radix.c revision 1.32 1 1.32 dyoung /* $NetBSD: radix.c,v 1.32 2006/12/04 01:45:50 dyoung Exp $ */
2 1.7 cgd
3 1.1 cgd /*
4 1.6 mycroft * Copyright (c) 1988, 1989, 1993
5 1.6 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.20 agc * 3. Neither the name of the University nor the names of its contributors
16 1.1 cgd * may be used to endorse or promote products derived from this software
17 1.1 cgd * without specific prior written permission.
18 1.1 cgd *
19 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 cgd * SUCH DAMAGE.
30 1.1 cgd *
31 1.13 fvdl * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 1.1 cgd */
33 1.1 cgd
34 1.1 cgd /*
35 1.1 cgd * Routines to build and maintain radix trees for routing lookups.
36 1.1 cgd */
37 1.18 lukem
38 1.18 lukem #include <sys/cdefs.h>
39 1.32 dyoung __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.32 2006/12/04 01:45:50 dyoung Exp $");
40 1.18 lukem
41 1.12 christos #ifndef _NET_RADIX_H_
42 1.4 mycroft #include <sys/param.h>
43 1.12 christos #ifdef _KERNEL
44 1.27 enami #include "opt_inet.h"
45 1.27 enami
46 1.4 mycroft #include <sys/systm.h>
47 1.4 mycroft #include <sys/malloc.h>
48 1.1 cgd #define M_DONTWAIT M_NOWAIT
49 1.6 mycroft #include <sys/domain.h>
50 1.24 itojun #include <netinet/ip_encap.h>
51 1.9 mycroft #else
52 1.9 mycroft #include <stdlib.h>
53 1.6 mycroft #endif
54 1.32 dyoung #include <machine/stdarg.h>
55 1.9 mycroft #include <sys/syslog.h>
56 1.4 mycroft #include <net/radix.h>
57 1.12 christos #endif
58 1.6 mycroft
59 1.32 dyoung typedef void (*rn_printer_t)(void *, const char *fmt, ...);
60 1.32 dyoung
61 1.6 mycroft int max_keylen;
62 1.6 mycroft struct radix_mask *rn_mkfreelist;
63 1.1 cgd struct radix_node_head *mask_rnhead;
64 1.9 mycroft static char *addmask_key;
65 1.21 matt static const char normal_chars[] =
66 1.21 matt {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
67 1.6 mycroft static char *rn_zeros, *rn_ones;
68 1.6 mycroft
69 1.6 mycroft #define rn_masktop (mask_rnhead->rnh_treetop)
70 1.10 christos
71 1.23 matt static int rn_satisfies_leaf(const char *, struct radix_node *, int);
72 1.23 matt static int rn_lexobetter(const void *, const void *);
73 1.23 matt static struct radix_mask *rn_new_radix_mask(struct radix_node *,
74 1.23 matt struct radix_mask *);
75 1.32 dyoung static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
76 1.32 dyoung void *);
77 1.32 dyoung static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
78 1.32 dyoung void *);
79 1.32 dyoung static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
80 1.32 dyoung const char *);
81 1.32 dyoung
82 1.32 dyoung #define SUBTREE_OPEN "[ "
83 1.32 dyoung #define SUBTREE_CLOSE " ]"
84 1.32 dyoung
85 1.32 dyoung #ifdef RN_DEBUG
86 1.32 dyoung static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
87 1.32 dyoung #endif /* RN_DEBUG */
88 1.12 christos
89 1.1 cgd /*
90 1.1 cgd * The data structure for the keys is a radix tree with one way
91 1.1 cgd * branching removed. The index rn_b at an internal node n represents a bit
92 1.1 cgd * position to be tested. The tree is arranged so that all descendants
93 1.1 cgd * of a node n have keys whose bits all agree up to position rn_b - 1.
94 1.1 cgd * (We say the index of n is rn_b.)
95 1.1 cgd *
96 1.1 cgd * There is at least one descendant which has a one bit at position rn_b,
97 1.1 cgd * and at least one with a zero there.
98 1.1 cgd *
99 1.1 cgd * A route is determined by a pair of key and mask. We require that the
100 1.1 cgd * bit-wise logical and of the key and mask to be the key.
101 1.1 cgd * We define the index of a route to associated with the mask to be
102 1.1 cgd * the first bit number in the mask where 0 occurs (with bit number 0
103 1.1 cgd * representing the highest order bit).
104 1.28 perry *
105 1.1 cgd * We say a mask is normal if every bit is 0, past the index of the mask.
106 1.1 cgd * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
107 1.1 cgd * and m is a normal mask, then the route applies to every descendant of n.
108 1.1 cgd * If the index(m) < rn_b, this implies the trailing last few bits of k
109 1.1 cgd * before bit b are all 0, (and hence consequently true of every descendant
110 1.1 cgd * of n), so the route applies to all descendants of the node as well.
111 1.28 perry *
112 1.9 mycroft * Similar logic shows that a non-normal mask m such that
113 1.1 cgd * index(m) <= index(n) could potentially apply to many children of n.
114 1.1 cgd * Thus, for each non-host route, we attach its mask to a list at an internal
115 1.28 perry * node as high in the tree as we can go.
116 1.9 mycroft *
117 1.9 mycroft * The present version of the code makes use of normal routes in short-
118 1.31 wiz * circuiting an explicit mask and compare operation when testing whether
119 1.9 mycroft * a key satisfies a normal route, and also in remembering the unique leaf
120 1.9 mycroft * that governs a subtree.
121 1.1 cgd */
122 1.1 cgd
123 1.1 cgd struct radix_node *
124 1.23 matt rn_search(
125 1.23 matt const void *v_arg,
126 1.23 matt struct radix_node *head)
127 1.1 cgd {
128 1.21 matt const u_char * const v = v_arg;
129 1.14 augustss struct radix_node *x;
130 1.1 cgd
131 1.21 matt for (x = head; x->rn_b >= 0;) {
132 1.1 cgd if (x->rn_bmask & v[x->rn_off])
133 1.1 cgd x = x->rn_r;
134 1.1 cgd else
135 1.1 cgd x = x->rn_l;
136 1.1 cgd }
137 1.6 mycroft return (x);
138 1.13 fvdl }
139 1.1 cgd
140 1.1 cgd struct radix_node *
141 1.23 matt rn_search_m(
142 1.23 matt const void *v_arg,
143 1.23 matt struct radix_node *head,
144 1.23 matt const void *m_arg)
145 1.1 cgd {
146 1.14 augustss struct radix_node *x;
147 1.21 matt const u_char * const v = v_arg;
148 1.21 matt const u_char * const m = m_arg;
149 1.1 cgd
150 1.1 cgd for (x = head; x->rn_b >= 0;) {
151 1.1 cgd if ((x->rn_bmask & m[x->rn_off]) &&
152 1.1 cgd (x->rn_bmask & v[x->rn_off]))
153 1.1 cgd x = x->rn_r;
154 1.1 cgd else
155 1.1 cgd x = x->rn_l;
156 1.1 cgd }
157 1.1 cgd return x;
158 1.13 fvdl }
159 1.1 cgd
160 1.6 mycroft int
161 1.23 matt rn_refines(
162 1.23 matt const void *m_arg,
163 1.23 matt const void *n_arg)
164 1.6 mycroft {
165 1.21 matt const char *m = m_arg;
166 1.21 matt const char *n = n_arg;
167 1.29 christos const char *lim = n + *(const u_char *)n;
168 1.21 matt const char *lim2 = lim;
169 1.29 christos int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
170 1.6 mycroft int masks_are_equal = 1;
171 1.6 mycroft
172 1.6 mycroft if (longer > 0)
173 1.6 mycroft lim -= longer;
174 1.6 mycroft while (n < lim) {
175 1.6 mycroft if (*n & ~(*m))
176 1.6 mycroft return 0;
177 1.6 mycroft if (*n++ != *m++)
178 1.6 mycroft masks_are_equal = 0;
179 1.6 mycroft }
180 1.6 mycroft while (n < lim2)
181 1.6 mycroft if (*n++)
182 1.6 mycroft return 0;
183 1.6 mycroft if (masks_are_equal && (longer < 0))
184 1.6 mycroft for (lim2 = m - longer; m < lim2; )
185 1.6 mycroft if (*m++)
186 1.6 mycroft return 1;
187 1.6 mycroft return (!masks_are_equal);
188 1.6 mycroft }
189 1.1 cgd
190 1.9 mycroft struct radix_node *
191 1.23 matt rn_lookup(
192 1.23 matt const void *v_arg,
193 1.23 matt const void *m_arg,
194 1.23 matt struct radix_node_head *head)
195 1.9 mycroft {
196 1.14 augustss struct radix_node *x;
197 1.21 matt const char *netmask = NULL;
198 1.9 mycroft
199 1.9 mycroft if (m_arg) {
200 1.9 mycroft if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
201 1.9 mycroft return (0);
202 1.9 mycroft netmask = x->rn_key;
203 1.9 mycroft }
204 1.9 mycroft x = rn_match(v_arg, head);
205 1.9 mycroft if (x && netmask) {
206 1.9 mycroft while (x && x->rn_mask != netmask)
207 1.9 mycroft x = x->rn_dupedkey;
208 1.9 mycroft }
209 1.9 mycroft return x;
210 1.9 mycroft }
211 1.9 mycroft
212 1.10 christos static int
213 1.23 matt rn_satisfies_leaf(
214 1.23 matt const char *trial,
215 1.23 matt struct radix_node *leaf,
216 1.23 matt int skip)
217 1.23 matt {
218 1.23 matt const char *cp = trial;
219 1.23 matt const char *cp2 = leaf->rn_key;
220 1.23 matt const char *cp3 = leaf->rn_mask;
221 1.21 matt const char *cplim;
222 1.29 christos int length = min(*(const u_char *)cp, *(const u_char *)cp2);
223 1.9 mycroft
224 1.9 mycroft if (cp3 == 0)
225 1.9 mycroft cp3 = rn_ones;
226 1.9 mycroft else
227 1.29 christos length = min(length, *(const u_char *)cp3);
228 1.9 mycroft cplim = cp + length; cp3 += skip; cp2 += skip;
229 1.9 mycroft for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
230 1.9 mycroft if ((*cp ^ *cp2) & *cp3)
231 1.9 mycroft return 0;
232 1.9 mycroft return 1;
233 1.9 mycroft }
234 1.1 cgd
235 1.1 cgd struct radix_node *
236 1.23 matt rn_match(
237 1.23 matt const void *v_arg,
238 1.23 matt struct radix_node_head *head)
239 1.1 cgd {
240 1.21 matt const char * const v = v_arg;
241 1.23 matt struct radix_node *t = head->rnh_treetop;
242 1.23 matt struct radix_node *top = t;
243 1.23 matt struct radix_node *x;
244 1.23 matt struct radix_node *saved_t;
245 1.21 matt const char *cp = v;
246 1.21 matt const char *cp2;
247 1.21 matt const char *cplim;
248 1.23 matt int off = t->rn_off;
249 1.29 christos int vlen = *(const u_char *)cp;
250 1.23 matt int matched_off;
251 1.14 augustss int test, b, rn_b;
252 1.1 cgd
253 1.1 cgd /*
254 1.6 mycroft * Open code rn_search(v, top) to avoid overhead of extra
255 1.1 cgd * subroutine call.
256 1.1 cgd */
257 1.1 cgd for (; t->rn_b >= 0; ) {
258 1.1 cgd if (t->rn_bmask & cp[t->rn_off])
259 1.1 cgd t = t->rn_r;
260 1.1 cgd else
261 1.1 cgd t = t->rn_l;
262 1.1 cgd }
263 1.1 cgd /*
264 1.1 cgd * See if we match exactly as a host destination
265 1.9 mycroft * or at least learn how many bits match, for normal mask finesse.
266 1.9 mycroft *
267 1.9 mycroft * It doesn't hurt us to limit how many bytes to check
268 1.9 mycroft * to the length of the mask, since if it matches we had a genuine
269 1.9 mycroft * match and the leaf we have is the most specific one anyway;
270 1.9 mycroft * if it didn't match with a shorter length it would fail
271 1.9 mycroft * with a long one. This wins big for class B&C netmasks which
272 1.9 mycroft * are probably the most common case...
273 1.1 cgd */
274 1.9 mycroft if (t->rn_mask)
275 1.29 christos vlen = *(const u_char *)t->rn_mask;
276 1.1 cgd cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
277 1.1 cgd for (; cp < cplim; cp++, cp2++)
278 1.1 cgd if (*cp != *cp2)
279 1.1 cgd goto on1;
280 1.1 cgd /*
281 1.1 cgd * This extra grot is in case we are explicitly asked
282 1.1 cgd * to look up the default. Ugh!
283 1.1 cgd */
284 1.1 cgd if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
285 1.1 cgd t = t->rn_dupedkey;
286 1.1 cgd return t;
287 1.1 cgd on1:
288 1.9 mycroft test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
289 1.9 mycroft for (b = 7; (test >>= 1) > 0;)
290 1.9 mycroft b--;
291 1.1 cgd matched_off = cp - v;
292 1.9 mycroft b += matched_off << 3;
293 1.9 mycroft rn_b = -1 - b;
294 1.9 mycroft /*
295 1.9 mycroft * If there is a host route in a duped-key chain, it will be first.
296 1.9 mycroft */
297 1.9 mycroft if ((saved_t = t)->rn_mask == 0)
298 1.9 mycroft t = t->rn_dupedkey;
299 1.9 mycroft for (; t; t = t->rn_dupedkey)
300 1.1 cgd /*
301 1.9 mycroft * Even if we don't match exactly as a host,
302 1.1 cgd * we may match if the leaf we wound up at is
303 1.1 cgd * a route to a net.
304 1.1 cgd */
305 1.9 mycroft if (t->rn_flags & RNF_NORMAL) {
306 1.9 mycroft if (rn_b <= t->rn_b)
307 1.9 mycroft return t;
308 1.15 itojun } else if (rn_satisfies_leaf(v, t, matched_off))
309 1.9 mycroft return t;
310 1.1 cgd t = saved_t;
311 1.1 cgd /* start searching up the tree */
312 1.1 cgd do {
313 1.14 augustss struct radix_mask *m;
314 1.1 cgd t = t->rn_p;
315 1.12 christos m = t->rn_mklist;
316 1.12 christos if (m) {
317 1.1 cgd /*
318 1.9 mycroft * If non-contiguous masks ever become important
319 1.9 mycroft * we can restore the masking and open coding of
320 1.9 mycroft * the search and satisfaction test and put the
321 1.9 mycroft * calculation of "off" back before the "do".
322 1.1 cgd */
323 1.1 cgd do {
324 1.9 mycroft if (m->rm_flags & RNF_NORMAL) {
325 1.9 mycroft if (rn_b <= m->rm_b)
326 1.9 mycroft return (m->rm_leaf);
327 1.9 mycroft } else {
328 1.9 mycroft off = min(t->rn_off, matched_off);
329 1.9 mycroft x = rn_search_m(v, t, m->rm_mask);
330 1.9 mycroft while (x && x->rn_mask != m->rm_mask)
331 1.9 mycroft x = x->rn_dupedkey;
332 1.15 itojun if (x && rn_satisfies_leaf(v, x, off))
333 1.17 itojun return x;
334 1.9 mycroft }
335 1.15 itojun m = m->rm_mklist;
336 1.12 christos } while (m);
337 1.1 cgd }
338 1.6 mycroft } while (t != top);
339 1.1 cgd return 0;
340 1.13 fvdl }
341 1.28 perry
342 1.32 dyoung static void
343 1.32 dyoung rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
344 1.32 dyoung const char *delim)
345 1.32 dyoung {
346 1.32 dyoung (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
347 1.32 dyoung delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
348 1.32 dyoung rn->rn_l, rn->rn_r);
349 1.32 dyoung }
350 1.32 dyoung
351 1.1 cgd #ifdef RN_DEBUG
352 1.1 cgd int rn_nodenum;
353 1.1 cgd struct radix_node *rn_clist;
354 1.1 cgd int rn_saveinfo;
355 1.6 mycroft int rn_debug = 1;
356 1.32 dyoung
357 1.32 dyoung static void
358 1.32 dyoung rn_dbg_print(void *arg, const char *fmt, ...)
359 1.32 dyoung {
360 1.32 dyoung va_list ap;
361 1.32 dyoung
362 1.32 dyoung va_start(ap, fmt);
363 1.32 dyoung vlog(LOG_DEBUG, fmt, ap);
364 1.32 dyoung va_end(ap);
365 1.32 dyoung }
366 1.32 dyoung
367 1.32 dyoung static void
368 1.32 dyoung rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
369 1.32 dyoung {
370 1.32 dyoung struct radix_node *dup, *rn;
371 1.32 dyoung const char *delim;
372 1.32 dyoung
373 1.32 dyoung if (printer == NULL)
374 1.32 dyoung return;
375 1.32 dyoung
376 1.32 dyoung rn = rn_walkfirst(h->rnh_treetop, printer, arg);
377 1.32 dyoung for (;;) {
378 1.32 dyoung /* Process leaves */
379 1.32 dyoung delim = "";
380 1.32 dyoung for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
381 1.32 dyoung if ((dup->rn_flags & RNF_ROOT) != 0)
382 1.32 dyoung continue;
383 1.32 dyoung rn_nodeprint(dup, printer, arg, delim);
384 1.32 dyoung delim = ", ";
385 1.32 dyoung }
386 1.32 dyoung rn = rn_walknext(rn, printer, arg);
387 1.32 dyoung if (rn->rn_flags & RNF_ROOT)
388 1.32 dyoung return;
389 1.32 dyoung }
390 1.32 dyoung /* NOTREACHED */
391 1.32 dyoung }
392 1.32 dyoung
393 1.32 dyoung #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
394 1.32 dyoung #endif /* RN_DEBUG */
395 1.1 cgd
396 1.1 cgd struct radix_node *
397 1.23 matt rn_newpair(
398 1.23 matt const void *v,
399 1.23 matt int b,
400 1.23 matt struct radix_node nodes[2])
401 1.1 cgd {
402 1.23 matt struct radix_node *tt = nodes;
403 1.23 matt struct radix_node *t = tt + 1;
404 1.1 cgd t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
405 1.1 cgd t->rn_l = tt; t->rn_off = b >> 3;
406 1.21 matt tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
407 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ACTIVE;
408 1.1 cgd #ifdef RN_DEBUG
409 1.1 cgd tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
410 1.1 cgd tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
411 1.1 cgd #endif
412 1.1 cgd return t;
413 1.1 cgd }
414 1.1 cgd
415 1.1 cgd struct radix_node *
416 1.23 matt rn_insert(
417 1.23 matt const void *v_arg,
418 1.23 matt struct radix_node_head *head,
419 1.23 matt int *dupentry,
420 1.23 matt struct radix_node nodes[2])
421 1.1 cgd {
422 1.6 mycroft struct radix_node *top = head->rnh_treetop;
423 1.14 augustss struct radix_node *t = rn_search(v_arg, top);
424 1.23 matt struct radix_node *tt;
425 1.23 matt const char *v = v_arg;
426 1.21 matt int head_off = top->rn_off;
427 1.29 christos int vlen = *((const u_char *)v);
428 1.21 matt const char *cp = v + head_off;
429 1.14 augustss int b;
430 1.1 cgd /*
431 1.9 mycroft * Find first bit at which v and t->rn_key differ
432 1.1 cgd */
433 1.1 cgd {
434 1.21 matt const char *cp2 = t->rn_key + head_off;
435 1.21 matt const char *cplim = v + vlen;
436 1.14 augustss int cmp_res;
437 1.1 cgd
438 1.1 cgd while (cp < cplim)
439 1.1 cgd if (*cp2++ != *cp++)
440 1.1 cgd goto on1;
441 1.1 cgd *dupentry = 1;
442 1.1 cgd return t;
443 1.1 cgd on1:
444 1.1 cgd *dupentry = 0;
445 1.1 cgd cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
446 1.1 cgd for (b = (cp - v) << 3; cmp_res; b--)
447 1.1 cgd cmp_res >>= 1;
448 1.1 cgd }
449 1.1 cgd {
450 1.14 augustss struct radix_node *p, *x = top;
451 1.1 cgd cp = v;
452 1.1 cgd do {
453 1.1 cgd p = x;
454 1.28 perry if (cp[x->rn_off] & x->rn_bmask)
455 1.1 cgd x = x->rn_r;
456 1.1 cgd else x = x->rn_l;
457 1.1 cgd } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
458 1.1 cgd #ifdef RN_DEBUG
459 1.1 cgd if (rn_debug)
460 1.32 dyoung log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
461 1.1 cgd #endif
462 1.6 mycroft t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
463 1.1 cgd if ((cp[p->rn_off] & p->rn_bmask) == 0)
464 1.1 cgd p->rn_l = t;
465 1.1 cgd else
466 1.1 cgd p->rn_r = t;
467 1.1 cgd x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
468 1.1 cgd if ((cp[t->rn_off] & t->rn_bmask) == 0) {
469 1.1 cgd t->rn_r = x;
470 1.1 cgd } else {
471 1.1 cgd t->rn_r = tt; t->rn_l = x;
472 1.1 cgd }
473 1.1 cgd #ifdef RN_DEBUG
474 1.32 dyoung if (rn_debug) {
475 1.32 dyoung log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
476 1.32 dyoung traverse(head, p);
477 1.32 dyoung }
478 1.32 dyoung #endif /* RN_DEBUG */
479 1.1 cgd }
480 1.1 cgd return (tt);
481 1.1 cgd }
482 1.1 cgd
483 1.1 cgd struct radix_node *
484 1.23 matt rn_addmask(
485 1.23 matt const void *n_arg,
486 1.23 matt int search,
487 1.23 matt int skip)
488 1.1 cgd {
489 1.21 matt const char *netmask = n_arg;
490 1.21 matt const char *cp;
491 1.21 matt const char *cplim;
492 1.23 matt struct radix_node *x;
493 1.23 matt struct radix_node *saved_x;
494 1.14 augustss int b = 0, mlen, j;
495 1.9 mycroft int maskduplicated, m0, isnormal;
496 1.9 mycroft static int last_zeroed = 0;
497 1.9 mycroft
498 1.29 christos if ((mlen = *(const u_char *)netmask) > max_keylen)
499 1.9 mycroft mlen = max_keylen;
500 1.9 mycroft if (skip == 0)
501 1.9 mycroft skip = 1;
502 1.9 mycroft if (mlen <= skip)
503 1.9 mycroft return (mask_rnhead->rnh_nodes);
504 1.9 mycroft if (skip > 1)
505 1.9 mycroft Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
506 1.9 mycroft if ((m0 = mlen) > skip)
507 1.9 mycroft Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
508 1.9 mycroft /*
509 1.9 mycroft * Trim trailing zeroes.
510 1.9 mycroft */
511 1.9 mycroft for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
512 1.9 mycroft cp--;
513 1.9 mycroft mlen = cp - addmask_key;
514 1.9 mycroft if (mlen <= skip) {
515 1.9 mycroft if (m0 >= last_zeroed)
516 1.9 mycroft last_zeroed = mlen;
517 1.9 mycroft return (mask_rnhead->rnh_nodes);
518 1.9 mycroft }
519 1.9 mycroft if (m0 < last_zeroed)
520 1.9 mycroft Bzero(addmask_key + m0, last_zeroed - m0);
521 1.9 mycroft *addmask_key = last_zeroed = mlen;
522 1.9 mycroft x = rn_search(addmask_key, rn_masktop);
523 1.9 mycroft if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
524 1.9 mycroft x = 0;
525 1.9 mycroft if (x || search)
526 1.9 mycroft return (x);
527 1.6 mycroft R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
528 1.9 mycroft if ((saved_x = x) == 0)
529 1.1 cgd return (0);
530 1.6 mycroft Bzero(x, max_keylen + 2 * sizeof (*x));
531 1.22 christos cp = netmask = (caddr_t)(x + 2);
532 1.23 matt Bcopy(addmask_key, (caddr_t)(x + 2), mlen);
533 1.9 mycroft x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
534 1.9 mycroft if (maskduplicated) {
535 1.16 enami log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
536 1.9 mycroft Free(saved_x);
537 1.9 mycroft return (x);
538 1.9 mycroft }
539 1.9 mycroft /*
540 1.9 mycroft * Calculate index of mask, and check for normalcy.
541 1.9 mycroft */
542 1.9 mycroft cplim = netmask + mlen; isnormal = 1;
543 1.29 christos for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
544 1.9 mycroft cp++;
545 1.1 cgd if (cp != cplim) {
546 1.28 perry for (j = 0x80; (j & *cp) != 0; j >>= 1)
547 1.9 mycroft b++;
548 1.9 mycroft if (*cp != normal_chars[b] || cp != (cplim - 1))
549 1.9 mycroft isnormal = 0;
550 1.1 cgd }
551 1.9 mycroft b += (cp - netmask) << 3;
552 1.1 cgd x->rn_b = -1 - b;
553 1.9 mycroft if (isnormal)
554 1.9 mycroft x->rn_flags |= RNF_NORMAL;
555 1.1 cgd return (x);
556 1.1 cgd }
557 1.1 cgd
558 1.9 mycroft static int /* XXX: arbitrary ordering for non-contiguous masks */
559 1.23 matt rn_lexobetter(
560 1.23 matt const void *m_arg,
561 1.23 matt const void *n_arg)
562 1.23 matt {
563 1.23 matt const u_char *mp = m_arg;
564 1.23 matt const u_char *np = n_arg;
565 1.23 matt const u_char *lim;
566 1.9 mycroft
567 1.9 mycroft if (*mp > *np)
568 1.9 mycroft return 1; /* not really, but need to check longer one first */
569 1.28 perry if (*mp == *np)
570 1.9 mycroft for (lim = mp + *mp; mp < lim;)
571 1.9 mycroft if (*mp++ > *np++)
572 1.9 mycroft return 1;
573 1.9 mycroft return 0;
574 1.9 mycroft }
575 1.9 mycroft
576 1.9 mycroft static struct radix_mask *
577 1.23 matt rn_new_radix_mask(
578 1.23 matt struct radix_node *tt,
579 1.23 matt struct radix_mask *next)
580 1.9 mycroft {
581 1.14 augustss struct radix_mask *m;
582 1.9 mycroft
583 1.9 mycroft MKGet(m);
584 1.9 mycroft if (m == 0) {
585 1.9 mycroft log(LOG_ERR, "Mask for route not entered\n");
586 1.9 mycroft return (0);
587 1.9 mycroft }
588 1.9 mycroft Bzero(m, sizeof *m);
589 1.9 mycroft m->rm_b = tt->rn_b;
590 1.9 mycroft m->rm_flags = tt->rn_flags;
591 1.9 mycroft if (tt->rn_flags & RNF_NORMAL)
592 1.9 mycroft m->rm_leaf = tt;
593 1.9 mycroft else
594 1.9 mycroft m->rm_mask = tt->rn_mask;
595 1.9 mycroft m->rm_mklist = next;
596 1.9 mycroft tt->rn_mklist = m;
597 1.9 mycroft return m;
598 1.9 mycroft }
599 1.9 mycroft
600 1.1 cgd struct radix_node *
601 1.23 matt rn_addroute(
602 1.23 matt const void *v_arg,
603 1.23 matt const void *n_arg,
604 1.23 matt struct radix_node_head *head,
605 1.23 matt struct radix_node treenodes[2])
606 1.1 cgd {
607 1.21 matt const char *v = v_arg;
608 1.21 matt const char *netmask = n_arg;
609 1.23 matt struct radix_node *t;
610 1.23 matt struct radix_node *x = 0;
611 1.23 matt struct radix_node *tt;
612 1.23 matt struct radix_node *saved_tt;
613 1.23 matt struct radix_node *top = head->rnh_treetop;
614 1.10 christos short b = 0, b_leaf = 0;
615 1.9 mycroft int keyduplicated;
616 1.21 matt const char *mmask;
617 1.1 cgd struct radix_mask *m, **mp;
618 1.1 cgd
619 1.1 cgd /*
620 1.1 cgd * In dealing with non-contiguous masks, there may be
621 1.1 cgd * many different routes which have the same mask.
622 1.1 cgd * We will find it useful to have a unique pointer to
623 1.1 cgd * the mask to speed avoiding duplicate references at
624 1.1 cgd * nodes and possibly save time in calculating indices.
625 1.1 cgd */
626 1.1 cgd if (netmask) {
627 1.9 mycroft if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
628 1.9 mycroft return (0);
629 1.9 mycroft b_leaf = x->rn_b;
630 1.9 mycroft b = -1 - x->rn_b;
631 1.1 cgd netmask = x->rn_key;
632 1.1 cgd }
633 1.1 cgd /*
634 1.1 cgd * Deal with duplicated keys: attach node to previous instance
635 1.1 cgd */
636 1.1 cgd saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
637 1.1 cgd if (keyduplicated) {
638 1.9 mycroft for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
639 1.1 cgd if (tt->rn_mask == netmask)
640 1.1 cgd return (0);
641 1.6 mycroft if (netmask == 0 ||
642 1.9 mycroft (tt->rn_mask &&
643 1.9 mycroft ((b_leaf < tt->rn_b) || /* index(netmask) > node */
644 1.9 mycroft rn_refines(netmask, tt->rn_mask) ||
645 1.9 mycroft rn_lexobetter(netmask, tt->rn_mask))))
646 1.6 mycroft break;
647 1.9 mycroft }
648 1.1 cgd /*
649 1.1 cgd * If the mask is not duplicated, we wouldn't
650 1.1 cgd * find it among possible duplicate key entries
651 1.1 cgd * anyway, so the above test doesn't hurt.
652 1.1 cgd *
653 1.6 mycroft * We sort the masks for a duplicated key the same way as
654 1.6 mycroft * in a masklist -- most specific to least specific.
655 1.6 mycroft * This may require the unfortunate nuisance of relocating
656 1.1 cgd * the head of the list.
657 1.12 christos *
658 1.12 christos * We also reverse, or doubly link the list through the
659 1.12 christos * parent pointer.
660 1.1 cgd */
661 1.9 mycroft if (tt == saved_tt) {
662 1.6 mycroft struct radix_node *xx = x;
663 1.6 mycroft /* link in at head of list */
664 1.6 mycroft (tt = treenodes)->rn_dupedkey = t;
665 1.6 mycroft tt->rn_flags = t->rn_flags;
666 1.6 mycroft tt->rn_p = x = t->rn_p;
667 1.12 christos t->rn_p = tt;
668 1.6 mycroft if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
669 1.6 mycroft saved_tt = tt; x = xx;
670 1.6 mycroft } else {
671 1.6 mycroft (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
672 1.6 mycroft t->rn_dupedkey = tt;
673 1.12 christos tt->rn_p = t;
674 1.12 christos if (tt->rn_dupedkey)
675 1.12 christos tt->rn_dupedkey->rn_p = tt;
676 1.6 mycroft }
677 1.1 cgd #ifdef RN_DEBUG
678 1.1 cgd t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
679 1.1 cgd tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
680 1.1 cgd #endif
681 1.29 christos tt->rn_key = __UNCONST(v); /*XXXUNCONST*/
682 1.1 cgd tt->rn_b = -1;
683 1.9 mycroft tt->rn_flags = RNF_ACTIVE;
684 1.1 cgd }
685 1.1 cgd /*
686 1.1 cgd * Put mask in tree.
687 1.1 cgd */
688 1.1 cgd if (netmask) {
689 1.1 cgd tt->rn_mask = netmask;
690 1.1 cgd tt->rn_b = x->rn_b;
691 1.9 mycroft tt->rn_flags |= x->rn_flags & RNF_NORMAL;
692 1.1 cgd }
693 1.1 cgd t = saved_tt->rn_p;
694 1.9 mycroft if (keyduplicated)
695 1.9 mycroft goto on2;
696 1.1 cgd b_leaf = -1 - t->rn_b;
697 1.1 cgd if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
698 1.1 cgd /* Promote general routes from below */
699 1.28 perry if (x->rn_b < 0) {
700 1.9 mycroft for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
701 1.1 cgd if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
702 1.10 christos *mp = m = rn_new_radix_mask(x, 0);
703 1.10 christos if (m)
704 1.9 mycroft mp = &m->rm_mklist;
705 1.1 cgd }
706 1.1 cgd } else if (x->rn_mklist) {
707 1.1 cgd /*
708 1.1 cgd * Skip over masks whose index is > that of new node
709 1.1 cgd */
710 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
711 1.1 cgd if (m->rm_b >= b_leaf)
712 1.1 cgd break;
713 1.1 cgd t->rn_mklist = m; *mp = 0;
714 1.1 cgd }
715 1.9 mycroft on2:
716 1.1 cgd /* Add new route to highest possible ancestor's list */
717 1.1 cgd if ((netmask == 0) || (b > t->rn_b ))
718 1.1 cgd return tt; /* can't lift at all */
719 1.1 cgd b_leaf = tt->rn_b;
720 1.1 cgd do {
721 1.1 cgd x = t;
722 1.1 cgd t = t->rn_p;
723 1.6 mycroft } while (b <= t->rn_b && x != top);
724 1.1 cgd /*
725 1.1 cgd * Search through routes associated with node to
726 1.1 cgd * insert new route according to index.
727 1.9 mycroft * Need same criteria as when sorting dupedkeys to avoid
728 1.9 mycroft * double loop on deletion.
729 1.1 cgd */
730 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
731 1.1 cgd if (m->rm_b < b_leaf)
732 1.1 cgd continue;
733 1.1 cgd if (m->rm_b > b_leaf)
734 1.1 cgd break;
735 1.9 mycroft if (m->rm_flags & RNF_NORMAL) {
736 1.9 mycroft mmask = m->rm_leaf->rn_mask;
737 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) {
738 1.16 enami log(LOG_ERR, "Non-unique normal route,"
739 1.16 enami " mask not entered\n");
740 1.9 mycroft return tt;
741 1.9 mycroft }
742 1.9 mycroft } else
743 1.9 mycroft mmask = m->rm_mask;
744 1.9 mycroft if (mmask == netmask) {
745 1.1 cgd m->rm_refs++;
746 1.1 cgd tt->rn_mklist = m;
747 1.1 cgd return tt;
748 1.1 cgd }
749 1.9 mycroft if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
750 1.6 mycroft break;
751 1.1 cgd }
752 1.9 mycroft *mp = rn_new_radix_mask(tt, *mp);
753 1.1 cgd return tt;
754 1.1 cgd }
755 1.1 cgd
756 1.1 cgd struct radix_node *
757 1.23 matt rn_delete(
758 1.23 matt const void *v_arg,
759 1.23 matt const void *netmask_arg,
760 1.23 matt struct radix_node_head *head)
761 1.23 matt {
762 1.23 matt struct radix_node *t;
763 1.23 matt struct radix_node *p;
764 1.23 matt struct radix_node *x;
765 1.23 matt struct radix_node *tt;
766 1.23 matt struct radix_node *dupedkey;
767 1.23 matt struct radix_node *saved_tt;
768 1.23 matt struct radix_node *top;
769 1.23 matt struct radix_mask *m;
770 1.23 matt struct radix_mask *saved_m;
771 1.23 matt struct radix_mask **mp;
772 1.21 matt const char *v = v_arg;
773 1.21 matt const char *netmask = netmask_arg;
774 1.6 mycroft int b, head_off, vlen;
775 1.1 cgd
776 1.6 mycroft x = head->rnh_treetop;
777 1.6 mycroft tt = rn_search(v, x);
778 1.6 mycroft head_off = x->rn_off;
779 1.29 christos vlen = *(const u_char *)v;
780 1.6 mycroft saved_tt = tt;
781 1.6 mycroft top = x;
782 1.1 cgd if (tt == 0 ||
783 1.1 cgd Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
784 1.1 cgd return (0);
785 1.1 cgd /*
786 1.1 cgd * Delete our route from mask lists.
787 1.1 cgd */
788 1.9 mycroft if (netmask) {
789 1.9 mycroft if ((x = rn_addmask(netmask, 1, head_off)) == 0)
790 1.9 mycroft return (0);
791 1.9 mycroft netmask = x->rn_key;
792 1.1 cgd while (tt->rn_mask != netmask)
793 1.1 cgd if ((tt = tt->rn_dupedkey) == 0)
794 1.1 cgd return (0);
795 1.1 cgd }
796 1.1 cgd if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
797 1.1 cgd goto on1;
798 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) {
799 1.9 mycroft if (m->rm_leaf != tt || m->rm_refs > 0) {
800 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n");
801 1.9 mycroft return 0; /* dangling ref could cause disaster */
802 1.9 mycroft }
803 1.28 perry } else {
804 1.9 mycroft if (m->rm_mask != tt->rn_mask) {
805 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n");
806 1.9 mycroft goto on1;
807 1.9 mycroft }
808 1.9 mycroft if (--m->rm_refs >= 0)
809 1.9 mycroft goto on1;
810 1.1 cgd }
811 1.1 cgd b = -1 - tt->rn_b;
812 1.1 cgd t = saved_tt->rn_p;
813 1.1 cgd if (b > t->rn_b)
814 1.1 cgd goto on1; /* Wasn't lifted at all */
815 1.1 cgd do {
816 1.1 cgd x = t;
817 1.1 cgd t = t->rn_p;
818 1.6 mycroft } while (b <= t->rn_b && x != top);
819 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
820 1.1 cgd if (m == saved_m) {
821 1.1 cgd *mp = m->rm_mklist;
822 1.1 cgd MKFree(m);
823 1.1 cgd break;
824 1.1 cgd }
825 1.9 mycroft if (m == 0) {
826 1.9 mycroft log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
827 1.9 mycroft if (tt->rn_flags & RNF_NORMAL)
828 1.9 mycroft return (0); /* Dangling ref to us */
829 1.9 mycroft }
830 1.1 cgd on1:
831 1.1 cgd /*
832 1.1 cgd * Eliminate us from tree
833 1.1 cgd */
834 1.1 cgd if (tt->rn_flags & RNF_ROOT)
835 1.1 cgd return (0);
836 1.1 cgd #ifdef RN_DEBUG
837 1.1 cgd /* Get us out of the creation list */
838 1.1 cgd for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
839 1.1 cgd if (t) t->rn_ybro = tt->rn_ybro;
840 1.32 dyoung if (rn_debug)
841 1.32 dyoung log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
842 1.6 mycroft #endif
843 1.1 cgd t = tt->rn_p;
844 1.12 christos dupedkey = saved_tt->rn_dupedkey;
845 1.12 christos if (dupedkey) {
846 1.12 christos /*
847 1.12 christos * Here, tt is the deletion target, and
848 1.12 christos * saved_tt is the head of the dupedkey chain.
849 1.12 christos */
850 1.1 cgd if (tt == saved_tt) {
851 1.1 cgd x = dupedkey; x->rn_p = t;
852 1.1 cgd if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
853 1.6 mycroft } else {
854 1.12 christos /* find node in front of tt on the chain */
855 1.6 mycroft for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
856 1.6 mycroft p = p->rn_dupedkey;
857 1.12 christos if (p) {
858 1.12 christos p->rn_dupedkey = tt->rn_dupedkey;
859 1.12 christos if (tt->rn_dupedkey)
860 1.12 christos tt->rn_dupedkey->rn_p = p;
861 1.12 christos } else log(LOG_ERR, "rn_delete: couldn't find us\n");
862 1.6 mycroft }
863 1.6 mycroft t = tt + 1;
864 1.6 mycroft if (t->rn_flags & RNF_ACTIVE) {
865 1.1 cgd #ifndef RN_DEBUG
866 1.6 mycroft *++x = *t; p = t->rn_p;
867 1.1 cgd #else
868 1.6 mycroft b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
869 1.1 cgd #endif
870 1.1 cgd if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
871 1.1 cgd x->rn_l->rn_p = x; x->rn_r->rn_p = x;
872 1.1 cgd }
873 1.1 cgd goto out;
874 1.1 cgd }
875 1.1 cgd if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
876 1.1 cgd p = t->rn_p;
877 1.1 cgd if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
878 1.1 cgd x->rn_p = p;
879 1.1 cgd /*
880 1.1 cgd * Demote routes attached to us.
881 1.1 cgd */
882 1.1 cgd if (t->rn_mklist) {
883 1.1 cgd if (x->rn_b >= 0) {
884 1.12 christos for (mp = &x->rn_mklist; (m = *mp);)
885 1.1 cgd mp = &m->rm_mklist;
886 1.1 cgd *mp = t->rn_mklist;
887 1.1 cgd } else {
888 1.9 mycroft /* If there are any key,mask pairs in a sibling
889 1.9 mycroft duped-key chain, some subset will appear sorted
890 1.9 mycroft in the same order attached to our mklist */
891 1.9 mycroft for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
892 1.9 mycroft if (m == x->rn_mklist) {
893 1.9 mycroft struct radix_mask *mm = m->rm_mklist;
894 1.1 cgd x->rn_mklist = 0;
895 1.9 mycroft if (--(m->rm_refs) < 0)
896 1.9 mycroft MKFree(m);
897 1.9 mycroft m = mm;
898 1.9 mycroft }
899 1.9 mycroft if (m)
900 1.11 christos log(LOG_ERR, "%s %p at %p\n",
901 1.17 itojun "rn_delete: Orphaned Mask", m, x);
902 1.1 cgd }
903 1.1 cgd }
904 1.1 cgd /*
905 1.1 cgd * We may be holding an active internal node in the tree.
906 1.1 cgd */
907 1.1 cgd x = tt + 1;
908 1.1 cgd if (t != x) {
909 1.1 cgd #ifndef RN_DEBUG
910 1.1 cgd *t = *x;
911 1.1 cgd #else
912 1.1 cgd b = t->rn_info; *t = *x; t->rn_info = b;
913 1.1 cgd #endif
914 1.1 cgd t->rn_l->rn_p = t; t->rn_r->rn_p = t;
915 1.1 cgd p = x->rn_p;
916 1.1 cgd if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
917 1.1 cgd }
918 1.1 cgd out:
919 1.32 dyoung #ifdef RN_DEBUG
920 1.32 dyoung if (rn_debug) {
921 1.32 dyoung log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
922 1.32 dyoung traverse(head, tt);
923 1.32 dyoung }
924 1.32 dyoung #endif /* RN_DEBUG */
925 1.1 cgd tt->rn_flags &= ~RNF_ACTIVE;
926 1.1 cgd tt[1].rn_flags &= ~RNF_ACTIVE;
927 1.1 cgd return (tt);
928 1.1 cgd }
929 1.1 cgd
930 1.32 dyoung static struct radix_node *
931 1.32 dyoung rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
932 1.32 dyoung {
933 1.32 dyoung /* If at right child go back up, otherwise, go right */
934 1.32 dyoung while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
935 1.32 dyoung if (printer != NULL)
936 1.32 dyoung (*printer)(arg, SUBTREE_CLOSE);
937 1.32 dyoung rn = rn->rn_p;
938 1.32 dyoung }
939 1.32 dyoung if (printer)
940 1.32 dyoung rn_nodeprint(rn->rn_p, printer, arg, "");
941 1.32 dyoung /* Find the next *leaf* since next node might vanish, too */
942 1.32 dyoung for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
943 1.32 dyoung if (printer != NULL)
944 1.32 dyoung (*printer)(arg, SUBTREE_OPEN);
945 1.32 dyoung rn = rn->rn_l;
946 1.32 dyoung }
947 1.32 dyoung return rn;
948 1.32 dyoung }
949 1.32 dyoung
950 1.32 dyoung static struct radix_node *
951 1.32 dyoung rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
952 1.32 dyoung {
953 1.32 dyoung /* First time through node, go left */
954 1.32 dyoung while (rn->rn_b >= 0) {
955 1.32 dyoung if (printer != NULL)
956 1.32 dyoung (*printer)(arg, SUBTREE_OPEN);
957 1.32 dyoung rn = rn->rn_l;
958 1.32 dyoung }
959 1.32 dyoung return rn;
960 1.32 dyoung }
961 1.32 dyoung
962 1.6 mycroft int
963 1.23 matt rn_walktree(
964 1.23 matt struct radix_node_head *h,
965 1.23 matt int (*f)(struct radix_node *, void *),
966 1.23 matt void *w)
967 1.6 mycroft {
968 1.6 mycroft int error;
969 1.32 dyoung struct radix_node *base, *next, *rn;
970 1.6 mycroft /*
971 1.6 mycroft * This gets complicated because we may delete the node
972 1.6 mycroft * while applying the function f to it, so we need to calculate
973 1.6 mycroft * the successor node in advance.
974 1.6 mycroft */
975 1.32 dyoung rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
976 1.6 mycroft for (;;) {
977 1.6 mycroft base = rn;
978 1.32 dyoung next = rn_walknext(rn, NULL, NULL);
979 1.6 mycroft /* Process leaves */
980 1.10 christos while ((rn = base) != NULL) {
981 1.6 mycroft base = rn->rn_dupedkey;
982 1.6 mycroft if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
983 1.6 mycroft return (error);
984 1.6 mycroft }
985 1.6 mycroft rn = next;
986 1.6 mycroft if (rn->rn_flags & RNF_ROOT)
987 1.6 mycroft return (0);
988 1.6 mycroft }
989 1.6 mycroft /* NOTREACHED */
990 1.6 mycroft }
991 1.6 mycroft
992 1.6 mycroft int
993 1.6 mycroft rn_inithead(head, off)
994 1.6 mycroft void **head;
995 1.6 mycroft int off;
996 1.1 cgd {
997 1.14 augustss struct radix_node_head *rnh;
998 1.15 itojun
999 1.1 cgd if (*head)
1000 1.1 cgd return (1);
1001 1.1 cgd R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1002 1.1 cgd if (rnh == 0)
1003 1.1 cgd return (0);
1004 1.15 itojun *head = rnh;
1005 1.15 itojun return rn_inithead0(rnh, off);
1006 1.15 itojun }
1007 1.15 itojun
1008 1.15 itojun int
1009 1.15 itojun rn_inithead0(rnh, off)
1010 1.15 itojun struct radix_node_head *rnh;
1011 1.15 itojun int off;
1012 1.15 itojun {
1013 1.23 matt struct radix_node *t;
1014 1.23 matt struct radix_node *tt;
1015 1.23 matt struct radix_node *ttt;
1016 1.15 itojun
1017 1.1 cgd Bzero(rnh, sizeof (*rnh));
1018 1.1 cgd t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1019 1.1 cgd ttt = rnh->rnh_nodes + 2;
1020 1.1 cgd t->rn_r = ttt;
1021 1.1 cgd t->rn_p = t;
1022 1.1 cgd tt = t->rn_l;
1023 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1024 1.1 cgd tt->rn_b = -1 - off;
1025 1.1 cgd *ttt = *tt;
1026 1.1 cgd ttt->rn_key = rn_ones;
1027 1.6 mycroft rnh->rnh_addaddr = rn_addroute;
1028 1.6 mycroft rnh->rnh_deladdr = rn_delete;
1029 1.6 mycroft rnh->rnh_matchaddr = rn_match;
1030 1.9 mycroft rnh->rnh_lookup = rn_lookup;
1031 1.6 mycroft rnh->rnh_walktree = rn_walktree;
1032 1.1 cgd rnh->rnh_treetop = t;
1033 1.1 cgd return (1);
1034 1.6 mycroft }
1035 1.6 mycroft
1036 1.6 mycroft void
1037 1.6 mycroft rn_init()
1038 1.6 mycroft {
1039 1.6 mycroft char *cp, *cplim;
1040 1.8 jtc #ifdef _KERNEL
1041 1.27 enami static int initialized;
1042 1.27 enami __link_set_decl(domains, struct domain);
1043 1.27 enami struct domain *const *dpp;
1044 1.27 enami
1045 1.27 enami if (initialized)
1046 1.27 enami return;
1047 1.27 enami initialized = 1;
1048 1.6 mycroft
1049 1.27 enami __link_set_foreach(dpp, domains) {
1050 1.27 enami if ((*dpp)->dom_maxrtkey > max_keylen)
1051 1.27 enami max_keylen = (*dpp)->dom_maxrtkey;
1052 1.27 enami }
1053 1.25 christos #ifdef INET
1054 1.24 itojun encap_setkeylen();
1055 1.6 mycroft #endif
1056 1.25 christos #endif
1057 1.6 mycroft if (max_keylen == 0) {
1058 1.9 mycroft log(LOG_ERR,
1059 1.9 mycroft "rn_init: radix functions require max_keylen be set\n");
1060 1.6 mycroft return;
1061 1.6 mycroft }
1062 1.6 mycroft R_Malloc(rn_zeros, char *, 3 * max_keylen);
1063 1.6 mycroft if (rn_zeros == NULL)
1064 1.6 mycroft panic("rn_init");
1065 1.6 mycroft Bzero(rn_zeros, 3 * max_keylen);
1066 1.6 mycroft rn_ones = cp = rn_zeros + max_keylen;
1067 1.9 mycroft addmask_key = cplim = rn_ones + max_keylen;
1068 1.6 mycroft while (cp < cplim)
1069 1.6 mycroft *cp++ = -1;
1070 1.19 thorpej if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1071 1.6 mycroft panic("rn_init 2");
1072 1.1 cgd }
1073