radix.c revision 1.24 1 1.24 itojun /* $NetBSD: radix.c,v 1.24 2004/08/17 07:05:34 itojun Exp $ */
2 1.7 cgd
3 1.1 cgd /*
4 1.6 mycroft * Copyright (c) 1988, 1989, 1993
5 1.6 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.20 agc * 3. Neither the name of the University nor the names of its contributors
16 1.1 cgd * may be used to endorse or promote products derived from this software
17 1.1 cgd * without specific prior written permission.
18 1.1 cgd *
19 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 cgd * SUCH DAMAGE.
30 1.1 cgd *
31 1.13 fvdl * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 1.1 cgd */
33 1.1 cgd
34 1.1 cgd /*
35 1.1 cgd * Routines to build and maintain radix trees for routing lookups.
36 1.1 cgd */
37 1.18 lukem
38 1.18 lukem #include <sys/cdefs.h>
39 1.24 itojun __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.24 2004/08/17 07:05:34 itojun Exp $");
40 1.18 lukem
41 1.12 christos #ifndef _NET_RADIX_H_
42 1.4 mycroft #include <sys/param.h>
43 1.12 christos #ifdef _KERNEL
44 1.4 mycroft #include <sys/systm.h>
45 1.4 mycroft #include <sys/malloc.h>
46 1.1 cgd #define M_DONTWAIT M_NOWAIT
47 1.6 mycroft #include <sys/domain.h>
48 1.24 itojun #include <netinet/ip_encap.h>
49 1.9 mycroft #else
50 1.9 mycroft #include <stdlib.h>
51 1.6 mycroft #endif
52 1.9 mycroft #include <sys/syslog.h>
53 1.4 mycroft #include <net/radix.h>
54 1.12 christos #endif
55 1.6 mycroft
56 1.6 mycroft int max_keylen;
57 1.6 mycroft struct radix_mask *rn_mkfreelist;
58 1.1 cgd struct radix_node_head *mask_rnhead;
59 1.9 mycroft static char *addmask_key;
60 1.21 matt static const char normal_chars[] =
61 1.21 matt {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
62 1.6 mycroft static char *rn_zeros, *rn_ones;
63 1.6 mycroft
64 1.6 mycroft #define rn_masktop (mask_rnhead->rnh_treetop)
65 1.1 cgd #undef Bcmp
66 1.1 cgd #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
67 1.10 christos
68 1.23 matt static int rn_satisfies_leaf(const char *, struct radix_node *, int);
69 1.23 matt static int rn_lexobetter(const void *, const void *);
70 1.23 matt static struct radix_mask *rn_new_radix_mask(struct radix_node *,
71 1.23 matt struct radix_mask *);
72 1.12 christos
73 1.1 cgd /*
74 1.1 cgd * The data structure for the keys is a radix tree with one way
75 1.1 cgd * branching removed. The index rn_b at an internal node n represents a bit
76 1.1 cgd * position to be tested. The tree is arranged so that all descendants
77 1.1 cgd * of a node n have keys whose bits all agree up to position rn_b - 1.
78 1.1 cgd * (We say the index of n is rn_b.)
79 1.1 cgd *
80 1.1 cgd * There is at least one descendant which has a one bit at position rn_b,
81 1.1 cgd * and at least one with a zero there.
82 1.1 cgd *
83 1.1 cgd * A route is determined by a pair of key and mask. We require that the
84 1.1 cgd * bit-wise logical and of the key and mask to be the key.
85 1.1 cgd * We define the index of a route to associated with the mask to be
86 1.1 cgd * the first bit number in the mask where 0 occurs (with bit number 0
87 1.1 cgd * representing the highest order bit).
88 1.1 cgd *
89 1.1 cgd * We say a mask is normal if every bit is 0, past the index of the mask.
90 1.1 cgd * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
91 1.1 cgd * and m is a normal mask, then the route applies to every descendant of n.
92 1.1 cgd * If the index(m) < rn_b, this implies the trailing last few bits of k
93 1.1 cgd * before bit b are all 0, (and hence consequently true of every descendant
94 1.1 cgd * of n), so the route applies to all descendants of the node as well.
95 1.9 mycroft *
96 1.9 mycroft * Similar logic shows that a non-normal mask m such that
97 1.1 cgd * index(m) <= index(n) could potentially apply to many children of n.
98 1.1 cgd * Thus, for each non-host route, we attach its mask to a list at an internal
99 1.1 cgd * node as high in the tree as we can go.
100 1.9 mycroft *
101 1.9 mycroft * The present version of the code makes use of normal routes in short-
102 1.9 mycroft * circuiting an explict mask and compare operation when testing whether
103 1.9 mycroft * a key satisfies a normal route, and also in remembering the unique leaf
104 1.9 mycroft * that governs a subtree.
105 1.1 cgd */
106 1.1 cgd
107 1.1 cgd struct radix_node *
108 1.23 matt rn_search(
109 1.23 matt const void *v_arg,
110 1.23 matt struct radix_node *head)
111 1.1 cgd {
112 1.21 matt const u_char * const v = v_arg;
113 1.14 augustss struct radix_node *x;
114 1.1 cgd
115 1.21 matt for (x = head; x->rn_b >= 0;) {
116 1.1 cgd if (x->rn_bmask & v[x->rn_off])
117 1.1 cgd x = x->rn_r;
118 1.1 cgd else
119 1.1 cgd x = x->rn_l;
120 1.1 cgd }
121 1.6 mycroft return (x);
122 1.13 fvdl }
123 1.1 cgd
124 1.1 cgd struct radix_node *
125 1.23 matt rn_search_m(
126 1.23 matt const void *v_arg,
127 1.23 matt struct radix_node *head,
128 1.23 matt const void *m_arg)
129 1.1 cgd {
130 1.14 augustss struct radix_node *x;
131 1.21 matt const u_char * const v = v_arg;
132 1.21 matt const u_char * const m = m_arg;
133 1.1 cgd
134 1.1 cgd for (x = head; x->rn_b >= 0;) {
135 1.1 cgd if ((x->rn_bmask & m[x->rn_off]) &&
136 1.1 cgd (x->rn_bmask & v[x->rn_off]))
137 1.1 cgd x = x->rn_r;
138 1.1 cgd else
139 1.1 cgd x = x->rn_l;
140 1.1 cgd }
141 1.1 cgd return x;
142 1.13 fvdl }
143 1.1 cgd
144 1.6 mycroft int
145 1.23 matt rn_refines(
146 1.23 matt const void *m_arg,
147 1.23 matt const void *n_arg)
148 1.6 mycroft {
149 1.21 matt const char *m = m_arg;
150 1.21 matt const char *n = n_arg;
151 1.21 matt const char *lim = n + *(u_char *)n;
152 1.21 matt const char *lim2 = lim;
153 1.6 mycroft int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
154 1.6 mycroft int masks_are_equal = 1;
155 1.6 mycroft
156 1.6 mycroft if (longer > 0)
157 1.6 mycroft lim -= longer;
158 1.6 mycroft while (n < lim) {
159 1.6 mycroft if (*n & ~(*m))
160 1.6 mycroft return 0;
161 1.6 mycroft if (*n++ != *m++)
162 1.6 mycroft masks_are_equal = 0;
163 1.6 mycroft }
164 1.6 mycroft while (n < lim2)
165 1.6 mycroft if (*n++)
166 1.6 mycroft return 0;
167 1.6 mycroft if (masks_are_equal && (longer < 0))
168 1.6 mycroft for (lim2 = m - longer; m < lim2; )
169 1.6 mycroft if (*m++)
170 1.6 mycroft return 1;
171 1.6 mycroft return (!masks_are_equal);
172 1.6 mycroft }
173 1.1 cgd
174 1.9 mycroft struct radix_node *
175 1.23 matt rn_lookup(
176 1.23 matt const void *v_arg,
177 1.23 matt const void *m_arg,
178 1.23 matt struct radix_node_head *head)
179 1.9 mycroft {
180 1.14 augustss struct radix_node *x;
181 1.21 matt const char *netmask = NULL;
182 1.9 mycroft
183 1.9 mycroft if (m_arg) {
184 1.9 mycroft if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
185 1.9 mycroft return (0);
186 1.9 mycroft netmask = x->rn_key;
187 1.9 mycroft }
188 1.9 mycroft x = rn_match(v_arg, head);
189 1.9 mycroft if (x && netmask) {
190 1.9 mycroft while (x && x->rn_mask != netmask)
191 1.9 mycroft x = x->rn_dupedkey;
192 1.9 mycroft }
193 1.9 mycroft return x;
194 1.9 mycroft }
195 1.9 mycroft
196 1.10 christos static int
197 1.23 matt rn_satisfies_leaf(
198 1.23 matt const char *trial,
199 1.23 matt struct radix_node *leaf,
200 1.23 matt int skip)
201 1.23 matt {
202 1.23 matt const char *cp = trial;
203 1.23 matt const char *cp2 = leaf->rn_key;
204 1.23 matt const char *cp3 = leaf->rn_mask;
205 1.21 matt const char *cplim;
206 1.9 mycroft int length = min(*(u_char *)cp, *(u_char *)cp2);
207 1.9 mycroft
208 1.9 mycroft if (cp3 == 0)
209 1.9 mycroft cp3 = rn_ones;
210 1.9 mycroft else
211 1.9 mycroft length = min(length, *(u_char *)cp3);
212 1.9 mycroft cplim = cp + length; cp3 += skip; cp2 += skip;
213 1.9 mycroft for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
214 1.9 mycroft if ((*cp ^ *cp2) & *cp3)
215 1.9 mycroft return 0;
216 1.9 mycroft return 1;
217 1.9 mycroft }
218 1.1 cgd
219 1.1 cgd struct radix_node *
220 1.23 matt rn_match(
221 1.23 matt const void *v_arg,
222 1.23 matt struct radix_node_head *head)
223 1.1 cgd {
224 1.21 matt const char * const v = v_arg;
225 1.23 matt struct radix_node *t = head->rnh_treetop;
226 1.23 matt struct radix_node *top = t;
227 1.23 matt struct radix_node *x;
228 1.23 matt struct radix_node *saved_t;
229 1.21 matt const char *cp = v;
230 1.21 matt const char *cp2;
231 1.21 matt const char *cplim;
232 1.23 matt int off = t->rn_off;
233 1.23 matt int vlen = *(u_char *)cp;
234 1.23 matt int matched_off;
235 1.14 augustss int test, b, rn_b;
236 1.1 cgd
237 1.1 cgd /*
238 1.6 mycroft * Open code rn_search(v, top) to avoid overhead of extra
239 1.1 cgd * subroutine call.
240 1.1 cgd */
241 1.1 cgd for (; t->rn_b >= 0; ) {
242 1.1 cgd if (t->rn_bmask & cp[t->rn_off])
243 1.1 cgd t = t->rn_r;
244 1.1 cgd else
245 1.1 cgd t = t->rn_l;
246 1.1 cgd }
247 1.1 cgd /*
248 1.1 cgd * See if we match exactly as a host destination
249 1.9 mycroft * or at least learn how many bits match, for normal mask finesse.
250 1.9 mycroft *
251 1.9 mycroft * It doesn't hurt us to limit how many bytes to check
252 1.9 mycroft * to the length of the mask, since if it matches we had a genuine
253 1.9 mycroft * match and the leaf we have is the most specific one anyway;
254 1.9 mycroft * if it didn't match with a shorter length it would fail
255 1.9 mycroft * with a long one. This wins big for class B&C netmasks which
256 1.9 mycroft * are probably the most common case...
257 1.1 cgd */
258 1.9 mycroft if (t->rn_mask)
259 1.9 mycroft vlen = *(u_char *)t->rn_mask;
260 1.1 cgd cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
261 1.1 cgd for (; cp < cplim; cp++, cp2++)
262 1.1 cgd if (*cp != *cp2)
263 1.1 cgd goto on1;
264 1.1 cgd /*
265 1.1 cgd * This extra grot is in case we are explicitly asked
266 1.1 cgd * to look up the default. Ugh!
267 1.1 cgd */
268 1.1 cgd if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
269 1.1 cgd t = t->rn_dupedkey;
270 1.1 cgd return t;
271 1.1 cgd on1:
272 1.9 mycroft test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
273 1.9 mycroft for (b = 7; (test >>= 1) > 0;)
274 1.9 mycroft b--;
275 1.1 cgd matched_off = cp - v;
276 1.9 mycroft b += matched_off << 3;
277 1.9 mycroft rn_b = -1 - b;
278 1.9 mycroft /*
279 1.9 mycroft * If there is a host route in a duped-key chain, it will be first.
280 1.9 mycroft */
281 1.9 mycroft if ((saved_t = t)->rn_mask == 0)
282 1.9 mycroft t = t->rn_dupedkey;
283 1.9 mycroft for (; t; t = t->rn_dupedkey)
284 1.1 cgd /*
285 1.9 mycroft * Even if we don't match exactly as a host,
286 1.1 cgd * we may match if the leaf we wound up at is
287 1.1 cgd * a route to a net.
288 1.1 cgd */
289 1.9 mycroft if (t->rn_flags & RNF_NORMAL) {
290 1.9 mycroft if (rn_b <= t->rn_b)
291 1.9 mycroft return t;
292 1.15 itojun } else if (rn_satisfies_leaf(v, t, matched_off))
293 1.9 mycroft return t;
294 1.1 cgd t = saved_t;
295 1.1 cgd /* start searching up the tree */
296 1.1 cgd do {
297 1.14 augustss struct radix_mask *m;
298 1.1 cgd t = t->rn_p;
299 1.12 christos m = t->rn_mklist;
300 1.12 christos if (m) {
301 1.1 cgd /*
302 1.9 mycroft * If non-contiguous masks ever become important
303 1.9 mycroft * we can restore the masking and open coding of
304 1.9 mycroft * the search and satisfaction test and put the
305 1.9 mycroft * calculation of "off" back before the "do".
306 1.1 cgd */
307 1.1 cgd do {
308 1.9 mycroft if (m->rm_flags & RNF_NORMAL) {
309 1.9 mycroft if (rn_b <= m->rm_b)
310 1.9 mycroft return (m->rm_leaf);
311 1.9 mycroft } else {
312 1.9 mycroft off = min(t->rn_off, matched_off);
313 1.9 mycroft x = rn_search_m(v, t, m->rm_mask);
314 1.9 mycroft while (x && x->rn_mask != m->rm_mask)
315 1.9 mycroft x = x->rn_dupedkey;
316 1.15 itojun if (x && rn_satisfies_leaf(v, x, off))
317 1.17 itojun return x;
318 1.9 mycroft }
319 1.15 itojun m = m->rm_mklist;
320 1.12 christos } while (m);
321 1.1 cgd }
322 1.6 mycroft } while (t != top);
323 1.1 cgd return 0;
324 1.13 fvdl }
325 1.1 cgd
326 1.1 cgd #ifdef RN_DEBUG
327 1.1 cgd int rn_nodenum;
328 1.1 cgd struct radix_node *rn_clist;
329 1.1 cgd int rn_saveinfo;
330 1.6 mycroft int rn_debug = 1;
331 1.1 cgd #endif
332 1.1 cgd
333 1.1 cgd struct radix_node *
334 1.23 matt rn_newpair(
335 1.23 matt const void *v,
336 1.23 matt int b,
337 1.23 matt struct radix_node nodes[2])
338 1.1 cgd {
339 1.23 matt struct radix_node *tt = nodes;
340 1.23 matt struct radix_node *t = tt + 1;
341 1.1 cgd t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
342 1.1 cgd t->rn_l = tt; t->rn_off = b >> 3;
343 1.21 matt tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
344 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ACTIVE;
345 1.1 cgd #ifdef RN_DEBUG
346 1.1 cgd tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
347 1.1 cgd tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
348 1.1 cgd #endif
349 1.1 cgd return t;
350 1.1 cgd }
351 1.1 cgd
352 1.1 cgd struct radix_node *
353 1.23 matt rn_insert(
354 1.23 matt const void *v_arg,
355 1.23 matt struct radix_node_head *head,
356 1.23 matt int *dupentry,
357 1.23 matt struct radix_node nodes[2])
358 1.1 cgd {
359 1.6 mycroft struct radix_node *top = head->rnh_treetop;
360 1.14 augustss struct radix_node *t = rn_search(v_arg, top);
361 1.23 matt struct radix_node *tt;
362 1.23 matt const char *v = v_arg;
363 1.21 matt int head_off = top->rn_off;
364 1.21 matt int vlen = *((u_char *)v);
365 1.21 matt const char *cp = v + head_off;
366 1.14 augustss int b;
367 1.1 cgd /*
368 1.9 mycroft * Find first bit at which v and t->rn_key differ
369 1.1 cgd */
370 1.1 cgd {
371 1.21 matt const char *cp2 = t->rn_key + head_off;
372 1.21 matt const char *cplim = v + vlen;
373 1.14 augustss int cmp_res;
374 1.1 cgd
375 1.1 cgd while (cp < cplim)
376 1.1 cgd if (*cp2++ != *cp++)
377 1.1 cgd goto on1;
378 1.1 cgd *dupentry = 1;
379 1.1 cgd return t;
380 1.1 cgd on1:
381 1.1 cgd *dupentry = 0;
382 1.1 cgd cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
383 1.1 cgd for (b = (cp - v) << 3; cmp_res; b--)
384 1.1 cgd cmp_res >>= 1;
385 1.1 cgd }
386 1.1 cgd {
387 1.14 augustss struct radix_node *p, *x = top;
388 1.1 cgd cp = v;
389 1.1 cgd do {
390 1.1 cgd p = x;
391 1.1 cgd if (cp[x->rn_off] & x->rn_bmask)
392 1.1 cgd x = x->rn_r;
393 1.1 cgd else x = x->rn_l;
394 1.1 cgd } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
395 1.1 cgd #ifdef RN_DEBUG
396 1.1 cgd if (rn_debug)
397 1.9 mycroft log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
398 1.1 cgd #endif
399 1.6 mycroft t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
400 1.1 cgd if ((cp[p->rn_off] & p->rn_bmask) == 0)
401 1.1 cgd p->rn_l = t;
402 1.1 cgd else
403 1.1 cgd p->rn_r = t;
404 1.1 cgd x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
405 1.1 cgd if ((cp[t->rn_off] & t->rn_bmask) == 0) {
406 1.1 cgd t->rn_r = x;
407 1.1 cgd } else {
408 1.1 cgd t->rn_r = tt; t->rn_l = x;
409 1.1 cgd }
410 1.1 cgd #ifdef RN_DEBUG
411 1.1 cgd if (rn_debug)
412 1.9 mycroft log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
413 1.1 cgd #endif
414 1.1 cgd }
415 1.1 cgd return (tt);
416 1.1 cgd }
417 1.1 cgd
418 1.1 cgd struct radix_node *
419 1.23 matt rn_addmask(
420 1.23 matt const void *n_arg,
421 1.23 matt int search,
422 1.23 matt int skip)
423 1.1 cgd {
424 1.21 matt const char *netmask = n_arg;
425 1.21 matt const char *cp;
426 1.21 matt const char *cplim;
427 1.23 matt struct radix_node *x;
428 1.23 matt struct radix_node *saved_x;
429 1.14 augustss int b = 0, mlen, j;
430 1.9 mycroft int maskduplicated, m0, isnormal;
431 1.9 mycroft static int last_zeroed = 0;
432 1.9 mycroft
433 1.9 mycroft if ((mlen = *(u_char *)netmask) > max_keylen)
434 1.9 mycroft mlen = max_keylen;
435 1.9 mycroft if (skip == 0)
436 1.9 mycroft skip = 1;
437 1.9 mycroft if (mlen <= skip)
438 1.9 mycroft return (mask_rnhead->rnh_nodes);
439 1.9 mycroft if (skip > 1)
440 1.9 mycroft Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
441 1.9 mycroft if ((m0 = mlen) > skip)
442 1.9 mycroft Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
443 1.9 mycroft /*
444 1.9 mycroft * Trim trailing zeroes.
445 1.9 mycroft */
446 1.9 mycroft for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
447 1.9 mycroft cp--;
448 1.9 mycroft mlen = cp - addmask_key;
449 1.9 mycroft if (mlen <= skip) {
450 1.9 mycroft if (m0 >= last_zeroed)
451 1.9 mycroft last_zeroed = mlen;
452 1.9 mycroft return (mask_rnhead->rnh_nodes);
453 1.9 mycroft }
454 1.9 mycroft if (m0 < last_zeroed)
455 1.9 mycroft Bzero(addmask_key + m0, last_zeroed - m0);
456 1.9 mycroft *addmask_key = last_zeroed = mlen;
457 1.9 mycroft x = rn_search(addmask_key, rn_masktop);
458 1.9 mycroft if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
459 1.9 mycroft x = 0;
460 1.9 mycroft if (x || search)
461 1.9 mycroft return (x);
462 1.6 mycroft R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
463 1.9 mycroft if ((saved_x = x) == 0)
464 1.1 cgd return (0);
465 1.6 mycroft Bzero(x, max_keylen + 2 * sizeof (*x));
466 1.22 christos cp = netmask = (caddr_t)(x + 2);
467 1.23 matt Bcopy(addmask_key, (caddr_t)(x + 2), mlen);
468 1.9 mycroft x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
469 1.9 mycroft if (maskduplicated) {
470 1.16 enami log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
471 1.9 mycroft Free(saved_x);
472 1.9 mycroft return (x);
473 1.9 mycroft }
474 1.9 mycroft /*
475 1.9 mycroft * Calculate index of mask, and check for normalcy.
476 1.9 mycroft */
477 1.9 mycroft cplim = netmask + mlen; isnormal = 1;
478 1.9 mycroft for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
479 1.9 mycroft cp++;
480 1.1 cgd if (cp != cplim) {
481 1.9 mycroft for (j = 0x80; (j & *cp) != 0; j >>= 1)
482 1.9 mycroft b++;
483 1.9 mycroft if (*cp != normal_chars[b] || cp != (cplim - 1))
484 1.9 mycroft isnormal = 0;
485 1.1 cgd }
486 1.9 mycroft b += (cp - netmask) << 3;
487 1.1 cgd x->rn_b = -1 - b;
488 1.9 mycroft if (isnormal)
489 1.9 mycroft x->rn_flags |= RNF_NORMAL;
490 1.1 cgd return (x);
491 1.1 cgd }
492 1.1 cgd
493 1.9 mycroft static int /* XXX: arbitrary ordering for non-contiguous masks */
494 1.23 matt rn_lexobetter(
495 1.23 matt const void *m_arg,
496 1.23 matt const void *n_arg)
497 1.23 matt {
498 1.23 matt const u_char *mp = m_arg;
499 1.23 matt const u_char *np = n_arg;
500 1.23 matt const u_char *lim;
501 1.9 mycroft
502 1.9 mycroft if (*mp > *np)
503 1.9 mycroft return 1; /* not really, but need to check longer one first */
504 1.9 mycroft if (*mp == *np)
505 1.9 mycroft for (lim = mp + *mp; mp < lim;)
506 1.9 mycroft if (*mp++ > *np++)
507 1.9 mycroft return 1;
508 1.9 mycroft return 0;
509 1.9 mycroft }
510 1.9 mycroft
511 1.9 mycroft static struct radix_mask *
512 1.23 matt rn_new_radix_mask(
513 1.23 matt struct radix_node *tt,
514 1.23 matt struct radix_mask *next)
515 1.9 mycroft {
516 1.14 augustss struct radix_mask *m;
517 1.9 mycroft
518 1.9 mycroft MKGet(m);
519 1.9 mycroft if (m == 0) {
520 1.9 mycroft log(LOG_ERR, "Mask for route not entered\n");
521 1.9 mycroft return (0);
522 1.9 mycroft }
523 1.9 mycroft Bzero(m, sizeof *m);
524 1.9 mycroft m->rm_b = tt->rn_b;
525 1.9 mycroft m->rm_flags = tt->rn_flags;
526 1.9 mycroft if (tt->rn_flags & RNF_NORMAL)
527 1.9 mycroft m->rm_leaf = tt;
528 1.9 mycroft else
529 1.9 mycroft m->rm_mask = tt->rn_mask;
530 1.9 mycroft m->rm_mklist = next;
531 1.9 mycroft tt->rn_mklist = m;
532 1.9 mycroft return m;
533 1.9 mycroft }
534 1.9 mycroft
535 1.1 cgd struct radix_node *
536 1.23 matt rn_addroute(
537 1.23 matt const void *v_arg,
538 1.23 matt const void *n_arg,
539 1.23 matt struct radix_node_head *head,
540 1.23 matt struct radix_node treenodes[2])
541 1.1 cgd {
542 1.21 matt const char *v = v_arg;
543 1.21 matt const char *netmask = n_arg;
544 1.23 matt struct radix_node *t;
545 1.23 matt struct radix_node *x = 0;
546 1.23 matt struct radix_node *tt;
547 1.23 matt struct radix_node *saved_tt;
548 1.23 matt struct radix_node *top = head->rnh_treetop;
549 1.10 christos short b = 0, b_leaf = 0;
550 1.9 mycroft int keyduplicated;
551 1.21 matt const char *mmask;
552 1.1 cgd struct radix_mask *m, **mp;
553 1.1 cgd
554 1.1 cgd /*
555 1.1 cgd * In dealing with non-contiguous masks, there may be
556 1.1 cgd * many different routes which have the same mask.
557 1.1 cgd * We will find it useful to have a unique pointer to
558 1.1 cgd * the mask to speed avoiding duplicate references at
559 1.1 cgd * nodes and possibly save time in calculating indices.
560 1.1 cgd */
561 1.1 cgd if (netmask) {
562 1.9 mycroft if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
563 1.9 mycroft return (0);
564 1.9 mycroft b_leaf = x->rn_b;
565 1.9 mycroft b = -1 - x->rn_b;
566 1.1 cgd netmask = x->rn_key;
567 1.1 cgd }
568 1.1 cgd /*
569 1.1 cgd * Deal with duplicated keys: attach node to previous instance
570 1.1 cgd */
571 1.1 cgd saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
572 1.1 cgd if (keyduplicated) {
573 1.9 mycroft for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
574 1.1 cgd if (tt->rn_mask == netmask)
575 1.1 cgd return (0);
576 1.6 mycroft if (netmask == 0 ||
577 1.9 mycroft (tt->rn_mask &&
578 1.9 mycroft ((b_leaf < tt->rn_b) || /* index(netmask) > node */
579 1.9 mycroft rn_refines(netmask, tt->rn_mask) ||
580 1.9 mycroft rn_lexobetter(netmask, tt->rn_mask))))
581 1.6 mycroft break;
582 1.9 mycroft }
583 1.1 cgd /*
584 1.1 cgd * If the mask is not duplicated, we wouldn't
585 1.1 cgd * find it among possible duplicate key entries
586 1.1 cgd * anyway, so the above test doesn't hurt.
587 1.1 cgd *
588 1.6 mycroft * We sort the masks for a duplicated key the same way as
589 1.6 mycroft * in a masklist -- most specific to least specific.
590 1.6 mycroft * This may require the unfortunate nuisance of relocating
591 1.1 cgd * the head of the list.
592 1.12 christos *
593 1.12 christos * We also reverse, or doubly link the list through the
594 1.12 christos * parent pointer.
595 1.1 cgd */
596 1.9 mycroft if (tt == saved_tt) {
597 1.6 mycroft struct radix_node *xx = x;
598 1.6 mycroft /* link in at head of list */
599 1.6 mycroft (tt = treenodes)->rn_dupedkey = t;
600 1.6 mycroft tt->rn_flags = t->rn_flags;
601 1.6 mycroft tt->rn_p = x = t->rn_p;
602 1.12 christos t->rn_p = tt;
603 1.6 mycroft if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
604 1.6 mycroft saved_tt = tt; x = xx;
605 1.6 mycroft } else {
606 1.6 mycroft (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
607 1.6 mycroft t->rn_dupedkey = tt;
608 1.12 christos tt->rn_p = t;
609 1.12 christos if (tt->rn_dupedkey)
610 1.12 christos tt->rn_dupedkey->rn_p = tt;
611 1.6 mycroft }
612 1.1 cgd #ifdef RN_DEBUG
613 1.1 cgd t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
614 1.1 cgd tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
615 1.1 cgd #endif
616 1.1 cgd tt->rn_key = (caddr_t) v;
617 1.1 cgd tt->rn_b = -1;
618 1.9 mycroft tt->rn_flags = RNF_ACTIVE;
619 1.1 cgd }
620 1.1 cgd /*
621 1.1 cgd * Put mask in tree.
622 1.1 cgd */
623 1.1 cgd if (netmask) {
624 1.1 cgd tt->rn_mask = netmask;
625 1.1 cgd tt->rn_b = x->rn_b;
626 1.9 mycroft tt->rn_flags |= x->rn_flags & RNF_NORMAL;
627 1.1 cgd }
628 1.1 cgd t = saved_tt->rn_p;
629 1.9 mycroft if (keyduplicated)
630 1.9 mycroft goto on2;
631 1.1 cgd b_leaf = -1 - t->rn_b;
632 1.1 cgd if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
633 1.1 cgd /* Promote general routes from below */
634 1.1 cgd if (x->rn_b < 0) {
635 1.9 mycroft for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
636 1.1 cgd if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
637 1.10 christos *mp = m = rn_new_radix_mask(x, 0);
638 1.10 christos if (m)
639 1.9 mycroft mp = &m->rm_mklist;
640 1.1 cgd }
641 1.1 cgd } else if (x->rn_mklist) {
642 1.1 cgd /*
643 1.1 cgd * Skip over masks whose index is > that of new node
644 1.1 cgd */
645 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
646 1.1 cgd if (m->rm_b >= b_leaf)
647 1.1 cgd break;
648 1.1 cgd t->rn_mklist = m; *mp = 0;
649 1.1 cgd }
650 1.9 mycroft on2:
651 1.1 cgd /* Add new route to highest possible ancestor's list */
652 1.1 cgd if ((netmask == 0) || (b > t->rn_b ))
653 1.1 cgd return tt; /* can't lift at all */
654 1.1 cgd b_leaf = tt->rn_b;
655 1.1 cgd do {
656 1.1 cgd x = t;
657 1.1 cgd t = t->rn_p;
658 1.6 mycroft } while (b <= t->rn_b && x != top);
659 1.1 cgd /*
660 1.1 cgd * Search through routes associated with node to
661 1.1 cgd * insert new route according to index.
662 1.9 mycroft * Need same criteria as when sorting dupedkeys to avoid
663 1.9 mycroft * double loop on deletion.
664 1.1 cgd */
665 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
666 1.1 cgd if (m->rm_b < b_leaf)
667 1.1 cgd continue;
668 1.1 cgd if (m->rm_b > b_leaf)
669 1.1 cgd break;
670 1.9 mycroft if (m->rm_flags & RNF_NORMAL) {
671 1.9 mycroft mmask = m->rm_leaf->rn_mask;
672 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) {
673 1.16 enami log(LOG_ERR, "Non-unique normal route,"
674 1.16 enami " mask not entered\n");
675 1.9 mycroft return tt;
676 1.9 mycroft }
677 1.9 mycroft } else
678 1.9 mycroft mmask = m->rm_mask;
679 1.9 mycroft if (mmask == netmask) {
680 1.1 cgd m->rm_refs++;
681 1.1 cgd tt->rn_mklist = m;
682 1.1 cgd return tt;
683 1.1 cgd }
684 1.9 mycroft if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
685 1.6 mycroft break;
686 1.1 cgd }
687 1.9 mycroft *mp = rn_new_radix_mask(tt, *mp);
688 1.1 cgd return tt;
689 1.1 cgd }
690 1.1 cgd
691 1.1 cgd struct radix_node *
692 1.23 matt rn_delete(
693 1.23 matt const void *v_arg,
694 1.23 matt const void *netmask_arg,
695 1.23 matt struct radix_node_head *head)
696 1.23 matt {
697 1.23 matt struct radix_node *t;
698 1.23 matt struct radix_node *p;
699 1.23 matt struct radix_node *x;
700 1.23 matt struct radix_node *tt;
701 1.23 matt struct radix_node *dupedkey;
702 1.23 matt struct radix_node *saved_tt;
703 1.23 matt struct radix_node *top;
704 1.23 matt struct radix_mask *m;
705 1.23 matt struct radix_mask *saved_m;
706 1.23 matt struct radix_mask **mp;
707 1.21 matt const char *v = v_arg;
708 1.21 matt const char *netmask = netmask_arg;
709 1.6 mycroft int b, head_off, vlen;
710 1.1 cgd
711 1.6 mycroft x = head->rnh_treetop;
712 1.6 mycroft tt = rn_search(v, x);
713 1.6 mycroft head_off = x->rn_off;
714 1.6 mycroft vlen = *(u_char *)v;
715 1.6 mycroft saved_tt = tt;
716 1.6 mycroft top = x;
717 1.1 cgd if (tt == 0 ||
718 1.1 cgd Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
719 1.1 cgd return (0);
720 1.1 cgd /*
721 1.1 cgd * Delete our route from mask lists.
722 1.1 cgd */
723 1.9 mycroft if (netmask) {
724 1.9 mycroft if ((x = rn_addmask(netmask, 1, head_off)) == 0)
725 1.9 mycroft return (0);
726 1.9 mycroft netmask = x->rn_key;
727 1.1 cgd while (tt->rn_mask != netmask)
728 1.1 cgd if ((tt = tt->rn_dupedkey) == 0)
729 1.1 cgd return (0);
730 1.1 cgd }
731 1.1 cgd if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
732 1.1 cgd goto on1;
733 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) {
734 1.9 mycroft if (m->rm_leaf != tt || m->rm_refs > 0) {
735 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n");
736 1.9 mycroft return 0; /* dangling ref could cause disaster */
737 1.9 mycroft }
738 1.9 mycroft } else {
739 1.9 mycroft if (m->rm_mask != tt->rn_mask) {
740 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n");
741 1.9 mycroft goto on1;
742 1.9 mycroft }
743 1.9 mycroft if (--m->rm_refs >= 0)
744 1.9 mycroft goto on1;
745 1.1 cgd }
746 1.1 cgd b = -1 - tt->rn_b;
747 1.1 cgd t = saved_tt->rn_p;
748 1.1 cgd if (b > t->rn_b)
749 1.1 cgd goto on1; /* Wasn't lifted at all */
750 1.1 cgd do {
751 1.1 cgd x = t;
752 1.1 cgd t = t->rn_p;
753 1.6 mycroft } while (b <= t->rn_b && x != top);
754 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
755 1.1 cgd if (m == saved_m) {
756 1.1 cgd *mp = m->rm_mklist;
757 1.1 cgd MKFree(m);
758 1.1 cgd break;
759 1.1 cgd }
760 1.9 mycroft if (m == 0) {
761 1.9 mycroft log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
762 1.9 mycroft if (tt->rn_flags & RNF_NORMAL)
763 1.9 mycroft return (0); /* Dangling ref to us */
764 1.9 mycroft }
765 1.1 cgd on1:
766 1.1 cgd /*
767 1.1 cgd * Eliminate us from tree
768 1.1 cgd */
769 1.1 cgd if (tt->rn_flags & RNF_ROOT)
770 1.1 cgd return (0);
771 1.1 cgd #ifdef RN_DEBUG
772 1.1 cgd /* Get us out of the creation list */
773 1.1 cgd for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
774 1.1 cgd if (t) t->rn_ybro = tt->rn_ybro;
775 1.6 mycroft #endif
776 1.1 cgd t = tt->rn_p;
777 1.12 christos dupedkey = saved_tt->rn_dupedkey;
778 1.12 christos if (dupedkey) {
779 1.12 christos /*
780 1.12 christos * Here, tt is the deletion target, and
781 1.12 christos * saved_tt is the head of the dupedkey chain.
782 1.12 christos */
783 1.1 cgd if (tt == saved_tt) {
784 1.1 cgd x = dupedkey; x->rn_p = t;
785 1.1 cgd if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
786 1.6 mycroft } else {
787 1.12 christos /* find node in front of tt on the chain */
788 1.6 mycroft for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
789 1.6 mycroft p = p->rn_dupedkey;
790 1.12 christos if (p) {
791 1.12 christos p->rn_dupedkey = tt->rn_dupedkey;
792 1.12 christos if (tt->rn_dupedkey)
793 1.12 christos tt->rn_dupedkey->rn_p = p;
794 1.12 christos } else log(LOG_ERR, "rn_delete: couldn't find us\n");
795 1.6 mycroft }
796 1.6 mycroft t = tt + 1;
797 1.6 mycroft if (t->rn_flags & RNF_ACTIVE) {
798 1.1 cgd #ifndef RN_DEBUG
799 1.6 mycroft *++x = *t; p = t->rn_p;
800 1.1 cgd #else
801 1.6 mycroft b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
802 1.1 cgd #endif
803 1.1 cgd if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
804 1.1 cgd x->rn_l->rn_p = x; x->rn_r->rn_p = x;
805 1.1 cgd }
806 1.1 cgd goto out;
807 1.1 cgd }
808 1.1 cgd if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
809 1.1 cgd p = t->rn_p;
810 1.1 cgd if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
811 1.1 cgd x->rn_p = p;
812 1.1 cgd /*
813 1.1 cgd * Demote routes attached to us.
814 1.1 cgd */
815 1.1 cgd if (t->rn_mklist) {
816 1.1 cgd if (x->rn_b >= 0) {
817 1.12 christos for (mp = &x->rn_mklist; (m = *mp);)
818 1.1 cgd mp = &m->rm_mklist;
819 1.1 cgd *mp = t->rn_mklist;
820 1.1 cgd } else {
821 1.9 mycroft /* If there are any key,mask pairs in a sibling
822 1.9 mycroft duped-key chain, some subset will appear sorted
823 1.9 mycroft in the same order attached to our mklist */
824 1.9 mycroft for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
825 1.9 mycroft if (m == x->rn_mklist) {
826 1.9 mycroft struct radix_mask *mm = m->rm_mklist;
827 1.1 cgd x->rn_mklist = 0;
828 1.9 mycroft if (--(m->rm_refs) < 0)
829 1.9 mycroft MKFree(m);
830 1.9 mycroft m = mm;
831 1.9 mycroft }
832 1.9 mycroft if (m)
833 1.11 christos log(LOG_ERR, "%s %p at %p\n",
834 1.17 itojun "rn_delete: Orphaned Mask", m, x);
835 1.1 cgd }
836 1.1 cgd }
837 1.1 cgd /*
838 1.1 cgd * We may be holding an active internal node in the tree.
839 1.1 cgd */
840 1.1 cgd x = tt + 1;
841 1.1 cgd if (t != x) {
842 1.1 cgd #ifndef RN_DEBUG
843 1.1 cgd *t = *x;
844 1.1 cgd #else
845 1.1 cgd b = t->rn_info; *t = *x; t->rn_info = b;
846 1.1 cgd #endif
847 1.1 cgd t->rn_l->rn_p = t; t->rn_r->rn_p = t;
848 1.1 cgd p = x->rn_p;
849 1.1 cgd if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
850 1.1 cgd }
851 1.1 cgd out:
852 1.1 cgd tt->rn_flags &= ~RNF_ACTIVE;
853 1.1 cgd tt[1].rn_flags &= ~RNF_ACTIVE;
854 1.1 cgd return (tt);
855 1.1 cgd }
856 1.1 cgd
857 1.6 mycroft int
858 1.23 matt rn_walktree(
859 1.23 matt struct radix_node_head *h,
860 1.23 matt int (*f)(struct radix_node *, void *),
861 1.23 matt void *w)
862 1.6 mycroft {
863 1.6 mycroft int error;
864 1.23 matt struct radix_node *base;
865 1.23 matt struct radix_node *next;
866 1.14 augustss struct radix_node *rn = h->rnh_treetop;
867 1.6 mycroft /*
868 1.6 mycroft * This gets complicated because we may delete the node
869 1.6 mycroft * while applying the function f to it, so we need to calculate
870 1.6 mycroft * the successor node in advance.
871 1.6 mycroft */
872 1.6 mycroft /* First time through node, go left */
873 1.6 mycroft while (rn->rn_b >= 0)
874 1.6 mycroft rn = rn->rn_l;
875 1.6 mycroft for (;;) {
876 1.6 mycroft base = rn;
877 1.6 mycroft /* If at right child go back up, otherwise, go right */
878 1.6 mycroft while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
879 1.6 mycroft rn = rn->rn_p;
880 1.6 mycroft /* Find the next *leaf* since next node might vanish, too */
881 1.6 mycroft for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
882 1.6 mycroft rn = rn->rn_l;
883 1.6 mycroft next = rn;
884 1.6 mycroft /* Process leaves */
885 1.10 christos while ((rn = base) != NULL) {
886 1.6 mycroft base = rn->rn_dupedkey;
887 1.6 mycroft if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
888 1.6 mycroft return (error);
889 1.6 mycroft }
890 1.6 mycroft rn = next;
891 1.6 mycroft if (rn->rn_flags & RNF_ROOT)
892 1.6 mycroft return (0);
893 1.6 mycroft }
894 1.6 mycroft /* NOTREACHED */
895 1.6 mycroft }
896 1.6 mycroft
897 1.6 mycroft int
898 1.6 mycroft rn_inithead(head, off)
899 1.6 mycroft void **head;
900 1.6 mycroft int off;
901 1.1 cgd {
902 1.14 augustss struct radix_node_head *rnh;
903 1.15 itojun
904 1.1 cgd if (*head)
905 1.1 cgd return (1);
906 1.1 cgd R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
907 1.1 cgd if (rnh == 0)
908 1.1 cgd return (0);
909 1.15 itojun *head = rnh;
910 1.15 itojun return rn_inithead0(rnh, off);
911 1.15 itojun }
912 1.15 itojun
913 1.15 itojun int
914 1.15 itojun rn_inithead0(rnh, off)
915 1.15 itojun struct radix_node_head *rnh;
916 1.15 itojun int off;
917 1.15 itojun {
918 1.23 matt struct radix_node *t;
919 1.23 matt struct radix_node *tt;
920 1.23 matt struct radix_node *ttt;
921 1.15 itojun
922 1.1 cgd Bzero(rnh, sizeof (*rnh));
923 1.1 cgd t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
924 1.1 cgd ttt = rnh->rnh_nodes + 2;
925 1.1 cgd t->rn_r = ttt;
926 1.1 cgd t->rn_p = t;
927 1.1 cgd tt = t->rn_l;
928 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
929 1.1 cgd tt->rn_b = -1 - off;
930 1.1 cgd *ttt = *tt;
931 1.1 cgd ttt->rn_key = rn_ones;
932 1.6 mycroft rnh->rnh_addaddr = rn_addroute;
933 1.6 mycroft rnh->rnh_deladdr = rn_delete;
934 1.6 mycroft rnh->rnh_matchaddr = rn_match;
935 1.9 mycroft rnh->rnh_lookup = rn_lookup;
936 1.6 mycroft rnh->rnh_walktree = rn_walktree;
937 1.1 cgd rnh->rnh_treetop = t;
938 1.1 cgd return (1);
939 1.6 mycroft }
940 1.6 mycroft
941 1.6 mycroft void
942 1.6 mycroft rn_init()
943 1.6 mycroft {
944 1.6 mycroft char *cp, *cplim;
945 1.8 jtc #ifdef _KERNEL
946 1.6 mycroft struct domain *dom;
947 1.6 mycroft
948 1.6 mycroft for (dom = domains; dom; dom = dom->dom_next)
949 1.6 mycroft if (dom->dom_maxrtkey > max_keylen)
950 1.6 mycroft max_keylen = dom->dom_maxrtkey;
951 1.24 itojun encap_setkeylen();
952 1.6 mycroft #endif
953 1.6 mycroft if (max_keylen == 0) {
954 1.9 mycroft log(LOG_ERR,
955 1.9 mycroft "rn_init: radix functions require max_keylen be set\n");
956 1.6 mycroft return;
957 1.6 mycroft }
958 1.6 mycroft R_Malloc(rn_zeros, char *, 3 * max_keylen);
959 1.6 mycroft if (rn_zeros == NULL)
960 1.6 mycroft panic("rn_init");
961 1.6 mycroft Bzero(rn_zeros, 3 * max_keylen);
962 1.6 mycroft rn_ones = cp = rn_zeros + max_keylen;
963 1.9 mycroft addmask_key = cplim = rn_ones + max_keylen;
964 1.6 mycroft while (cp < cplim)
965 1.6 mycroft *cp++ = -1;
966 1.19 thorpej if (rn_inithead((void *)&mask_rnhead, 0) == 0)
967 1.6 mycroft panic("rn_init 2");
968 1.1 cgd }
969