radix.c revision 1.36 1 1.36 dyoung /* $NetBSD: radix.c,v 1.36 2007/06/13 05:08:02 dyoung Exp $ */
2 1.7 cgd
3 1.1 cgd /*
4 1.6 mycroft * Copyright (c) 1988, 1989, 1993
5 1.6 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 cgd *
7 1.1 cgd * Redistribution and use in source and binary forms, with or without
8 1.1 cgd * modification, are permitted provided that the following conditions
9 1.1 cgd * are met:
10 1.1 cgd * 1. Redistributions of source code must retain the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer.
12 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cgd * notice, this list of conditions and the following disclaimer in the
14 1.1 cgd * documentation and/or other materials provided with the distribution.
15 1.20 agc * 3. Neither the name of the University nor the names of its contributors
16 1.1 cgd * may be used to endorse or promote products derived from this software
17 1.1 cgd * without specific prior written permission.
18 1.1 cgd *
19 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 cgd * SUCH DAMAGE.
30 1.1 cgd *
31 1.13 fvdl * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 1.1 cgd */
33 1.1 cgd
34 1.1 cgd /*
35 1.1 cgd * Routines to build and maintain radix trees for routing lookups.
36 1.1 cgd */
37 1.18 lukem
38 1.18 lukem #include <sys/cdefs.h>
39 1.36 dyoung __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.36 2007/06/13 05:08:02 dyoung Exp $");
40 1.18 lukem
41 1.12 christos #ifndef _NET_RADIX_H_
42 1.4 mycroft #include <sys/param.h>
43 1.12 christos #ifdef _KERNEL
44 1.27 enami #include "opt_inet.h"
45 1.27 enami
46 1.4 mycroft #include <sys/systm.h>
47 1.4 mycroft #include <sys/malloc.h>
48 1.1 cgd #define M_DONTWAIT M_NOWAIT
49 1.6 mycroft #include <sys/domain.h>
50 1.24 itojun #include <netinet/ip_encap.h>
51 1.9 mycroft #else
52 1.9 mycroft #include <stdlib.h>
53 1.6 mycroft #endif
54 1.32 dyoung #include <machine/stdarg.h>
55 1.9 mycroft #include <sys/syslog.h>
56 1.4 mycroft #include <net/radix.h>
57 1.12 christos #endif
58 1.6 mycroft
59 1.32 dyoung typedef void (*rn_printer_t)(void *, const char *fmt, ...);
60 1.32 dyoung
61 1.6 mycroft int max_keylen;
62 1.6 mycroft struct radix_mask *rn_mkfreelist;
63 1.1 cgd struct radix_node_head *mask_rnhead;
64 1.9 mycroft static char *addmask_key;
65 1.21 matt static const char normal_chars[] =
66 1.21 matt {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
67 1.6 mycroft static char *rn_zeros, *rn_ones;
68 1.6 mycroft
69 1.6 mycroft #define rn_masktop (mask_rnhead->rnh_treetop)
70 1.10 christos
71 1.23 matt static int rn_satisfies_leaf(const char *, struct radix_node *, int);
72 1.23 matt static int rn_lexobetter(const void *, const void *);
73 1.23 matt static struct radix_mask *rn_new_radix_mask(struct radix_node *,
74 1.23 matt struct radix_mask *);
75 1.32 dyoung static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
76 1.32 dyoung void *);
77 1.32 dyoung static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
78 1.32 dyoung void *);
79 1.32 dyoung static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
80 1.32 dyoung const char *);
81 1.32 dyoung
82 1.32 dyoung #define SUBTREE_OPEN "[ "
83 1.32 dyoung #define SUBTREE_CLOSE " ]"
84 1.32 dyoung
85 1.32 dyoung #ifdef RN_DEBUG
86 1.32 dyoung static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
87 1.32 dyoung #endif /* RN_DEBUG */
88 1.12 christos
89 1.1 cgd /*
90 1.1 cgd * The data structure for the keys is a radix tree with one way
91 1.1 cgd * branching removed. The index rn_b at an internal node n represents a bit
92 1.1 cgd * position to be tested. The tree is arranged so that all descendants
93 1.1 cgd * of a node n have keys whose bits all agree up to position rn_b - 1.
94 1.1 cgd * (We say the index of n is rn_b.)
95 1.1 cgd *
96 1.1 cgd * There is at least one descendant which has a one bit at position rn_b,
97 1.1 cgd * and at least one with a zero there.
98 1.1 cgd *
99 1.1 cgd * A route is determined by a pair of key and mask. We require that the
100 1.1 cgd * bit-wise logical and of the key and mask to be the key.
101 1.1 cgd * We define the index of a route to associated with the mask to be
102 1.1 cgd * the first bit number in the mask where 0 occurs (with bit number 0
103 1.1 cgd * representing the highest order bit).
104 1.28 perry *
105 1.1 cgd * We say a mask is normal if every bit is 0, past the index of the mask.
106 1.1 cgd * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
107 1.1 cgd * and m is a normal mask, then the route applies to every descendant of n.
108 1.1 cgd * If the index(m) < rn_b, this implies the trailing last few bits of k
109 1.1 cgd * before bit b are all 0, (and hence consequently true of every descendant
110 1.1 cgd * of n), so the route applies to all descendants of the node as well.
111 1.28 perry *
112 1.9 mycroft * Similar logic shows that a non-normal mask m such that
113 1.1 cgd * index(m) <= index(n) could potentially apply to many children of n.
114 1.1 cgd * Thus, for each non-host route, we attach its mask to a list at an internal
115 1.28 perry * node as high in the tree as we can go.
116 1.9 mycroft *
117 1.9 mycroft * The present version of the code makes use of normal routes in short-
118 1.31 wiz * circuiting an explicit mask and compare operation when testing whether
119 1.9 mycroft * a key satisfies a normal route, and also in remembering the unique leaf
120 1.9 mycroft * that governs a subtree.
121 1.1 cgd */
122 1.1 cgd
123 1.1 cgd struct radix_node *
124 1.23 matt rn_search(
125 1.23 matt const void *v_arg,
126 1.23 matt struct radix_node *head)
127 1.1 cgd {
128 1.21 matt const u_char * const v = v_arg;
129 1.14 augustss struct radix_node *x;
130 1.1 cgd
131 1.21 matt for (x = head; x->rn_b >= 0;) {
132 1.1 cgd if (x->rn_bmask & v[x->rn_off])
133 1.1 cgd x = x->rn_r;
134 1.1 cgd else
135 1.1 cgd x = x->rn_l;
136 1.1 cgd }
137 1.6 mycroft return (x);
138 1.13 fvdl }
139 1.1 cgd
140 1.1 cgd struct radix_node *
141 1.23 matt rn_search_m(
142 1.23 matt const void *v_arg,
143 1.23 matt struct radix_node *head,
144 1.23 matt const void *m_arg)
145 1.1 cgd {
146 1.14 augustss struct radix_node *x;
147 1.21 matt const u_char * const v = v_arg;
148 1.21 matt const u_char * const m = m_arg;
149 1.1 cgd
150 1.1 cgd for (x = head; x->rn_b >= 0;) {
151 1.1 cgd if ((x->rn_bmask & m[x->rn_off]) &&
152 1.1 cgd (x->rn_bmask & v[x->rn_off]))
153 1.1 cgd x = x->rn_r;
154 1.1 cgd else
155 1.1 cgd x = x->rn_l;
156 1.1 cgd }
157 1.1 cgd return x;
158 1.13 fvdl }
159 1.1 cgd
160 1.6 mycroft int
161 1.23 matt rn_refines(
162 1.23 matt const void *m_arg,
163 1.23 matt const void *n_arg)
164 1.6 mycroft {
165 1.21 matt const char *m = m_arg;
166 1.21 matt const char *n = n_arg;
167 1.29 christos const char *lim = n + *(const u_char *)n;
168 1.21 matt const char *lim2 = lim;
169 1.29 christos int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
170 1.6 mycroft int masks_are_equal = 1;
171 1.6 mycroft
172 1.6 mycroft if (longer > 0)
173 1.6 mycroft lim -= longer;
174 1.6 mycroft while (n < lim) {
175 1.6 mycroft if (*n & ~(*m))
176 1.6 mycroft return 0;
177 1.6 mycroft if (*n++ != *m++)
178 1.6 mycroft masks_are_equal = 0;
179 1.6 mycroft }
180 1.6 mycroft while (n < lim2)
181 1.6 mycroft if (*n++)
182 1.6 mycroft return 0;
183 1.6 mycroft if (masks_are_equal && (longer < 0))
184 1.6 mycroft for (lim2 = m - longer; m < lim2; )
185 1.6 mycroft if (*m++)
186 1.6 mycroft return 1;
187 1.6 mycroft return (!masks_are_equal);
188 1.6 mycroft }
189 1.1 cgd
190 1.9 mycroft struct radix_node *
191 1.23 matt rn_lookup(
192 1.23 matt const void *v_arg,
193 1.23 matt const void *m_arg,
194 1.23 matt struct radix_node_head *head)
195 1.9 mycroft {
196 1.14 augustss struct radix_node *x;
197 1.21 matt const char *netmask = NULL;
198 1.9 mycroft
199 1.9 mycroft if (m_arg) {
200 1.9 mycroft if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
201 1.9 mycroft return (0);
202 1.9 mycroft netmask = x->rn_key;
203 1.9 mycroft }
204 1.9 mycroft x = rn_match(v_arg, head);
205 1.9 mycroft if (x && netmask) {
206 1.9 mycroft while (x && x->rn_mask != netmask)
207 1.9 mycroft x = x->rn_dupedkey;
208 1.9 mycroft }
209 1.9 mycroft return x;
210 1.9 mycroft }
211 1.9 mycroft
212 1.10 christos static int
213 1.23 matt rn_satisfies_leaf(
214 1.23 matt const char *trial,
215 1.23 matt struct radix_node *leaf,
216 1.23 matt int skip)
217 1.23 matt {
218 1.23 matt const char *cp = trial;
219 1.23 matt const char *cp2 = leaf->rn_key;
220 1.23 matt const char *cp3 = leaf->rn_mask;
221 1.21 matt const char *cplim;
222 1.29 christos int length = min(*(const u_char *)cp, *(const u_char *)cp2);
223 1.9 mycroft
224 1.9 mycroft if (cp3 == 0)
225 1.9 mycroft cp3 = rn_ones;
226 1.9 mycroft else
227 1.29 christos length = min(length, *(const u_char *)cp3);
228 1.9 mycroft cplim = cp + length; cp3 += skip; cp2 += skip;
229 1.9 mycroft for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
230 1.9 mycroft if ((*cp ^ *cp2) & *cp3)
231 1.9 mycroft return 0;
232 1.9 mycroft return 1;
233 1.9 mycroft }
234 1.1 cgd
235 1.1 cgd struct radix_node *
236 1.23 matt rn_match(
237 1.23 matt const void *v_arg,
238 1.23 matt struct radix_node_head *head)
239 1.1 cgd {
240 1.21 matt const char * const v = v_arg;
241 1.23 matt struct radix_node *t = head->rnh_treetop;
242 1.23 matt struct radix_node *top = t;
243 1.23 matt struct radix_node *x;
244 1.23 matt struct radix_node *saved_t;
245 1.21 matt const char *cp = v;
246 1.21 matt const char *cp2;
247 1.21 matt const char *cplim;
248 1.23 matt int off = t->rn_off;
249 1.29 christos int vlen = *(const u_char *)cp;
250 1.23 matt int matched_off;
251 1.14 augustss int test, b, rn_b;
252 1.1 cgd
253 1.1 cgd /*
254 1.6 mycroft * Open code rn_search(v, top) to avoid overhead of extra
255 1.1 cgd * subroutine call.
256 1.1 cgd */
257 1.1 cgd for (; t->rn_b >= 0; ) {
258 1.1 cgd if (t->rn_bmask & cp[t->rn_off])
259 1.1 cgd t = t->rn_r;
260 1.1 cgd else
261 1.1 cgd t = t->rn_l;
262 1.1 cgd }
263 1.1 cgd /*
264 1.1 cgd * See if we match exactly as a host destination
265 1.9 mycroft * or at least learn how many bits match, for normal mask finesse.
266 1.9 mycroft *
267 1.9 mycroft * It doesn't hurt us to limit how many bytes to check
268 1.9 mycroft * to the length of the mask, since if it matches we had a genuine
269 1.9 mycroft * match and the leaf we have is the most specific one anyway;
270 1.9 mycroft * if it didn't match with a shorter length it would fail
271 1.9 mycroft * with a long one. This wins big for class B&C netmasks which
272 1.9 mycroft * are probably the most common case...
273 1.1 cgd */
274 1.9 mycroft if (t->rn_mask)
275 1.29 christos vlen = *(const u_char *)t->rn_mask;
276 1.1 cgd cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
277 1.1 cgd for (; cp < cplim; cp++, cp2++)
278 1.1 cgd if (*cp != *cp2)
279 1.1 cgd goto on1;
280 1.1 cgd /*
281 1.1 cgd * This extra grot is in case we are explicitly asked
282 1.1 cgd * to look up the default. Ugh!
283 1.1 cgd */
284 1.1 cgd if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
285 1.1 cgd t = t->rn_dupedkey;
286 1.1 cgd return t;
287 1.1 cgd on1:
288 1.9 mycroft test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
289 1.9 mycroft for (b = 7; (test >>= 1) > 0;)
290 1.9 mycroft b--;
291 1.1 cgd matched_off = cp - v;
292 1.9 mycroft b += matched_off << 3;
293 1.9 mycroft rn_b = -1 - b;
294 1.9 mycroft /*
295 1.9 mycroft * If there is a host route in a duped-key chain, it will be first.
296 1.9 mycroft */
297 1.9 mycroft if ((saved_t = t)->rn_mask == 0)
298 1.9 mycroft t = t->rn_dupedkey;
299 1.9 mycroft for (; t; t = t->rn_dupedkey)
300 1.1 cgd /*
301 1.9 mycroft * Even if we don't match exactly as a host,
302 1.1 cgd * we may match if the leaf we wound up at is
303 1.1 cgd * a route to a net.
304 1.1 cgd */
305 1.9 mycroft if (t->rn_flags & RNF_NORMAL) {
306 1.9 mycroft if (rn_b <= t->rn_b)
307 1.9 mycroft return t;
308 1.15 itojun } else if (rn_satisfies_leaf(v, t, matched_off))
309 1.9 mycroft return t;
310 1.1 cgd t = saved_t;
311 1.1 cgd /* start searching up the tree */
312 1.1 cgd do {
313 1.14 augustss struct radix_mask *m;
314 1.1 cgd t = t->rn_p;
315 1.12 christos m = t->rn_mklist;
316 1.12 christos if (m) {
317 1.1 cgd /*
318 1.9 mycroft * If non-contiguous masks ever become important
319 1.9 mycroft * we can restore the masking and open coding of
320 1.9 mycroft * the search and satisfaction test and put the
321 1.9 mycroft * calculation of "off" back before the "do".
322 1.1 cgd */
323 1.1 cgd do {
324 1.9 mycroft if (m->rm_flags & RNF_NORMAL) {
325 1.9 mycroft if (rn_b <= m->rm_b)
326 1.9 mycroft return (m->rm_leaf);
327 1.9 mycroft } else {
328 1.9 mycroft off = min(t->rn_off, matched_off);
329 1.9 mycroft x = rn_search_m(v, t, m->rm_mask);
330 1.9 mycroft while (x && x->rn_mask != m->rm_mask)
331 1.9 mycroft x = x->rn_dupedkey;
332 1.15 itojun if (x && rn_satisfies_leaf(v, x, off))
333 1.17 itojun return x;
334 1.9 mycroft }
335 1.15 itojun m = m->rm_mklist;
336 1.12 christos } while (m);
337 1.1 cgd }
338 1.6 mycroft } while (t != top);
339 1.1 cgd return 0;
340 1.13 fvdl }
341 1.28 perry
342 1.32 dyoung static void
343 1.32 dyoung rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
344 1.32 dyoung const char *delim)
345 1.32 dyoung {
346 1.32 dyoung (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
347 1.32 dyoung delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
348 1.32 dyoung rn->rn_l, rn->rn_r);
349 1.32 dyoung }
350 1.32 dyoung
351 1.1 cgd #ifdef RN_DEBUG
352 1.6 mycroft int rn_debug = 1;
353 1.32 dyoung
354 1.32 dyoung static void
355 1.32 dyoung rn_dbg_print(void *arg, const char *fmt, ...)
356 1.32 dyoung {
357 1.32 dyoung va_list ap;
358 1.32 dyoung
359 1.32 dyoung va_start(ap, fmt);
360 1.32 dyoung vlog(LOG_DEBUG, fmt, ap);
361 1.32 dyoung va_end(ap);
362 1.32 dyoung }
363 1.32 dyoung
364 1.32 dyoung static void
365 1.32 dyoung rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
366 1.32 dyoung {
367 1.32 dyoung struct radix_node *dup, *rn;
368 1.32 dyoung const char *delim;
369 1.32 dyoung
370 1.32 dyoung if (printer == NULL)
371 1.32 dyoung return;
372 1.32 dyoung
373 1.32 dyoung rn = rn_walkfirst(h->rnh_treetop, printer, arg);
374 1.32 dyoung for (;;) {
375 1.32 dyoung /* Process leaves */
376 1.32 dyoung delim = "";
377 1.32 dyoung for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
378 1.32 dyoung if ((dup->rn_flags & RNF_ROOT) != 0)
379 1.32 dyoung continue;
380 1.32 dyoung rn_nodeprint(dup, printer, arg, delim);
381 1.32 dyoung delim = ", ";
382 1.32 dyoung }
383 1.32 dyoung rn = rn_walknext(rn, printer, arg);
384 1.32 dyoung if (rn->rn_flags & RNF_ROOT)
385 1.32 dyoung return;
386 1.32 dyoung }
387 1.32 dyoung /* NOTREACHED */
388 1.32 dyoung }
389 1.32 dyoung
390 1.32 dyoung #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
391 1.32 dyoung #endif /* RN_DEBUG */
392 1.1 cgd
393 1.1 cgd struct radix_node *
394 1.23 matt rn_newpair(
395 1.23 matt const void *v,
396 1.23 matt int b,
397 1.23 matt struct radix_node nodes[2])
398 1.1 cgd {
399 1.23 matt struct radix_node *tt = nodes;
400 1.23 matt struct radix_node *t = tt + 1;
401 1.1 cgd t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
402 1.1 cgd t->rn_l = tt; t->rn_off = b >> 3;
403 1.21 matt tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
404 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ACTIVE;
405 1.1 cgd return t;
406 1.1 cgd }
407 1.1 cgd
408 1.1 cgd struct radix_node *
409 1.23 matt rn_insert(
410 1.23 matt const void *v_arg,
411 1.23 matt struct radix_node_head *head,
412 1.23 matt int *dupentry,
413 1.23 matt struct radix_node nodes[2])
414 1.1 cgd {
415 1.6 mycroft struct radix_node *top = head->rnh_treetop;
416 1.14 augustss struct radix_node *t = rn_search(v_arg, top);
417 1.23 matt struct radix_node *tt;
418 1.23 matt const char *v = v_arg;
419 1.21 matt int head_off = top->rn_off;
420 1.29 christos int vlen = *((const u_char *)v);
421 1.21 matt const char *cp = v + head_off;
422 1.14 augustss int b;
423 1.1 cgd /*
424 1.9 mycroft * Find first bit at which v and t->rn_key differ
425 1.1 cgd */
426 1.1 cgd {
427 1.21 matt const char *cp2 = t->rn_key + head_off;
428 1.21 matt const char *cplim = v + vlen;
429 1.14 augustss int cmp_res;
430 1.1 cgd
431 1.1 cgd while (cp < cplim)
432 1.1 cgd if (*cp2++ != *cp++)
433 1.1 cgd goto on1;
434 1.1 cgd *dupentry = 1;
435 1.1 cgd return t;
436 1.1 cgd on1:
437 1.1 cgd *dupentry = 0;
438 1.1 cgd cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
439 1.1 cgd for (b = (cp - v) << 3; cmp_res; b--)
440 1.1 cgd cmp_res >>= 1;
441 1.1 cgd }
442 1.1 cgd {
443 1.14 augustss struct radix_node *p, *x = top;
444 1.1 cgd cp = v;
445 1.1 cgd do {
446 1.1 cgd p = x;
447 1.28 perry if (cp[x->rn_off] & x->rn_bmask)
448 1.1 cgd x = x->rn_r;
449 1.1 cgd else x = x->rn_l;
450 1.1 cgd } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
451 1.1 cgd #ifdef RN_DEBUG
452 1.1 cgd if (rn_debug)
453 1.32 dyoung log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
454 1.1 cgd #endif
455 1.6 mycroft t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
456 1.1 cgd if ((cp[p->rn_off] & p->rn_bmask) == 0)
457 1.1 cgd p->rn_l = t;
458 1.1 cgd else
459 1.1 cgd p->rn_r = t;
460 1.1 cgd x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
461 1.1 cgd if ((cp[t->rn_off] & t->rn_bmask) == 0) {
462 1.1 cgd t->rn_r = x;
463 1.1 cgd } else {
464 1.1 cgd t->rn_r = tt; t->rn_l = x;
465 1.1 cgd }
466 1.1 cgd #ifdef RN_DEBUG
467 1.32 dyoung if (rn_debug) {
468 1.32 dyoung log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
469 1.32 dyoung traverse(head, p);
470 1.32 dyoung }
471 1.32 dyoung #endif /* RN_DEBUG */
472 1.1 cgd }
473 1.1 cgd return (tt);
474 1.1 cgd }
475 1.1 cgd
476 1.1 cgd struct radix_node *
477 1.23 matt rn_addmask(
478 1.23 matt const void *n_arg,
479 1.23 matt int search,
480 1.23 matt int skip)
481 1.1 cgd {
482 1.21 matt const char *netmask = n_arg;
483 1.21 matt const char *cp;
484 1.21 matt const char *cplim;
485 1.23 matt struct radix_node *x;
486 1.23 matt struct radix_node *saved_x;
487 1.14 augustss int b = 0, mlen, j;
488 1.9 mycroft int maskduplicated, m0, isnormal;
489 1.9 mycroft static int last_zeroed = 0;
490 1.9 mycroft
491 1.29 christos if ((mlen = *(const u_char *)netmask) > max_keylen)
492 1.9 mycroft mlen = max_keylen;
493 1.9 mycroft if (skip == 0)
494 1.9 mycroft skip = 1;
495 1.9 mycroft if (mlen <= skip)
496 1.9 mycroft return (mask_rnhead->rnh_nodes);
497 1.9 mycroft if (skip > 1)
498 1.9 mycroft Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
499 1.9 mycroft if ((m0 = mlen) > skip)
500 1.9 mycroft Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
501 1.9 mycroft /*
502 1.9 mycroft * Trim trailing zeroes.
503 1.9 mycroft */
504 1.9 mycroft for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
505 1.9 mycroft cp--;
506 1.9 mycroft mlen = cp - addmask_key;
507 1.9 mycroft if (mlen <= skip) {
508 1.9 mycroft if (m0 >= last_zeroed)
509 1.9 mycroft last_zeroed = mlen;
510 1.9 mycroft return (mask_rnhead->rnh_nodes);
511 1.9 mycroft }
512 1.9 mycroft if (m0 < last_zeroed)
513 1.9 mycroft Bzero(addmask_key + m0, last_zeroed - m0);
514 1.9 mycroft *addmask_key = last_zeroed = mlen;
515 1.9 mycroft x = rn_search(addmask_key, rn_masktop);
516 1.9 mycroft if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
517 1.9 mycroft x = 0;
518 1.9 mycroft if (x || search)
519 1.9 mycroft return (x);
520 1.6 mycroft R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
521 1.9 mycroft if ((saved_x = x) == 0)
522 1.1 cgd return (0);
523 1.6 mycroft Bzero(x, max_keylen + 2 * sizeof (*x));
524 1.34 christos cp = netmask = (void *)(x + 2);
525 1.34 christos Bcopy(addmask_key, (void *)(x + 2), mlen);
526 1.9 mycroft x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
527 1.9 mycroft if (maskduplicated) {
528 1.16 enami log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
529 1.9 mycroft Free(saved_x);
530 1.9 mycroft return (x);
531 1.9 mycroft }
532 1.9 mycroft /*
533 1.9 mycroft * Calculate index of mask, and check for normalcy.
534 1.9 mycroft */
535 1.9 mycroft cplim = netmask + mlen; isnormal = 1;
536 1.29 christos for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
537 1.9 mycroft cp++;
538 1.1 cgd if (cp != cplim) {
539 1.28 perry for (j = 0x80; (j & *cp) != 0; j >>= 1)
540 1.9 mycroft b++;
541 1.9 mycroft if (*cp != normal_chars[b] || cp != (cplim - 1))
542 1.9 mycroft isnormal = 0;
543 1.1 cgd }
544 1.9 mycroft b += (cp - netmask) << 3;
545 1.1 cgd x->rn_b = -1 - b;
546 1.9 mycroft if (isnormal)
547 1.9 mycroft x->rn_flags |= RNF_NORMAL;
548 1.1 cgd return (x);
549 1.1 cgd }
550 1.1 cgd
551 1.9 mycroft static int /* XXX: arbitrary ordering for non-contiguous masks */
552 1.23 matt rn_lexobetter(
553 1.23 matt const void *m_arg,
554 1.23 matt const void *n_arg)
555 1.23 matt {
556 1.23 matt const u_char *mp = m_arg;
557 1.23 matt const u_char *np = n_arg;
558 1.23 matt const u_char *lim;
559 1.9 mycroft
560 1.9 mycroft if (*mp > *np)
561 1.9 mycroft return 1; /* not really, but need to check longer one first */
562 1.28 perry if (*mp == *np)
563 1.9 mycroft for (lim = mp + *mp; mp < lim;)
564 1.9 mycroft if (*mp++ > *np++)
565 1.9 mycroft return 1;
566 1.9 mycroft return 0;
567 1.9 mycroft }
568 1.9 mycroft
569 1.9 mycroft static struct radix_mask *
570 1.23 matt rn_new_radix_mask(
571 1.23 matt struct radix_node *tt,
572 1.23 matt struct radix_mask *next)
573 1.9 mycroft {
574 1.14 augustss struct radix_mask *m;
575 1.9 mycroft
576 1.9 mycroft MKGet(m);
577 1.9 mycroft if (m == 0) {
578 1.9 mycroft log(LOG_ERR, "Mask for route not entered\n");
579 1.9 mycroft return (0);
580 1.9 mycroft }
581 1.9 mycroft Bzero(m, sizeof *m);
582 1.9 mycroft m->rm_b = tt->rn_b;
583 1.9 mycroft m->rm_flags = tt->rn_flags;
584 1.9 mycroft if (tt->rn_flags & RNF_NORMAL)
585 1.9 mycroft m->rm_leaf = tt;
586 1.9 mycroft else
587 1.9 mycroft m->rm_mask = tt->rn_mask;
588 1.9 mycroft m->rm_mklist = next;
589 1.9 mycroft tt->rn_mklist = m;
590 1.9 mycroft return m;
591 1.9 mycroft }
592 1.9 mycroft
593 1.1 cgd struct radix_node *
594 1.23 matt rn_addroute(
595 1.23 matt const void *v_arg,
596 1.23 matt const void *n_arg,
597 1.23 matt struct radix_node_head *head,
598 1.23 matt struct radix_node treenodes[2])
599 1.1 cgd {
600 1.33 dyoung const char *v = v_arg, *netmask = n_arg;
601 1.33 dyoung struct radix_node *t, *x = NULL, *tt;
602 1.33 dyoung struct radix_node *saved_tt, *top = head->rnh_treetop;
603 1.10 christos short b = 0, b_leaf = 0;
604 1.9 mycroft int keyduplicated;
605 1.21 matt const char *mmask;
606 1.1 cgd struct radix_mask *m, **mp;
607 1.1 cgd
608 1.1 cgd /*
609 1.1 cgd * In dealing with non-contiguous masks, there may be
610 1.1 cgd * many different routes which have the same mask.
611 1.1 cgd * We will find it useful to have a unique pointer to
612 1.1 cgd * the mask to speed avoiding duplicate references at
613 1.1 cgd * nodes and possibly save time in calculating indices.
614 1.1 cgd */
615 1.1 cgd if (netmask) {
616 1.9 mycroft if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
617 1.9 mycroft return (0);
618 1.9 mycroft b_leaf = x->rn_b;
619 1.9 mycroft b = -1 - x->rn_b;
620 1.1 cgd netmask = x->rn_key;
621 1.1 cgd }
622 1.1 cgd /*
623 1.1 cgd * Deal with duplicated keys: attach node to previous instance
624 1.1 cgd */
625 1.1 cgd saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
626 1.1 cgd if (keyduplicated) {
627 1.9 mycroft for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
628 1.1 cgd if (tt->rn_mask == netmask)
629 1.1 cgd return (0);
630 1.6 mycroft if (netmask == 0 ||
631 1.9 mycroft (tt->rn_mask &&
632 1.9 mycroft ((b_leaf < tt->rn_b) || /* index(netmask) > node */
633 1.9 mycroft rn_refines(netmask, tt->rn_mask) ||
634 1.9 mycroft rn_lexobetter(netmask, tt->rn_mask))))
635 1.6 mycroft break;
636 1.9 mycroft }
637 1.1 cgd /*
638 1.1 cgd * If the mask is not duplicated, we wouldn't
639 1.1 cgd * find it among possible duplicate key entries
640 1.1 cgd * anyway, so the above test doesn't hurt.
641 1.1 cgd *
642 1.6 mycroft * We sort the masks for a duplicated key the same way as
643 1.6 mycroft * in a masklist -- most specific to least specific.
644 1.6 mycroft * This may require the unfortunate nuisance of relocating
645 1.1 cgd * the head of the list.
646 1.12 christos *
647 1.12 christos * We also reverse, or doubly link the list through the
648 1.12 christos * parent pointer.
649 1.1 cgd */
650 1.9 mycroft if (tt == saved_tt) {
651 1.6 mycroft struct radix_node *xx = x;
652 1.6 mycroft /* link in at head of list */
653 1.6 mycroft (tt = treenodes)->rn_dupedkey = t;
654 1.6 mycroft tt->rn_flags = t->rn_flags;
655 1.6 mycroft tt->rn_p = x = t->rn_p;
656 1.12 christos t->rn_p = tt;
657 1.33 dyoung if (x->rn_l == t)
658 1.33 dyoung x->rn_l = tt;
659 1.33 dyoung else
660 1.33 dyoung x->rn_r = tt;
661 1.33 dyoung saved_tt = tt;
662 1.33 dyoung x = xx;
663 1.6 mycroft } else {
664 1.6 mycroft (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
665 1.6 mycroft t->rn_dupedkey = tt;
666 1.12 christos tt->rn_p = t;
667 1.12 christos if (tt->rn_dupedkey)
668 1.12 christos tt->rn_dupedkey->rn_p = tt;
669 1.6 mycroft }
670 1.36 dyoung tt->rn_key = v;
671 1.1 cgd tt->rn_b = -1;
672 1.9 mycroft tt->rn_flags = RNF_ACTIVE;
673 1.1 cgd }
674 1.1 cgd /*
675 1.1 cgd * Put mask in tree.
676 1.1 cgd */
677 1.1 cgd if (netmask) {
678 1.1 cgd tt->rn_mask = netmask;
679 1.1 cgd tt->rn_b = x->rn_b;
680 1.9 mycroft tt->rn_flags |= x->rn_flags & RNF_NORMAL;
681 1.1 cgd }
682 1.1 cgd t = saved_tt->rn_p;
683 1.9 mycroft if (keyduplicated)
684 1.9 mycroft goto on2;
685 1.1 cgd b_leaf = -1 - t->rn_b;
686 1.33 dyoung if (t->rn_r == saved_tt)
687 1.33 dyoung x = t->rn_l;
688 1.33 dyoung else
689 1.33 dyoung x = t->rn_r;
690 1.1 cgd /* Promote general routes from below */
691 1.28 perry if (x->rn_b < 0) {
692 1.9 mycroft for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
693 1.1 cgd if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
694 1.10 christos *mp = m = rn_new_radix_mask(x, 0);
695 1.10 christos if (m)
696 1.9 mycroft mp = &m->rm_mklist;
697 1.1 cgd }
698 1.1 cgd } else if (x->rn_mklist) {
699 1.1 cgd /*
700 1.1 cgd * Skip over masks whose index is > that of new node
701 1.1 cgd */
702 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
703 1.1 cgd if (m->rm_b >= b_leaf)
704 1.1 cgd break;
705 1.33 dyoung t->rn_mklist = m;
706 1.33 dyoung *mp = 0;
707 1.1 cgd }
708 1.9 mycroft on2:
709 1.1 cgd /* Add new route to highest possible ancestor's list */
710 1.1 cgd if ((netmask == 0) || (b > t->rn_b ))
711 1.1 cgd return tt; /* can't lift at all */
712 1.1 cgd b_leaf = tt->rn_b;
713 1.1 cgd do {
714 1.1 cgd x = t;
715 1.1 cgd t = t->rn_p;
716 1.6 mycroft } while (b <= t->rn_b && x != top);
717 1.1 cgd /*
718 1.1 cgd * Search through routes associated with node to
719 1.1 cgd * insert new route according to index.
720 1.9 mycroft * Need same criteria as when sorting dupedkeys to avoid
721 1.9 mycroft * double loop on deletion.
722 1.1 cgd */
723 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
724 1.1 cgd if (m->rm_b < b_leaf)
725 1.1 cgd continue;
726 1.1 cgd if (m->rm_b > b_leaf)
727 1.1 cgd break;
728 1.9 mycroft if (m->rm_flags & RNF_NORMAL) {
729 1.9 mycroft mmask = m->rm_leaf->rn_mask;
730 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) {
731 1.16 enami log(LOG_ERR, "Non-unique normal route,"
732 1.16 enami " mask not entered\n");
733 1.9 mycroft return tt;
734 1.9 mycroft }
735 1.9 mycroft } else
736 1.9 mycroft mmask = m->rm_mask;
737 1.9 mycroft if (mmask == netmask) {
738 1.1 cgd m->rm_refs++;
739 1.1 cgd tt->rn_mklist = m;
740 1.1 cgd return tt;
741 1.1 cgd }
742 1.9 mycroft if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
743 1.6 mycroft break;
744 1.1 cgd }
745 1.9 mycroft *mp = rn_new_radix_mask(tt, *mp);
746 1.1 cgd return tt;
747 1.1 cgd }
748 1.1 cgd
749 1.1 cgd struct radix_node *
750 1.33 dyoung rn_delete1(
751 1.23 matt const void *v_arg,
752 1.23 matt const void *netmask_arg,
753 1.33 dyoung struct radix_node_head *head,
754 1.33 dyoung struct radix_node *rn)
755 1.23 matt {
756 1.33 dyoung struct radix_node *t, *p, *x, *tt;
757 1.33 dyoung struct radix_mask *m, *saved_m, **mp;
758 1.33 dyoung struct radix_node *dupedkey, *saved_tt, *top;
759 1.33 dyoung const char *v, *netmask;
760 1.6 mycroft int b, head_off, vlen;
761 1.1 cgd
762 1.33 dyoung v = v_arg;
763 1.33 dyoung netmask = netmask_arg;
764 1.6 mycroft x = head->rnh_treetop;
765 1.6 mycroft tt = rn_search(v, x);
766 1.6 mycroft head_off = x->rn_off;
767 1.29 christos vlen = *(const u_char *)v;
768 1.6 mycroft saved_tt = tt;
769 1.6 mycroft top = x;
770 1.1 cgd if (tt == 0 ||
771 1.1 cgd Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
772 1.1 cgd return (0);
773 1.1 cgd /*
774 1.1 cgd * Delete our route from mask lists.
775 1.1 cgd */
776 1.9 mycroft if (netmask) {
777 1.9 mycroft if ((x = rn_addmask(netmask, 1, head_off)) == 0)
778 1.9 mycroft return (0);
779 1.9 mycroft netmask = x->rn_key;
780 1.1 cgd while (tt->rn_mask != netmask)
781 1.1 cgd if ((tt = tt->rn_dupedkey) == 0)
782 1.1 cgd return (0);
783 1.1 cgd }
784 1.1 cgd if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
785 1.1 cgd goto on1;
786 1.9 mycroft if (tt->rn_flags & RNF_NORMAL) {
787 1.9 mycroft if (m->rm_leaf != tt || m->rm_refs > 0) {
788 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n");
789 1.9 mycroft return 0; /* dangling ref could cause disaster */
790 1.9 mycroft }
791 1.28 perry } else {
792 1.9 mycroft if (m->rm_mask != tt->rn_mask) {
793 1.9 mycroft log(LOG_ERR, "rn_delete: inconsistent annotation\n");
794 1.9 mycroft goto on1;
795 1.9 mycroft }
796 1.9 mycroft if (--m->rm_refs >= 0)
797 1.9 mycroft goto on1;
798 1.1 cgd }
799 1.1 cgd b = -1 - tt->rn_b;
800 1.1 cgd t = saved_tt->rn_p;
801 1.1 cgd if (b > t->rn_b)
802 1.1 cgd goto on1; /* Wasn't lifted at all */
803 1.1 cgd do {
804 1.1 cgd x = t;
805 1.1 cgd t = t->rn_p;
806 1.6 mycroft } while (b <= t->rn_b && x != top);
807 1.12 christos for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
808 1.1 cgd if (m == saved_m) {
809 1.1 cgd *mp = m->rm_mklist;
810 1.1 cgd MKFree(m);
811 1.1 cgd break;
812 1.1 cgd }
813 1.9 mycroft if (m == 0) {
814 1.9 mycroft log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
815 1.9 mycroft if (tt->rn_flags & RNF_NORMAL)
816 1.9 mycroft return (0); /* Dangling ref to us */
817 1.9 mycroft }
818 1.1 cgd on1:
819 1.1 cgd /*
820 1.1 cgd * Eliminate us from tree
821 1.1 cgd */
822 1.1 cgd if (tt->rn_flags & RNF_ROOT)
823 1.1 cgd return (0);
824 1.1 cgd #ifdef RN_DEBUG
825 1.32 dyoung if (rn_debug)
826 1.32 dyoung log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
827 1.6 mycroft #endif
828 1.1 cgd t = tt->rn_p;
829 1.12 christos dupedkey = saved_tt->rn_dupedkey;
830 1.12 christos if (dupedkey) {
831 1.12 christos /*
832 1.12 christos * Here, tt is the deletion target, and
833 1.12 christos * saved_tt is the head of the dupedkey chain.
834 1.12 christos */
835 1.1 cgd if (tt == saved_tt) {
836 1.33 dyoung x = dupedkey;
837 1.33 dyoung x->rn_p = t;
838 1.33 dyoung if (t->rn_l == tt)
839 1.33 dyoung t->rn_l = x;
840 1.33 dyoung else
841 1.33 dyoung t->rn_r = x;
842 1.6 mycroft } else {
843 1.12 christos /* find node in front of tt on the chain */
844 1.6 mycroft for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
845 1.6 mycroft p = p->rn_dupedkey;
846 1.12 christos if (p) {
847 1.12 christos p->rn_dupedkey = tt->rn_dupedkey;
848 1.12 christos if (tt->rn_dupedkey)
849 1.12 christos tt->rn_dupedkey->rn_p = p;
850 1.12 christos } else log(LOG_ERR, "rn_delete: couldn't find us\n");
851 1.6 mycroft }
852 1.6 mycroft t = tt + 1;
853 1.6 mycroft if (t->rn_flags & RNF_ACTIVE) {
854 1.33 dyoung *++x = *t;
855 1.33 dyoung p = t->rn_p;
856 1.33 dyoung if (p->rn_l == t)
857 1.33 dyoung p->rn_l = x;
858 1.33 dyoung else
859 1.33 dyoung p->rn_r = x;
860 1.33 dyoung x->rn_l->rn_p = x;
861 1.33 dyoung x->rn_r->rn_p = x;
862 1.1 cgd }
863 1.1 cgd goto out;
864 1.1 cgd }
865 1.33 dyoung if (t->rn_l == tt)
866 1.33 dyoung x = t->rn_r;
867 1.33 dyoung else
868 1.33 dyoung x = t->rn_l;
869 1.1 cgd p = t->rn_p;
870 1.33 dyoung if (p->rn_r == t)
871 1.33 dyoung p->rn_r = x;
872 1.33 dyoung else
873 1.33 dyoung p->rn_l = x;
874 1.1 cgd x->rn_p = p;
875 1.1 cgd /*
876 1.1 cgd * Demote routes attached to us.
877 1.1 cgd */
878 1.1 cgd if (t->rn_mklist) {
879 1.1 cgd if (x->rn_b >= 0) {
880 1.12 christos for (mp = &x->rn_mklist; (m = *mp);)
881 1.1 cgd mp = &m->rm_mklist;
882 1.1 cgd *mp = t->rn_mklist;
883 1.1 cgd } else {
884 1.9 mycroft /* If there are any key,mask pairs in a sibling
885 1.9 mycroft duped-key chain, some subset will appear sorted
886 1.9 mycroft in the same order attached to our mklist */
887 1.9 mycroft for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
888 1.9 mycroft if (m == x->rn_mklist) {
889 1.9 mycroft struct radix_mask *mm = m->rm_mklist;
890 1.1 cgd x->rn_mklist = 0;
891 1.9 mycroft if (--(m->rm_refs) < 0)
892 1.9 mycroft MKFree(m);
893 1.9 mycroft m = mm;
894 1.9 mycroft }
895 1.9 mycroft if (m)
896 1.11 christos log(LOG_ERR, "%s %p at %p\n",
897 1.17 itojun "rn_delete: Orphaned Mask", m, x);
898 1.1 cgd }
899 1.1 cgd }
900 1.1 cgd /*
901 1.1 cgd * We may be holding an active internal node in the tree.
902 1.1 cgd */
903 1.1 cgd x = tt + 1;
904 1.1 cgd if (t != x) {
905 1.1 cgd *t = *x;
906 1.33 dyoung t->rn_l->rn_p = t;
907 1.33 dyoung t->rn_r->rn_p = t;
908 1.1 cgd p = x->rn_p;
909 1.33 dyoung if (p->rn_l == x)
910 1.33 dyoung p->rn_l = t;
911 1.33 dyoung else
912 1.33 dyoung p->rn_r = t;
913 1.1 cgd }
914 1.1 cgd out:
915 1.32 dyoung #ifdef RN_DEBUG
916 1.32 dyoung if (rn_debug) {
917 1.32 dyoung log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
918 1.32 dyoung traverse(head, tt);
919 1.32 dyoung }
920 1.32 dyoung #endif /* RN_DEBUG */
921 1.1 cgd tt->rn_flags &= ~RNF_ACTIVE;
922 1.1 cgd tt[1].rn_flags &= ~RNF_ACTIVE;
923 1.1 cgd return (tt);
924 1.1 cgd }
925 1.1 cgd
926 1.33 dyoung struct radix_node *
927 1.33 dyoung rn_delete(
928 1.33 dyoung const void *v_arg,
929 1.33 dyoung const void *netmask_arg,
930 1.33 dyoung struct radix_node_head *head)
931 1.33 dyoung {
932 1.33 dyoung return rn_delete1(v_arg, netmask_arg, head, NULL);
933 1.33 dyoung }
934 1.33 dyoung
935 1.32 dyoung static struct radix_node *
936 1.32 dyoung rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
937 1.32 dyoung {
938 1.32 dyoung /* If at right child go back up, otherwise, go right */
939 1.32 dyoung while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
940 1.32 dyoung if (printer != NULL)
941 1.32 dyoung (*printer)(arg, SUBTREE_CLOSE);
942 1.32 dyoung rn = rn->rn_p;
943 1.32 dyoung }
944 1.32 dyoung if (printer)
945 1.32 dyoung rn_nodeprint(rn->rn_p, printer, arg, "");
946 1.32 dyoung /* Find the next *leaf* since next node might vanish, too */
947 1.32 dyoung for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
948 1.32 dyoung if (printer != NULL)
949 1.32 dyoung (*printer)(arg, SUBTREE_OPEN);
950 1.32 dyoung rn = rn->rn_l;
951 1.32 dyoung }
952 1.32 dyoung return rn;
953 1.32 dyoung }
954 1.32 dyoung
955 1.32 dyoung static struct radix_node *
956 1.32 dyoung rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
957 1.32 dyoung {
958 1.32 dyoung /* First time through node, go left */
959 1.32 dyoung while (rn->rn_b >= 0) {
960 1.32 dyoung if (printer != NULL)
961 1.32 dyoung (*printer)(arg, SUBTREE_OPEN);
962 1.32 dyoung rn = rn->rn_l;
963 1.32 dyoung }
964 1.32 dyoung return rn;
965 1.32 dyoung }
966 1.32 dyoung
967 1.6 mycroft int
968 1.23 matt rn_walktree(
969 1.23 matt struct radix_node_head *h,
970 1.23 matt int (*f)(struct radix_node *, void *),
971 1.23 matt void *w)
972 1.6 mycroft {
973 1.6 mycroft int error;
974 1.32 dyoung struct radix_node *base, *next, *rn;
975 1.6 mycroft /*
976 1.6 mycroft * This gets complicated because we may delete the node
977 1.6 mycroft * while applying the function f to it, so we need to calculate
978 1.6 mycroft * the successor node in advance.
979 1.6 mycroft */
980 1.32 dyoung rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
981 1.6 mycroft for (;;) {
982 1.6 mycroft base = rn;
983 1.32 dyoung next = rn_walknext(rn, NULL, NULL);
984 1.6 mycroft /* Process leaves */
985 1.10 christos while ((rn = base) != NULL) {
986 1.6 mycroft base = rn->rn_dupedkey;
987 1.6 mycroft if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
988 1.6 mycroft return (error);
989 1.6 mycroft }
990 1.6 mycroft rn = next;
991 1.6 mycroft if (rn->rn_flags & RNF_ROOT)
992 1.6 mycroft return (0);
993 1.6 mycroft }
994 1.6 mycroft /* NOTREACHED */
995 1.6 mycroft }
996 1.6 mycroft
997 1.6 mycroft int
998 1.6 mycroft rn_inithead(head, off)
999 1.6 mycroft void **head;
1000 1.6 mycroft int off;
1001 1.1 cgd {
1002 1.14 augustss struct radix_node_head *rnh;
1003 1.15 itojun
1004 1.1 cgd if (*head)
1005 1.1 cgd return (1);
1006 1.1 cgd R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1007 1.1 cgd if (rnh == 0)
1008 1.1 cgd return (0);
1009 1.15 itojun *head = rnh;
1010 1.15 itojun return rn_inithead0(rnh, off);
1011 1.15 itojun }
1012 1.15 itojun
1013 1.15 itojun int
1014 1.15 itojun rn_inithead0(rnh, off)
1015 1.15 itojun struct radix_node_head *rnh;
1016 1.15 itojun int off;
1017 1.15 itojun {
1018 1.23 matt struct radix_node *t;
1019 1.23 matt struct radix_node *tt;
1020 1.23 matt struct radix_node *ttt;
1021 1.15 itojun
1022 1.1 cgd Bzero(rnh, sizeof (*rnh));
1023 1.1 cgd t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1024 1.1 cgd ttt = rnh->rnh_nodes + 2;
1025 1.1 cgd t->rn_r = ttt;
1026 1.1 cgd t->rn_p = t;
1027 1.1 cgd tt = t->rn_l;
1028 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1029 1.1 cgd tt->rn_b = -1 - off;
1030 1.1 cgd *ttt = *tt;
1031 1.1 cgd ttt->rn_key = rn_ones;
1032 1.6 mycroft rnh->rnh_addaddr = rn_addroute;
1033 1.6 mycroft rnh->rnh_deladdr = rn_delete;
1034 1.6 mycroft rnh->rnh_matchaddr = rn_match;
1035 1.9 mycroft rnh->rnh_lookup = rn_lookup;
1036 1.1 cgd rnh->rnh_treetop = t;
1037 1.1 cgd return (1);
1038 1.6 mycroft }
1039 1.6 mycroft
1040 1.6 mycroft void
1041 1.6 mycroft rn_init()
1042 1.6 mycroft {
1043 1.6 mycroft char *cp, *cplim;
1044 1.8 jtc #ifdef _KERNEL
1045 1.27 enami static int initialized;
1046 1.27 enami __link_set_decl(domains, struct domain);
1047 1.27 enami struct domain *const *dpp;
1048 1.27 enami
1049 1.27 enami if (initialized)
1050 1.27 enami return;
1051 1.27 enami initialized = 1;
1052 1.6 mycroft
1053 1.27 enami __link_set_foreach(dpp, domains) {
1054 1.27 enami if ((*dpp)->dom_maxrtkey > max_keylen)
1055 1.27 enami max_keylen = (*dpp)->dom_maxrtkey;
1056 1.27 enami }
1057 1.25 christos #ifdef INET
1058 1.24 itojun encap_setkeylen();
1059 1.6 mycroft #endif
1060 1.25 christos #endif
1061 1.6 mycroft if (max_keylen == 0) {
1062 1.9 mycroft log(LOG_ERR,
1063 1.9 mycroft "rn_init: radix functions require max_keylen be set\n");
1064 1.6 mycroft return;
1065 1.6 mycroft }
1066 1.6 mycroft R_Malloc(rn_zeros, char *, 3 * max_keylen);
1067 1.6 mycroft if (rn_zeros == NULL)
1068 1.6 mycroft panic("rn_init");
1069 1.6 mycroft Bzero(rn_zeros, 3 * max_keylen);
1070 1.6 mycroft rn_ones = cp = rn_zeros + max_keylen;
1071 1.9 mycroft addmask_key = cplim = rn_ones + max_keylen;
1072 1.6 mycroft while (cp < cplim)
1073 1.6 mycroft *cp++ = -1;
1074 1.19 thorpej if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1075 1.6 mycroft panic("rn_init 2");
1076 1.1 cgd }
1077