (; t; t = t->rn_dupedkey)
274 1.1 cgd /*
275 1.9 mycroft * Even if we don't match exactly as a host,
276 1.1 cgd * we may match if the leaf we wound up at is
277 1.1 cgd * a route to a net.
278 1.1 cgd */
279 1.9 mycroft if (t->rn_flags & RNF_NORMAL) {
280 1.9 mycroft if (rn_b <= t->rn_b)
281 1.9 mycroft return t;
282 1.15 itojun } else if (rn_satisfies_leaf(v, t, matched_off))
283 1.9 mycroft return t;
284 1.1 cgd t = saved_t;
285 1.1 cgd /* start searching up the tree */
286 1.1 cgd do {
287 1.14 augustss struct radix_mask *m;
288 1.1 cgd t = t->rn_p;
289 1.12 christos m = t->rn_mklist;
290 1.12 christos if (m) {
291 1.1 cgd /*
292 1.9 mycroft * If non-contiguous masks ever become important
293 1.9 mycroft * we can restore the masking and open coding of
294 1.9 mycroft * the search and satisfaction test and put the
295 1.9 mycroft * calculation of "off" back before the "do".
296 1.1 cgd */
297 1.1 cgd do {
298 1.9 mycroft if (m->rm_flags & RNF_NORMAL) {
299 1.9 mycroft if (rn_b <= m->rm_b)
300 1.9 mycroft return (m->rm_leaf);
301 1.9 mycroft } else {
302 1.9 mycroft off = min(t->rn_off, matched_off);
303 1.9 mycroft x = rn_search_m(v, t, m->rm_mask);
304 1.9 mycroft while (x && x->rn_mask != m->rm_mask)
305 1.9 mycroft x = x->rn_dupedkey;
306 1.15 itojun if (x && rn_satisfies_leaf(v, x, off))
307 1.17 itojun return x;
308 1.9 mycroft }
309 1.15 itojun m = m->rm_mklist;
310 1.12 christos } while (m);
311 1.1 cgd }
312 1.6 mycroft } while (t != top);
313 1.1 cgd return 0;
314 1.13 fvdl }
315 1.1 cgd
316 1.1 cgd #ifdef RN_DEBUG
317 1.1 cgd int rn_nodenum;
318 1.1 cgd struct radix_node *rn_clist;
319 1.1 cgd int rn_saveinfo;
320 1.6 mycroft int rn_debug = 1;
321 1.1 cgd #endif
322 1.1 cgd
323 1.1 cgd struct radix_node *
324 1.1 cgd rn_newpair(v, b, nodes)
325 1.21 matt const void *v;
326 1.6 mycroft int b;
327 1.1 cgd struct radix_node nodes[2];
328 1.1 cgd {
329 1.14 augustss struct radix_node *tt = nodes, *t = tt + 1;
330 1.1 cgd t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
331 1.1 cgd t->rn_l = tt; t->rn_off = b >> 3;
332 1.21 matt tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
333 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ACTIVE;
334 1.1 cgd #ifdef RN_DEBUG
335 1.1 cgd tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
336 1.1 cgd tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
337 1.1 cgd #endif
338 1.1 cgd return t;
339 1.1 cgd }
340 1.1 cgd
341 1.1 cgd struct radix_node *
342 1.6 mycroft rn_insert(v_arg, head, dupentry, nodes)
343 1.21 matt const void *v_arg;
344 1.6 mycroft struct radix_node_head *head;
345 1.1 cgd int *dupentry;
346 1.1 cgd struct radix_node nodes[2];
347 1.1 cgd {
348 1.21 matt const char *v = v_arg;
349 1.6 mycroft struct radix_node *top = head->rnh_treetop;
350 1.14 augustss struct radix_node *t = rn_search(v_arg, top);
351 1.21 matt int head_off = top->rn_off;
352 1.21 matt int vlen = *((u_char *)v);
353 1.21 matt const char *cp = v + head_off;
354 1.14 augustss int b;
355 1.1 cgd struct radix_node *tt;
356 1.1 cgd /*
357 1.9 mycroft * Find first bit at which v and t->rn_key differ
358 1.1 cgd */
359 1.1 cgd {
360 1.21 matt const char *cp2 = t->rn_key + head_off;
361 1.21 matt const char *cplim = v + vlen;
362 1.14 augustss int cmp_res;
363 1.1 cgd
364 1.1 cgd while (cp < cplim)
365 1.1 cgd if (*cp2++ != *cp++)
366 1.1 cgd goto on1;
367 1.1 cgd *dupentry = 1;
368 1.1 cgd return t;
369 1.1 cgd on1:
370 1.1 cgd *dupentry = 0;
371 1.1 cgd cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
372 1.1 cgd for (b = (cp - v) << 3; cmp_res; b--)
373 1.1 cgd cmp_res >>= 1;
374 1.1 cgd }
375 1.1 cgd {
376 1.14 augustss struct radix_node *p, *x = top;
377 1.1 cgd cp = v;
378 1.1 cgd do {
379 1.1 cgd p = x;
380 1.1 cgd if (cp[x->rn_off] & x->rn_bmask)
381 1.1 cgd x = x->rn_r;
382 1.1 cgd else x = x->rn_l;
383 1.1 cgd } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
384 1.1 cgd #ifdef RN_DEBUG
385 1.1 cgd if (rn_debug)
386 1.9 mycroft log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
387 1.1 cgd #endif
388 1.6 mycroft t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
389 1.1 cgd if ((cp[p->rn_off] & p->rn_bmask) == 0)
390 1.1 cgd p->rn_l = t;
391 1.1 cgd else
392 1.1 cgd p->rn_r = t;
393 1.1 cgd x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
394 1.1 cgd if ((cp[t->rn_off] & t->rn_bmask) == 0) {
395 1.1 cgd t->rn_r = x;
396 1.1 cgd } else {
397 1.1 cgd t->rn_r = tt; t->rn_l = x;
398 1.1 cgd }
399 1.1 cgd #ifdef RN_DEBUG
400 1.1 cgd if (rn_debug)
401 1.9 mycroft log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
402 1.1 cgd #endif
403 1.1 cgd }
404 1.1 cgd return (tt);
405 1.1 cgd }
406 1.1 cgd
407 1.1 cgd struct radix_node *
408 1.6 mycroft rn_addmask(n_arg, search, skip)
409 1.6 mycroft int search, skip;
410 1.21 matt const void *n_arg;
411 1.1 cgd {
412 1.21 matt const char *netmask = n_arg;
413 1.14 augustss struct radix_node *x;
414 1.21 matt const char *cp;
415 1.21 matt const char *cplim;
416 1.14 augustss int b = 0, mlen, j;
417 1.9 mycroft int maskduplicated, m0, isnormal;
418 1.9 mycroft struct radix_node *saved_x;
419 1.9 mycroft static int last_zeroed = 0;
420 1.9 mycroft
421 1.9 mycroft if ((mlen = *(u_char *)netmask) > max_keylen)
422 1.9 mycroft mlen = max_keylen;
423 1.9 mycroft if (skip == 0)
424 1.9 mycroft skip = 1;
425 1.9 mycroft if (mlen <= skip)
426 1.9 mycroft return (mask_rnhead->rnh_nodes);
427 1.9 mycroft if (skip > 1)
428 1.9 mycroft Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
429 1.9 mycroft if ((m0 = mlen) > skip)
430 1.9 mycroft Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
431 1.9 mycroft /*
432 1.9 mycroft * Trim trailing zeroes.
433 1.9 mycroft */
434 1.9 mycroft for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
435 1.9 mycroft cp--;
436 1.9 mycroft mlen = cp - addmask_key;
437 1.9 mycroft if (mlen <= skip) {
438 1.9 mycroft if (m0 >= last_zeroed)
439 1.9 mycroft last_zeroed = mlen;
440 1.9 mycroft return (mask_rnhead->rnh_nodes);
441 1.9 mycroft }
442 1.9 mycroft if (m0 < last_zeroed)
443 1.9 mycroft Bzero(addmask_key + m0, last_zeroed - m0);
444 1.9 mycroft *addmask_key = last_zeroed = mlen;
445 1.9 mycroft x = rn_search(addmask_key, rn_masktop);
446 1.9 mycroft if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
447 1.9 mycroft x = 0;
448 1.9 mycroft if (x || search)
449 1.9 mycroft return (x);
450 1.6 mycroft R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
451 1.9 mycroft if ((saved_x = x) == 0)
452 1.1 cgd return (0);
453 1.6 mycroft Bzero(x, max_keylen + 2 * sizeof (*x));
454 1.21 matt netmask = (caddr_t)(x + 2);
455 1.21 matt Bcopy(addmask_key, (caddr_t)(x + 2), mlen);
456 1.9 mycroft x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
457 1.9 mycroft if (maskduplicated) {
458 1.16 enami log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
459 1.9 mycroft Free(saved_x);
460 1.9 mycroft return (x);
461 1.9 mycroft }
462 1.9 mycroft /*
463 1.9 mycroft * Calculate index of mask, and check for normalcy.
464 1.9 mycroft */
465 1.9 mycroft cplim = netmask + mlen; isnormal = 1;
466 1.9 mycroft for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
467 1.9 mycroft cp++;
468 1.1 cgd if (cp != cplim) {
469 1.9 mycroft for (j = 0x80; (j & *cp) != 0; j >>= 1)
470 1.9 mycroft b++;
471 1.9 mycroft if (*cp != normal_chars[b] || cp != (cplim - 1))
472 1.9 mycroft isnormal = 0;
473 1.1 cgd }
474 1.9 mycroft b += (cp - netmask) << 3;
475 1.1 cgd x->rn_b = -1 - b;
476 1.9 mycroft if (isnormal)
477 1.9 mycroft x->rn_flags |= RNF_NORMAL;
478 1.1 cgd return (x);
479 1.1 cgd }
480 1.1 cgd
481 1.9 mycroft static int /* XXX: arbitrary ordering for non-contiguous masks */
482 1.9 mycroft rn_lexobetter(m_arg, n_arg)
483 1.21 matt const void *m_arg, *n_arg;
484 1.9 mycroft {
485 1.21 matt const u_char *mp = m_arg, *np = n_arg, *lim;
486 1.9 mycroft
487 1.9 mycroft if (*mp > *np)
488 1.9 mycroft return 1; /* not really, but need to check longer one first */
489 1.9 mycroft if (*mp == *np)
490 1.9 mycroft for (lim = mp + *mp; mp < lim;)
491 1.9 mycroft if (*mp++ > *np++)
492 1.9 mycroft return 1;
493 1.9 mycroft return 0;
494 1.9 mycroft }
495 1.9 mycroft
496 1.9 mycroft static struct radix_mask *
497 1.9 mycroft rn_new_radix_mask(tt, next)
498 1.14 augustss struct radix_node *tt;
499 1.14 augustss struct radix_mask *next;
500 1.9 mycroft {
501 1.14 augustss struct radix_mask *m;
502 1.9 mycroft
503 1.9 mycroft MKGet(m);
504 1.9 mycroft if (m == 0) {
505 1.9 mycroft log(LOG_ERR, "Mask for route not entered\n");
506 1.9 mycroft return (0);
507 1.9 mycroft }
508 1.9 mycroft Bzero(m, sizeof *m);
509 1.9 mycroft m->rm_b = tt->rn_b;
510 1.9 mycroft m->rm_flags = tt->rn_flags;
511 1.9 mycroft if (tt->rn_flags & RNF_NORMAL)
512 1.9 mycroft m->rm_leaf = tt;
513 1.9 mycroft else
514 1.9 mycroft m->rm_mask = tt->rn_mask;
515 1.9 mycroft m->rm_mklist = next;
516 1.9 mycroft tt->rn_mklist = m;
517 1.9 mycroft return m;
518 1.9 mycroft }
519 1.9 mycroft
520 1.1 cgd struct radix_node *
521 1.6 mycroft rn_addroute(v_arg, n_arg, head, treenodes)
522 1.21 matt const void *v_arg, *n_arg;
523 1.6 mycroft struct radix_node_head *head;
524 1.1 cgd struct radix_node treenodes[2];
525 1.1 cgd {
526 1.21 matt const char *v = v_arg;
527 1.21 matt const char *netmask = n_arg;
528 1.14 augustss struct radix_node *t, *x = 0, *tt;
529 1.6 mycroft struct radix_node *saved_tt, *top = head->rnh_treetop;
530 1.10 christos short b = 0, b_leaf = 0;
531 1.9 mycroft int keyduplicated;
532 1.21 matt const char *mmask;
533 1.1 cgd struct radix_mask *m, **mp;
534 1.1 cgd
535 1.1 cgd /*
536 1.1 cgd * In dealing with non-contiguous masks, there may be
537 1.1 cgd * many different routes which have the same mask.
538 1.1 cgd * We will find it useful to have a unique pointer to
539 1.1 cgd * the mask to speed avoiding duplicate references at
540 1.1 cgd * nodes and possibly save time in calculating indices.
541 1.1 cgd */
542 1.1 cgd if (netmask) {
543 1.9 mycroft if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
544 1.9 mycroft return (0);
545 1.9 mycroft b_leaf = x->rn_b;
546 1.9 mycroft b = -1 - x->rn_b;
547 1.1 cgd netmask = x->rn_key;
548 1.1 cgd }
549 1.1 cgd /*
550 1.1 cgd * Deal with duplicated keys: attach node to previous instance
551 1.1 cgd */
552 1.1 cgd saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
553 1.1 cgd if (keyduplicated) {
554 1.9 mycroft for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
555 1.1 cgd if (tt->rn_mask == netmask)
556 1.1 cgd return (0);
557 1.6 mycroft if (netmask == 0 ||
558 1.9 mycroft (tt->rn_mask &&
559 1.9 mycroft ((b_leaf < tt->rn_b) || /* index(netmask) > node */
560 1.9 mycroft rn_refines(netmask, tt->rn_mask) ||
561 1.9 mycroft rn_lexobetter(netmask, tt->rn_mask))))
562 1.6 mycroft break;
563 1.9 mycroft }
564 1.1 cgd /*
565 1.1 cgd * If the mask is not duplicated, we wouldn't
566 1.1 cgd * find it among possible duplicate key entries
567 1.1 cgd * anyway, so the above test doesn't hurt.
568 1.1 cgd *
569 1.6 mycroft * We sort the masks for a duplicated key the same way as
570 1.6 mycroft * in a masklist -- most specific to least specific.
571 1.6 mycroft * This may require the unfortunate nuisance of relocating
572 1.1 cgd * the head of the list.
573 1.12 christos *
574 1.12 christos * We also reverse, or doubly link the list through the
575 1.12 christos * parent pointer.
576 1.1 cgd */
577 1.9 mycroft if (tt == saved_tt) {
578 1.6 mycroft struct radix_node *xx = x;
579 1.6 mycroft /* link in at head of list */
580 1.6 mycroft (tt = treenodes)->rn_dupedkey = t;
581 1.6 mycroft tt->rn_flags = t->rn_flags;
582 1.6 mycroft tt->rn_p = x = t->rn_p;
583 1.12 christos t->rn_p = tt;
584 1.6 mycroft if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
585 1.6 mycroft saved_tt = tt; x = xx;
586 1.6 mycroft } else {
587 1.6 mycroft (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
588 1.6 mycroft t->rn_dupedkey = tt;
589 1.12 christos tt->rn_p = t;
590 1.12 christos if (tt->rn_dupedkey)
591 1.12 christos tt->rn_dupedkey->rn_p = tt;
592 1.6 mycroft }
593 1.1 cgd #ifdef RN_DEBUG
594 1.1 cgd t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
595 1.1 cgd tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
596 1.1 cgd #endif
597 1.1 cgd tt->rn_key = (caddr_t) v;
598 1.1 cgd tt->rn_b = -1;
599 1.9 mycroft tt->rn_flags = RNF_ACTIVE;
600 1.1 cgd }
601 1.1 cgd /*
602 1.1 cgd * Put mask in tree.
603 1.1 cgd */
604 1.1 cgd if (netmask) {
605 1.1 cgd tt->rn_mask = netmask;
606 1.1 cgd tt->rn_b = x->rn_b;
607 1.9 mycroft tt->rn_flags |= x->rn_flags & RNF_NORMAL;
608 1.1 cgd }
609 1.1 cgd t = saved_tt->rn_p;
610 1.9 mycroft if (keyduplicated)
611 1.9 mycroft goto on2;
612 1.1 cgd b_leaf = -1 - t->rn_b;
613 1.1 cgd if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
614 1.1 cgd /* Promote general routes from below */
615 1.1 cgd if (x->rn_b < 0) {
616 1.9 mycroft for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
617 1.1 cgd if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
618 1.10 christos *mp = m = rn_new_radix_mask(x, 0);
619 1.10 christos if (m)
620 1.9 mycroft mp = &m->rm_mklist;
621 1.1 cgd }
622 1.1 cgd } else if (x->rn_mklist) {
623 1.1 cgd /*
624 1.1 cgd * Skip over masks whose index is > that of new node
625 1.1 cgd */
626 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
627 1.1 cgd if (m->rm_b >= b_leaf)
628 1.1 cgd break;
629 1.1 cgd t->rn_mklist = m; *mp = 0;
630 1.1 cgd }
631 1.9 mycroft on2:
632 1.1 cgd /* Add new route to highest possible ancestor's list */
633 1.1 cgd if ((netmask == 0) || (b > t->rn_b ))
634 1.1 cgd return tt; /* can't lift at all */
635 1.1 cgd b_leaf = tt->rn_b;
636 1.1 cgd do {
637 1.1 cgd x = t;
638 1.1 cgd t = t->rn_p;
639 1.6 mycroft } while (b <= t->rn_b && x != top);
640 1.1 cgd /*
641 1.1 cgd * Search through routes associated with node to
642 1.1 cgd * insert new route according to index.
643 1.9 mycroft * Need same criteria as when sorting dupedkeys to avoid
644 1.9 mycroft * double loop on deletion.
645 1.1 cgd */
646 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
647 1.1 cgd if (m->rm_b < b_leaf)
648 1.1 cgd continue;
649 1.1 cgd if (m->rm_b > b_leaf)
650 1.1 cgd break;
651 1.9 mycroft if (m->rm_flags & RNF_NORMAL) {
652 1.9 mycroft mmask = m->rm_leaf->rn_mask;
653 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) {
654 1.16 enami log(LOG_ERR, "Non-unique normal route,"
655 1.16 enami " mask not entered\n");
656 1.9 mycroft return tt;
657 1.9 mycroft }
658 1.9 mycroft } else
659 1.9 mycroft mmask = m->rm_mask;
660 1.9 mycroft if (mmask == netmask) {
661 1.1 cgd m->rm_refs++;
662 1.1 cgd tt->rn_mklist = m;
663 1.1 cgd return tt;
664 1.1 cgd }
665 1.9 mycroft if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
666 1.6 mycroft break;
667 1.1 cgd }
668 1.9 mycroft *mp = rn_new_radix_mask(tt, *mp);
669 1.1 cgd return tt;
670 1.1 cgd }
671 1.1 cgd
672 1.1 cgd struct radix_node *
673 1.6 mycroft rn_delete(v_arg, netmask_arg, head)
674 1.21 matt const void *v_arg, *netmask_arg;
675 1.6 mycroft struct radix_node_head *head;
676 1.1 cgd {
677 1.14 augustss struct radix_node *t, *p, *x, *tt;
678 1.1 cgd struct radix_mask *m, *saved_m, **mp;
679 1.6 mycroft struct radix_node *dupedkey, *saved_tt, *top;
680 1.21 matt const char *v = v_arg;
681 1.21 matt const char *netmask = netmask_arg;
682 1.6 mycroft int b, head_off, vlen;
683 1.1 cgd
684 1.6 mycroft x = head->rnh_treetop;
685 1.6 mycroft tt = rn_search(v, x);
686 1.6 mycroft head_off = x->rn_off;
687 1.6 mycroft vlen = *(u_char *)v;
688 1.6 mycroft saved_tt = tt;
689 1.6 mycroft top = x;
690 1.1 cgd if (tt == 0 ||
691 1.1 cgd Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
692 1.1 cgd return (0);
693 1.1 cgd /*
694 1.1 cgd * Delete our route from mask lists.
695 1.1 cgd */
696 1.9 mycroft if (netmask) {
697 1.9 mycroft if ((x = rn_addmask(netmask, 1, head_off)) == 0)
698 1.9 mycroft return (0);
699 1.9 mycroft netmask = x->rn_key;
700 1.1 cgd while (tt->rn_mask != netmask)
701 1.1 cgd if ((tt = tt->rn_dupedkey) == 0)
702 1.1 cgd return (0);
703 1.1 cgd }
704 1.1 cgd if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
705 1.1 cgd goto on1;
706 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) {
707 1.9 mycroft if (m->rm_leaf != tt || m->rm_refs > 0) {
708 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n");
709 1.9 mycroft return 0; /* dangling ref could cause disaster */
710 1.9 mycroft }
711 1.9 mycroft } else {
712 1.9 mycroft if (m->rm_mask != tt->rn_mask) {
713 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n");
714 1.9 mycroft goto on1;
715 1.9 mycroft }
716 1.9 mycroft if (--m->rm_refs >= 0)
717 1.9 mycroft goto on1;
718 1.1 cgd }
719 1.1 cgd b = -1 - tt->rn_b;
720 1.1 cgd t = saved_tt->rn_p;
721 1.1 cgd if (b > t->rn_b)
722 1.1 cgd goto on1; /* Wasn't lifted at all */
723 1.1 cgd do {
724 1.1 cgd x = t;
725 1.1 cgd t = t->rn_p;
726 1.6 mycroft } while (b <= t->rn_b && x != top);
727 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
728 1.1 cgd if (m == saved_m) {
729 1.1 cgd *mp = m->rm_mklist;
730 1.1 cgd MKFree(m);
731 1.1 cgd break;
732 1.1 cgd }
733 1.9 mycroft if (m == 0) {
734 1.9 mycroft log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
735 1.9 mycroft if (tt->rn_flags & RNF_NORMAL)
736 1.9 mycroft return (0); /* Dangling ref to us */
737 1.9 mycroft }
738 1.1 cgd on1:
739 1.1 cgd /*
740 1.1 cgd * Eliminate us from tree
741 1.1 cgd */
742 1.1 cgd if (tt->rn_flags & RNF_ROOT)
743 1.1 cgd return (0);
744 1.1 cgd #ifdef RN_DEBUG
745 1.1 cgd /* Get us out of the creation list */
746 1.1 cgd for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
747 1.1 cgd if (t) t->rn_ybro = tt->rn_ybro;
748 1.6 mycroft #endif
749 1.1 cgd t = tt->rn_p;
750 1.12 christos dupedkey = saved_tt->rn_dupedkey;
751 1.12 christos if (dupedkey) {
752 1.12 christos /*
753 1.12 christos * Here, tt is the deletion target, and
754 1.12 christos * saved_tt is the head of the dupedkey chain.
755 1.12 christos */
756 1.1 cgd if (tt == saved_tt) {
757 1.1 cgd x = dupedkey; x->rn_p = t;
758 1.1 cgd if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
759 1.6 mycroft } else {
760 1.12 christos /* find node in front of tt on the chain */
761 1.6 mycroft for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
762 1.6 mycroft p = p->rn_dupedkey;
763 1.12 christos if (p) {
764 1.12 christos p->rn_dupedkey = tt->rn_dupedkey;
765 1.12 christos if (tt->rn_dupedkey)
766 1.12 christos tt->rn_dupedkey->rn_p = p;
767 1.12 christos } else log(LOG_ERR, "rn_delete: couldn't find us\n");
768 1.6 mycroft }
769 1.6 mycroft t = tt + 1;
770 1.6 mycroft if (t->rn_flags & RNF_ACTIVE) {
771 1.1 cgd #ifndef RN_DEBUG
772 1.6 mycroft *++x = *t; p = t->rn_p;
773 1.1 cgd #else
774 1.6 mycroft b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
775 1.1 cgd #endif
776 1.1 cgd if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
777 1.1 cgd x->rn_l->rn_p = x; x->rn_r->rn_p = x;
778 1.1 cgd }
779 1.1 cgd goto out;
780 1.1 cgd }
781 1.1 cgd if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
782 1.1 cgd p = t->rn_p;
783 1.1 cgd if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
784 1.1 cgd x->rn_p = p;
785 1.1 cgd /*
786 1.1 cgd * Demote routes attached to us.
787 1.1 cgd */
788 1.1 cgd if (t->rn_mklist) {
789 1.1 cgd if (x->rn_b >= 0) {
790 1.12 christos for (mp = &x->rn_mklist; (m = *mp);)
791 1.1 cgd mp = &m->rm_mklist;
792 1.1 cgd *mp = t->rn_mklist;
793 1.1 cgd } else {
794 1.9 mycroft /* If there are any key,mask pairs in a sibling
795 1.9 mycroft duped-key chain, some subset will appear sorted
796 1.9 mycroft in the same order attached to our mklist */
797 1.9 mycroft for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
798 1.9 mycroft if (m == x->rn_mklist) {
799 1.9 mycroft struct radix_mask *mm = m->rm_mklist;
800 1.1 cgd x->rn_mklist = 0;
801 1.9 mycroft if (--(m->rm_refs) < 0)
802 1.9 mycroft MKFree(m);
803 1.9 mycroft m = mm;
804 1.9 mycroft }
805 1.9 mycroft if (m)
806 1.11 christos log(LOG_ERR, "%s %p at %p\n",
807 1.17 itojun "rn_delete: Orphaned Mask", m, x);
808 1.1 cgd }
809 1.1 cgd }
810 1.1 cgd /*
811 1.1 cgd * We may be holding an active internal node in the tree.
812 1.1 cgd */
813 1.1 cgd x = tt + 1;
814 1.1 cgd if (t != x) {
815 1.1 cgd #ifndef RN_DEBUG
816 1.1 cgd *t = *x;
817 1.1 cgd #else
818 1.1 cgd b = t->rn_info; *t = *x; t->rn_info = b;
819 1.1 cgd #endif
820 1.1 cgd t->rn_l->rn_p = t; t->rn_r->rn_p = t;
821 1.1 cgd p = x->rn_p;
822 1.1 cgd if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
823 1.1 cgd }
824 1.1 cgd out:
825 1.1 cgd tt->rn_flags &= ~RNF_ACTIVE;
826 1.1 cgd tt[1].rn_flags &= ~RNF_ACTIVE;
827 1.1 cgd return (tt);
828 1.1 cgd }
829 1.1 cgd
830 1.6 mycroft int
831 1.6 mycroft rn_walktree(h, f, w)
832 1.6 mycroft struct radix_node_head *h;
833 1.14 augustss int (*f) __P((struct radix_node *, void *));
834 1.6 mycroft void *w;
835 1.6 mycroft {
836 1.6 mycroft int error;
837 1.6 mycroft struct radix_node *base, *next;
838 1.14 augustss struct radix_node *rn = h->rnh_treetop;
839 1.6 mycroft /*
840 1.6 mycroft * This gets complicated because we may delete the node
841 1.6 mycroft * while applying the function f to it, so we need to calculate
842 1.6 mycroft * the successor node in advance.
843 1.6 mycroft */
844 1.6 mycroft /* First time through node, go left */
845 1.6 mycroft while (rn->rn_b >= 0)
846 1.6 mycroft rn = rn->rn_l;
847 1.6 mycroft for (;;) {
848 1.6 mycroft base = rn;
849 1.6 mycroft /* If at right child go back up, otherwise, go right */
850 1.6 mycroft while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
851 1.6 mycroft rn = rn->rn_p;
852 1.6 mycroft /* Find the next *leaf* since next node might vanish, too */
853 1.6 mycroft for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
854 1.6 mycroft rn = rn->rn_l;
855 1.6 mycroft next = rn;
856 1.6 mycroft /* Process leaves */
857 1.10 christos while ((rn = base) != NULL) {
858 1.6 mycroft base = rn->rn_dupedkey;
859 1.6 mycroft if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
860 1.6 mycroft return (error);
861 1.6 mycroft }
862 1.6 mycroft rn = next;
863 1.6 mycroft if (rn->rn_flags & RNF_ROOT)
864 1.6 mycroft return (0);
865 1.6 mycroft }
866 1.6 mycroft /* NOTREACHED */
867 1.6 mycroft }
868 1.6 mycroft
869 1.6 mycroft int
870 1.6 mycroft rn_inithead(head, off)
871 1.6 mycroft void **head;
872 1.6 mycroft int off;
873 1.1 cgd {
874 1.14 augustss struct radix_node_head *rnh;
875 1.15 itojun
876 1.1 cgd if (*head)
877 1.1 cgd return (1);
878 1.1 cgd R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
879 1.1 cgd if (rnh == 0)
880 1.1 cgd return (0);
881 1.15 itojun *head = rnh;
882 1.15 itojun return rn_inithead0(rnh, off);
883 1.15 itojun }
884 1.15 itojun
885 1.15 itojun int
886 1.15 itojun rn_inithead0(rnh, off)
887 1.15 itojun struct radix_node_head *rnh;
888 1.15 itojun int off;
889 1.15 itojun {
890 1.15 itojun struct radix_node *t, *tt, *ttt;
891 1.15 itojun
892 1.1 cgd Bzero(rnh, sizeof (*rnh));
893 1.1 cgd t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
894 1.1 cgd ttt = rnh->rnh_nodes + 2;
895 1.1 cgd t->rn_r = ttt;
896 1.1 cgd t->rn_p = t;
897 1.1 cgd tt = t->rn_l;
898 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
899 1.1 cgd tt->rn_b = -1 - off;
900 1.1 cgd *ttt = *tt;
901 1.1 cgd ttt->rn_key = rn_ones;
902 1.6 mycroft rnh->rnh_addaddr = rn_addroute;
903 1.6 mycroft rnh->rnh_deladdr = rn_delete;
904 1.6 mycroft rnh->rnh_matchaddr = rn_match;
905 1.9 mycroft rnh->rnh_lookup = rn_lookup;
906 1.6 mycroft rnh->rnh_walktree = rn_walktree;
907 1.1 cgd rnh->rnh_treetop = t;
908 1.1 cgd return (1);
909 1.6 mycroft }
910 1.6 mycroft
911 1.6 mycroft void
912 1.6 mycroft rn_init()
913 1.6 mycroft {
914 1.6 mycroft char *cp, *cplim;
915 1.8 jtc #ifdef _KERNEL
916 1.6 mycroft struct domain *dom;
917 1.6 mycroft
918 1.6 mycroft for (dom = domains; dom; dom = dom->dom_next)
919 1.6 mycroft if (dom->dom_maxrtkey > max_keylen)
920 1.6 mycroft max_keylen = dom->dom_maxrtkey;
921 1.6 mycroft #endif
922 1.6 mycroft if (max_keylen == 0) {
923 1.9 mycroft log(LOG_ERR,
924 1.9 mycroft "rn_init: radix functions require max_keylen be set\n");
925 1.6 mycroft return;
926 1.6 mycroft }
927 1.6 mycroft R_Malloc(rn_zeros, char *, 3 * max_keylen);
928 1.6 mycroft if (rn_zeros == NULL)
929 1.6 mycroft panic("rn_init");
930 1.6 mycroft Bzero(rn_zeros, 3 * max_keylen);
931 1.6 mycroft rn_ones = cp = rn_zeros + max_keylen;
932 1.9 mycroft addmask_key = cplim = rn_ones + max_keylen;
933 1.6 mycroft while (cp < cplim)
934 1.6 mycroft *cp++ = -1;
935 1.19 thorpej if (rn_inithead((void *)&mask_rnhead, 0) == 0)
936 1.6 mycroft panic("rn_init 2");
937 1.1 cgd }
938