Home | History | Annotate | Line # | Download | only in net
radix.c revision 1.38.30.1
      1  1.38.30.1      yamt /*	$NetBSD: radix.c,v 1.38.30.1 2008/05/18 12:35:28 yamt Exp $	*/
      2        1.7       cgd 
      3        1.1       cgd /*
      4        1.6   mycroft  * Copyright (c) 1988, 1989, 1993
      5        1.6   mycroft  *	The Regents of the University of California.  All rights reserved.
      6        1.1       cgd  *
      7        1.1       cgd  * Redistribution and use in source and binary forms, with or without
      8        1.1       cgd  * modification, are permitted provided that the following conditions
      9        1.1       cgd  * are met:
     10        1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     11        1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     12        1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     14        1.1       cgd  *    documentation and/or other materials provided with the distribution.
     15       1.20       agc  * 3. Neither the name of the University nor the names of its contributors
     16        1.1       cgd  *    may be used to endorse or promote products derived from this software
     17        1.1       cgd  *    without specific prior written permission.
     18        1.1       cgd  *
     19        1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20        1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21        1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22        1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23        1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24        1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25        1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26        1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27        1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28        1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29        1.1       cgd  * SUCH DAMAGE.
     30        1.1       cgd  *
     31       1.13      fvdl  *	@(#)radix.c	8.6 (Berkeley) 10/17/95
     32        1.1       cgd  */
     33        1.1       cgd 
     34        1.1       cgd /*
     35        1.1       cgd  * Routines to build and maintain radix trees for routing lookups.
     36        1.1       cgd  */
     37       1.18     lukem 
     38       1.18     lukem #include <sys/cdefs.h>
     39  1.38.30.1      yamt __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.38.30.1 2008/05/18 12:35:28 yamt Exp $");
     40       1.18     lukem 
     41       1.12  christos #ifndef _NET_RADIX_H_
     42        1.4   mycroft #include <sys/param.h>
     43       1.12  christos #ifdef	_KERNEL
     44       1.27     enami #include "opt_inet.h"
     45       1.27     enami 
     46        1.4   mycroft #include <sys/systm.h>
     47        1.4   mycroft #include <sys/malloc.h>
     48        1.1       cgd #define	M_DONTWAIT M_NOWAIT
     49        1.6   mycroft #include <sys/domain.h>
     50       1.24    itojun #include <netinet/ip_encap.h>
     51        1.9   mycroft #else
     52        1.9   mycroft #include <stdlib.h>
     53        1.6   mycroft #endif
     54       1.32    dyoung #include <machine/stdarg.h>
     55        1.9   mycroft #include <sys/syslog.h>
     56        1.4   mycroft #include <net/radix.h>
     57       1.12  christos #endif
     58        1.6   mycroft 
     59       1.32    dyoung typedef void (*rn_printer_t)(void *, const char *fmt, ...);
     60       1.32    dyoung 
     61        1.6   mycroft int	max_keylen;
     62        1.6   mycroft struct radix_mask *rn_mkfreelist;
     63        1.1       cgd struct radix_node_head *mask_rnhead;
     64        1.9   mycroft static char *addmask_key;
     65       1.21      matt static const char normal_chars[] =
     66       1.21      matt     {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
     67        1.6   mycroft static char *rn_zeros, *rn_ones;
     68        1.6   mycroft 
     69        1.6   mycroft #define rn_masktop (mask_rnhead->rnh_treetop)
     70       1.10  christos 
     71       1.23      matt static int rn_satisfies_leaf(const char *, struct radix_node *, int);
     72       1.23      matt static int rn_lexobetter(const void *, const void *);
     73       1.23      matt static struct radix_mask *rn_new_radix_mask(struct radix_node *,
     74       1.23      matt     struct radix_mask *);
     75       1.32    dyoung static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
     76       1.32    dyoung     void *);
     77       1.32    dyoung static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
     78       1.32    dyoung     void *);
     79       1.32    dyoung static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
     80       1.32    dyoung     const char *);
     81       1.32    dyoung 
     82       1.32    dyoung #define	SUBTREE_OPEN	"[ "
     83       1.32    dyoung #define	SUBTREE_CLOSE	" ]"
     84       1.32    dyoung 
     85       1.32    dyoung #ifdef RN_DEBUG
     86       1.32    dyoung static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
     87       1.32    dyoung #endif /* RN_DEBUG */
     88       1.12  christos 
     89        1.1       cgd /*
     90        1.1       cgd  * The data structure for the keys is a radix tree with one way
     91        1.1       cgd  * branching removed.  The index rn_b at an internal node n represents a bit
     92        1.1       cgd  * position to be tested.  The tree is arranged so that all descendants
     93        1.1       cgd  * of a node n have keys whose bits all agree up to position rn_b - 1.
     94        1.1       cgd  * (We say the index of n is rn_b.)
     95        1.1       cgd  *
     96        1.1       cgd  * There is at least one descendant which has a one bit at position rn_b,
     97        1.1       cgd  * and at least one with a zero there.
     98        1.1       cgd  *
     99        1.1       cgd  * A route is determined by a pair of key and mask.  We require that the
    100        1.1       cgd  * bit-wise logical and of the key and mask to be the key.
    101        1.1       cgd  * We define the index of a route to associated with the mask to be
    102        1.1       cgd  * the first bit number in the mask where 0 occurs (with bit number 0
    103        1.1       cgd  * representing the highest order bit).
    104       1.28     perry  *
    105        1.1       cgd  * We say a mask is normal if every bit is 0, past the index of the mask.
    106        1.1       cgd  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
    107        1.1       cgd  * and m is a normal mask, then the route applies to every descendant of n.
    108        1.1       cgd  * If the index(m) < rn_b, this implies the trailing last few bits of k
    109        1.1       cgd  * before bit b are all 0, (and hence consequently true of every descendant
    110        1.1       cgd  * of n), so the route applies to all descendants of the node as well.
    111       1.28     perry  *
    112        1.9   mycroft  * Similar logic shows that a non-normal mask m such that
    113        1.1       cgd  * index(m) <= index(n) could potentially apply to many children of n.
    114        1.1       cgd  * Thus, for each non-host route, we attach its mask to a list at an internal
    115       1.28     perry  * node as high in the tree as we can go.
    116        1.9   mycroft  *
    117        1.9   mycroft  * The present version of the code makes use of normal routes in short-
    118       1.31       wiz  * circuiting an explicit mask and compare operation when testing whether
    119        1.9   mycroft  * a key satisfies a normal route, and also in remembering the unique leaf
    120        1.9   mycroft  * that governs a subtree.
    121        1.1       cgd  */
    122        1.1       cgd 
    123        1.1       cgd struct radix_node *
    124       1.23      matt rn_search(
    125       1.23      matt 	const void *v_arg,
    126       1.23      matt 	struct radix_node *head)
    127        1.1       cgd {
    128       1.21      matt 	const u_char * const v = v_arg;
    129       1.14  augustss 	struct radix_node *x;
    130        1.1       cgd 
    131       1.21      matt 	for (x = head; x->rn_b >= 0;) {
    132        1.1       cgd 		if (x->rn_bmask & v[x->rn_off])
    133        1.1       cgd 			x = x->rn_r;
    134        1.1       cgd 		else
    135        1.1       cgd 			x = x->rn_l;
    136        1.1       cgd 	}
    137       1.37    dyoung 	return x;
    138       1.13      fvdl }
    139        1.1       cgd 
    140        1.1       cgd struct radix_node *
    141       1.23      matt rn_search_m(
    142       1.23      matt 	const void *v_arg,
    143       1.23      matt 	struct radix_node *head,
    144       1.23      matt 	const void *m_arg)
    145        1.1       cgd {
    146       1.14  augustss 	struct radix_node *x;
    147       1.21      matt 	const u_char * const v = v_arg;
    148       1.21      matt 	const u_char * const m = m_arg;
    149        1.1       cgd 
    150        1.1       cgd 	for (x = head; x->rn_b >= 0;) {
    151        1.1       cgd 		if ((x->rn_bmask & m[x->rn_off]) &&
    152        1.1       cgd 		    (x->rn_bmask & v[x->rn_off]))
    153        1.1       cgd 			x = x->rn_r;
    154        1.1       cgd 		else
    155        1.1       cgd 			x = x->rn_l;
    156        1.1       cgd 	}
    157        1.1       cgd 	return x;
    158       1.13      fvdl }
    159        1.1       cgd 
    160        1.6   mycroft int
    161       1.23      matt rn_refines(
    162       1.23      matt 	const void *m_arg,
    163       1.23      matt 	const void *n_arg)
    164        1.6   mycroft {
    165       1.21      matt 	const char *m = m_arg;
    166       1.21      matt 	const char *n = n_arg;
    167       1.29  christos 	const char *lim = n + *(const u_char *)n;
    168       1.21      matt 	const char *lim2 = lim;
    169       1.29  christos 	int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
    170        1.6   mycroft 	int masks_are_equal = 1;
    171        1.6   mycroft 
    172        1.6   mycroft 	if (longer > 0)
    173        1.6   mycroft 		lim -= longer;
    174        1.6   mycroft 	while (n < lim) {
    175        1.6   mycroft 		if (*n & ~(*m))
    176        1.6   mycroft 			return 0;
    177        1.6   mycroft 		if (*n++ != *m++)
    178        1.6   mycroft 			masks_are_equal = 0;
    179        1.6   mycroft 	}
    180        1.6   mycroft 	while (n < lim2)
    181        1.6   mycroft 		if (*n++)
    182        1.6   mycroft 			return 0;
    183        1.6   mycroft 	if (masks_are_equal && (longer < 0))
    184        1.6   mycroft 		for (lim2 = m - longer; m < lim2; )
    185        1.6   mycroft 			if (*m++)
    186        1.6   mycroft 				return 1;
    187       1.37    dyoung 	return !masks_are_equal;
    188        1.6   mycroft }
    189        1.1       cgd 
    190        1.9   mycroft struct radix_node *
    191       1.23      matt rn_lookup(
    192       1.23      matt 	const void *v_arg,
    193       1.23      matt 	const void *m_arg,
    194       1.23      matt 	struct radix_node_head *head)
    195        1.9   mycroft {
    196       1.14  augustss 	struct radix_node *x;
    197       1.21      matt 	const char *netmask = NULL;
    198        1.9   mycroft 
    199        1.9   mycroft 	if (m_arg) {
    200        1.9   mycroft 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
    201       1.37    dyoung 			return NULL;
    202        1.9   mycroft 		netmask = x->rn_key;
    203        1.9   mycroft 	}
    204        1.9   mycroft 	x = rn_match(v_arg, head);
    205       1.37    dyoung 	if (x != NULL && netmask != NULL) {
    206       1.37    dyoung 		while (x != NULL && x->rn_mask != netmask)
    207        1.9   mycroft 			x = x->rn_dupedkey;
    208        1.9   mycroft 	}
    209        1.9   mycroft 	return x;
    210        1.9   mycroft }
    211        1.9   mycroft 
    212       1.10  christos static int
    213       1.23      matt rn_satisfies_leaf(
    214       1.23      matt 	const char *trial,
    215       1.23      matt 	struct radix_node *leaf,
    216       1.23      matt 	int skip)
    217       1.23      matt {
    218       1.23      matt 	const char *cp = trial;
    219       1.23      matt 	const char *cp2 = leaf->rn_key;
    220       1.23      matt 	const char *cp3 = leaf->rn_mask;
    221       1.21      matt 	const char *cplim;
    222       1.29  christos 	int length = min(*(const u_char *)cp, *(const u_char *)cp2);
    223        1.9   mycroft 
    224        1.9   mycroft 	if (cp3 == 0)
    225        1.9   mycroft 		cp3 = rn_ones;
    226        1.9   mycroft 	else
    227       1.29  christos 		length = min(length, *(const u_char *)cp3);
    228        1.9   mycroft 	cplim = cp + length; cp3 += skip; cp2 += skip;
    229        1.9   mycroft 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
    230        1.9   mycroft 		if ((*cp ^ *cp2) & *cp3)
    231        1.9   mycroft 			return 0;
    232        1.9   mycroft 	return 1;
    233        1.9   mycroft }
    234        1.1       cgd 
    235        1.1       cgd struct radix_node *
    236       1.23      matt rn_match(
    237       1.23      matt 	const void *v_arg,
    238       1.23      matt 	struct radix_node_head *head)
    239        1.1       cgd {
    240       1.21      matt 	const char * const v = v_arg;
    241       1.23      matt 	struct radix_node *t = head->rnh_treetop;
    242       1.23      matt 	struct radix_node *top = t;
    243       1.23      matt 	struct radix_node *x;
    244       1.23      matt 	struct radix_node *saved_t;
    245       1.21      matt 	const char *cp = v;
    246       1.21      matt 	const char *cp2;
    247       1.21      matt 	const char *cplim;
    248       1.23      matt 	int off = t->rn_off;
    249       1.29  christos 	int vlen = *(const u_char *)cp;
    250       1.23      matt 	int matched_off;
    251       1.14  augustss 	int test, b, rn_b;
    252        1.1       cgd 
    253        1.1       cgd 	/*
    254        1.6   mycroft 	 * Open code rn_search(v, top) to avoid overhead of extra
    255        1.1       cgd 	 * subroutine call.
    256        1.1       cgd 	 */
    257        1.1       cgd 	for (; t->rn_b >= 0; ) {
    258        1.1       cgd 		if (t->rn_bmask & cp[t->rn_off])
    259        1.1       cgd 			t = t->rn_r;
    260        1.1       cgd 		else
    261        1.1       cgd 			t = t->rn_l;
    262        1.1       cgd 	}
    263        1.1       cgd 	/*
    264        1.1       cgd 	 * See if we match exactly as a host destination
    265        1.9   mycroft 	 * or at least learn how many bits match, for normal mask finesse.
    266        1.9   mycroft 	 *
    267        1.9   mycroft 	 * It doesn't hurt us to limit how many bytes to check
    268        1.9   mycroft 	 * to the length of the mask, since if it matches we had a genuine
    269        1.9   mycroft 	 * match and the leaf we have is the most specific one anyway;
    270        1.9   mycroft 	 * if it didn't match with a shorter length it would fail
    271        1.9   mycroft 	 * with a long one.  This wins big for class B&C netmasks which
    272        1.9   mycroft 	 * are probably the most common case...
    273        1.1       cgd 	 */
    274        1.9   mycroft 	if (t->rn_mask)
    275       1.29  christos 		vlen = *(const u_char *)t->rn_mask;
    276        1.1       cgd 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
    277        1.1       cgd 	for (; cp < cplim; cp++, cp2++)
    278        1.1       cgd 		if (*cp != *cp2)
    279        1.1       cgd 			goto on1;
    280        1.1       cgd 	/*
    281        1.1       cgd 	 * This extra grot is in case we are explicitly asked
    282        1.1       cgd 	 * to look up the default.  Ugh!
    283        1.1       cgd 	 */
    284        1.1       cgd 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
    285        1.1       cgd 		t = t->rn_dupedkey;
    286        1.1       cgd 	return t;
    287        1.1       cgd on1:
    288        1.9   mycroft 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
    289        1.9   mycroft 	for (b = 7; (test >>= 1) > 0;)
    290        1.9   mycroft 		b--;
    291        1.1       cgd 	matched_off = cp - v;
    292        1.9   mycroft 	b += matched_off << 3;
    293        1.9   mycroft 	rn_b = -1 - b;
    294        1.9   mycroft 	/*
    295        1.9   mycroft 	 * If there is a host route in a duped-key chain, it will be first.
    296        1.9   mycroft 	 */
    297        1.9   mycroft 	if ((saved_t = t)->rn_mask == 0)
    298        1.9   mycroft 		t = t->rn_dupedkey;
    299        1.9   mycroft 	for (; t; t = t->rn_dupedkey)
    300        1.1       cgd 		/*
    301        1.9   mycroft 		 * Even if we don't match exactly as a host,
    302        1.1       cgd 		 * we may match if the leaf we wound up at is
    303        1.1       cgd 		 * a route to a net.
    304        1.1       cgd 		 */
    305        1.9   mycroft 		if (t->rn_flags & RNF_NORMAL) {
    306        1.9   mycroft 			if (rn_b <= t->rn_b)
    307        1.9   mycroft 				return t;
    308       1.15    itojun 		} else if (rn_satisfies_leaf(v, t, matched_off))
    309        1.9   mycroft 				return t;
    310        1.1       cgd 	t = saved_t;
    311        1.1       cgd 	/* start searching up the tree */
    312        1.1       cgd 	do {
    313       1.14  augustss 		struct radix_mask *m;
    314        1.1       cgd 		t = t->rn_p;
    315       1.12  christos 		m = t->rn_mklist;
    316       1.12  christos 		if (m) {
    317        1.1       cgd 			/*
    318        1.9   mycroft 			 * If non-contiguous masks ever become important
    319        1.9   mycroft 			 * we can restore the masking and open coding of
    320        1.9   mycroft 			 * the search and satisfaction test and put the
    321        1.9   mycroft 			 * calculation of "off" back before the "do".
    322        1.1       cgd 			 */
    323        1.1       cgd 			do {
    324        1.9   mycroft 				if (m->rm_flags & RNF_NORMAL) {
    325        1.9   mycroft 					if (rn_b <= m->rm_b)
    326       1.37    dyoung 						return m->rm_leaf;
    327        1.9   mycroft 				} else {
    328        1.9   mycroft 					off = min(t->rn_off, matched_off);
    329        1.9   mycroft 					x = rn_search_m(v, t, m->rm_mask);
    330        1.9   mycroft 					while (x && x->rn_mask != m->rm_mask)
    331        1.9   mycroft 						x = x->rn_dupedkey;
    332       1.15    itojun 					if (x && rn_satisfies_leaf(v, x, off))
    333       1.17    itojun 						return x;
    334        1.9   mycroft 				}
    335       1.15    itojun 				m = m->rm_mklist;
    336       1.12  christos 			} while (m);
    337        1.1       cgd 		}
    338        1.6   mycroft 	} while (t != top);
    339       1.37    dyoung 	return NULL;
    340       1.13      fvdl }
    341       1.28     perry 
    342       1.32    dyoung static void
    343       1.32    dyoung rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
    344       1.32    dyoung     const char *delim)
    345       1.32    dyoung {
    346       1.32    dyoung 	(*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
    347       1.32    dyoung 	    delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
    348       1.32    dyoung 	    rn->rn_l, rn->rn_r);
    349       1.32    dyoung }
    350       1.32    dyoung 
    351        1.1       cgd #ifdef RN_DEBUG
    352        1.6   mycroft int	rn_debug =  1;
    353       1.32    dyoung 
    354       1.32    dyoung static void
    355       1.32    dyoung rn_dbg_print(void *arg, const char *fmt, ...)
    356       1.32    dyoung {
    357       1.32    dyoung 	va_list ap;
    358       1.32    dyoung 
    359       1.32    dyoung 	va_start(ap, fmt);
    360       1.32    dyoung 	vlog(LOG_DEBUG, fmt, ap);
    361       1.32    dyoung 	va_end(ap);
    362       1.32    dyoung }
    363       1.32    dyoung 
    364       1.32    dyoung static void
    365       1.32    dyoung rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
    366       1.32    dyoung {
    367       1.32    dyoung 	struct radix_node *dup, *rn;
    368       1.32    dyoung 	const char *delim;
    369       1.32    dyoung 
    370       1.32    dyoung 	if (printer == NULL)
    371       1.32    dyoung 		return;
    372       1.32    dyoung 
    373       1.32    dyoung 	rn = rn_walkfirst(h->rnh_treetop, printer, arg);
    374       1.32    dyoung 	for (;;) {
    375       1.32    dyoung 		/* Process leaves */
    376       1.32    dyoung 		delim = "";
    377       1.32    dyoung 		for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
    378       1.32    dyoung 			if ((dup->rn_flags & RNF_ROOT) != 0)
    379       1.32    dyoung 				continue;
    380       1.32    dyoung 			rn_nodeprint(dup, printer, arg, delim);
    381       1.32    dyoung 			delim = ", ";
    382       1.32    dyoung 		}
    383       1.32    dyoung 		rn = rn_walknext(rn, printer, arg);
    384       1.32    dyoung 		if (rn->rn_flags & RNF_ROOT)
    385       1.32    dyoung 			return;
    386       1.32    dyoung 	}
    387       1.32    dyoung 	/* NOTREACHED */
    388       1.32    dyoung }
    389       1.32    dyoung 
    390       1.32    dyoung #define	traverse(__head, __rn)	rn_treeprint((__head), rn_dbg_print, (__rn))
    391       1.32    dyoung #endif /* RN_DEBUG */
    392        1.1       cgd 
    393        1.1       cgd struct radix_node *
    394       1.23      matt rn_newpair(
    395       1.23      matt 	const void *v,
    396       1.23      matt 	int b,
    397       1.23      matt 	struct radix_node nodes[2])
    398        1.1       cgd {
    399       1.23      matt 	struct radix_node *tt = nodes;
    400       1.23      matt 	struct radix_node *t = tt + 1;
    401        1.1       cgd 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
    402        1.1       cgd 	t->rn_l = tt; t->rn_off = b >> 3;
    403       1.21      matt 	tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
    404        1.1       cgd 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
    405        1.1       cgd 	return t;
    406        1.1       cgd }
    407        1.1       cgd 
    408        1.1       cgd struct radix_node *
    409       1.23      matt rn_insert(
    410       1.23      matt 	const void *v_arg,
    411       1.23      matt 	struct radix_node_head *head,
    412       1.23      matt 	int *dupentry,
    413       1.23      matt 	struct radix_node nodes[2])
    414        1.1       cgd {
    415        1.6   mycroft 	struct radix_node *top = head->rnh_treetop;
    416       1.14  augustss 	struct radix_node *t = rn_search(v_arg, top);
    417       1.23      matt 	struct radix_node *tt;
    418       1.23      matt 	const char *v = v_arg;
    419       1.21      matt 	int head_off = top->rn_off;
    420       1.29  christos 	int vlen = *((const u_char *)v);
    421       1.21      matt 	const char *cp = v + head_off;
    422       1.14  augustss 	int b;
    423        1.1       cgd     	/*
    424        1.9   mycroft 	 * Find first bit at which v and t->rn_key differ
    425        1.1       cgd 	 */
    426        1.1       cgd     {
    427       1.21      matt 	const char *cp2 = t->rn_key + head_off;
    428       1.21      matt 	const char *cplim = v + vlen;
    429       1.14  augustss 	int cmp_res;
    430        1.1       cgd 
    431        1.1       cgd 	while (cp < cplim)
    432        1.1       cgd 		if (*cp2++ != *cp++)
    433        1.1       cgd 			goto on1;
    434        1.1       cgd 	*dupentry = 1;
    435        1.1       cgd 	return t;
    436        1.1       cgd on1:
    437        1.1       cgd 	*dupentry = 0;
    438        1.1       cgd 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
    439        1.1       cgd 	for (b = (cp - v) << 3; cmp_res; b--)
    440        1.1       cgd 		cmp_res >>= 1;
    441        1.1       cgd     }
    442        1.1       cgd     {
    443       1.14  augustss 	struct radix_node *p, *x = top;
    444        1.1       cgd 	cp = v;
    445        1.1       cgd 	do {
    446        1.1       cgd 		p = x;
    447       1.28     perry 		if (cp[x->rn_off] & x->rn_bmask)
    448        1.1       cgd 			x = x->rn_r;
    449        1.1       cgd 		else x = x->rn_l;
    450        1.1       cgd 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
    451        1.1       cgd #ifdef RN_DEBUG
    452        1.1       cgd 	if (rn_debug)
    453       1.32    dyoung 		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
    454        1.1       cgd #endif
    455        1.6   mycroft 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
    456        1.1       cgd 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
    457        1.1       cgd 		p->rn_l = t;
    458        1.1       cgd 	else
    459        1.1       cgd 		p->rn_r = t;
    460        1.1       cgd 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
    461        1.1       cgd 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
    462        1.1       cgd 		t->rn_r = x;
    463        1.1       cgd 	} else {
    464        1.1       cgd 		t->rn_r = tt; t->rn_l = x;
    465        1.1       cgd 	}
    466        1.1       cgd #ifdef RN_DEBUG
    467       1.32    dyoung 	if (rn_debug) {
    468       1.32    dyoung 		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
    469       1.32    dyoung 		    traverse(head, p);
    470       1.32    dyoung 	}
    471       1.32    dyoung #endif /* RN_DEBUG */
    472        1.1       cgd     }
    473       1.37    dyoung 	return tt;
    474        1.1       cgd }
    475        1.1       cgd 
    476        1.1       cgd struct radix_node *
    477       1.23      matt rn_addmask(
    478       1.23      matt 	const void *n_arg,
    479       1.23      matt 	int search,
    480       1.23      matt 	int skip)
    481        1.1       cgd {
    482       1.21      matt 	const char *netmask = n_arg;
    483       1.21      matt 	const char *cp;
    484       1.21      matt 	const char *cplim;
    485       1.23      matt 	struct radix_node *x;
    486       1.23      matt 	struct radix_node *saved_x;
    487       1.14  augustss 	int b = 0, mlen, j;
    488        1.9   mycroft 	int maskduplicated, m0, isnormal;
    489        1.9   mycroft 	static int last_zeroed = 0;
    490        1.9   mycroft 
    491       1.29  christos 	if ((mlen = *(const u_char *)netmask) > max_keylen)
    492        1.9   mycroft 		mlen = max_keylen;
    493        1.9   mycroft 	if (skip == 0)
    494        1.9   mycroft 		skip = 1;
    495        1.9   mycroft 	if (mlen <= skip)
    496       1.37    dyoung 		return mask_rnhead->rnh_nodes;
    497        1.9   mycroft 	if (skip > 1)
    498  1.38.30.1      yamt 		memmove(addmask_key + 1, rn_ones + 1, skip - 1);
    499        1.9   mycroft 	if ((m0 = mlen) > skip)
    500  1.38.30.1      yamt 		memmove(addmask_key + skip, netmask + skip, mlen - skip);
    501        1.9   mycroft 	/*
    502        1.9   mycroft 	 * Trim trailing zeroes.
    503        1.9   mycroft 	 */
    504        1.9   mycroft 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
    505        1.9   mycroft 		cp--;
    506        1.9   mycroft 	mlen = cp - addmask_key;
    507        1.9   mycroft 	if (mlen <= skip) {
    508        1.9   mycroft 		if (m0 >= last_zeroed)
    509        1.9   mycroft 			last_zeroed = mlen;
    510       1.37    dyoung 		return mask_rnhead->rnh_nodes;
    511        1.9   mycroft 	}
    512        1.9   mycroft 	if (m0 < last_zeroed)
    513  1.38.30.1      yamt 		memset(addmask_key + m0, 0, last_zeroed - m0);
    514        1.9   mycroft 	*addmask_key = last_zeroed = mlen;
    515        1.9   mycroft 	x = rn_search(addmask_key, rn_masktop);
    516  1.38.30.1      yamt 	if (memcmp(addmask_key, x->rn_key, mlen) != 0)
    517        1.9   mycroft 		x = 0;
    518        1.9   mycroft 	if (x || search)
    519       1.37    dyoung 		return x;
    520        1.6   mycroft 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
    521       1.37    dyoung 	if ((saved_x = x) == NULL)
    522       1.37    dyoung 		return NULL;
    523  1.38.30.1      yamt 	memset(x, 0, max_keylen + 2 * sizeof (*x));
    524       1.34  christos 	cp = netmask = (void *)(x + 2);
    525  1.38.30.1      yamt 	memmove(x + 2, addmask_key, mlen);
    526        1.9   mycroft 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
    527        1.9   mycroft 	if (maskduplicated) {
    528       1.16     enami 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
    529        1.9   mycroft 		Free(saved_x);
    530       1.37    dyoung 		return x;
    531        1.9   mycroft 	}
    532        1.9   mycroft 	/*
    533        1.9   mycroft 	 * Calculate index of mask, and check for normalcy.
    534        1.9   mycroft 	 */
    535        1.9   mycroft 	cplim = netmask + mlen; isnormal = 1;
    536       1.29  christos 	for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
    537        1.9   mycroft 		cp++;
    538        1.1       cgd 	if (cp != cplim) {
    539       1.28     perry 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
    540        1.9   mycroft 			b++;
    541        1.9   mycroft 		if (*cp != normal_chars[b] || cp != (cplim - 1))
    542        1.9   mycroft 			isnormal = 0;
    543        1.1       cgd 	}
    544        1.9   mycroft 	b += (cp - netmask) << 3;
    545        1.1       cgd 	x->rn_b = -1 - b;
    546        1.9   mycroft 	if (isnormal)
    547        1.9   mycroft 		x->rn_flags |= RNF_NORMAL;
    548       1.37    dyoung 	return x;
    549        1.1       cgd }
    550        1.1       cgd 
    551        1.9   mycroft static int	/* XXX: arbitrary ordering for non-contiguous masks */
    552       1.23      matt rn_lexobetter(
    553       1.23      matt 	const void *m_arg,
    554       1.23      matt 	const void *n_arg)
    555       1.23      matt {
    556       1.23      matt 	const u_char *mp = m_arg;
    557       1.23      matt 	const u_char *np = n_arg;
    558       1.23      matt 	const u_char *lim;
    559        1.9   mycroft 
    560        1.9   mycroft 	if (*mp > *np)
    561        1.9   mycroft 		return 1;  /* not really, but need to check longer one first */
    562       1.28     perry 	if (*mp == *np)
    563        1.9   mycroft 		for (lim = mp + *mp; mp < lim;)
    564        1.9   mycroft 			if (*mp++ > *np++)
    565        1.9   mycroft 				return 1;
    566        1.9   mycroft 	return 0;
    567        1.9   mycroft }
    568        1.9   mycroft 
    569        1.9   mycroft static struct radix_mask *
    570       1.23      matt rn_new_radix_mask(
    571       1.23      matt 	struct radix_node *tt,
    572       1.23      matt 	struct radix_mask *next)
    573        1.9   mycroft {
    574       1.14  augustss 	struct radix_mask *m;
    575        1.9   mycroft 
    576        1.9   mycroft 	MKGet(m);
    577       1.37    dyoung 	if (m == NULL) {
    578        1.9   mycroft 		log(LOG_ERR, "Mask for route not entered\n");
    579       1.37    dyoung 		return NULL;
    580        1.9   mycroft 	}
    581  1.38.30.1      yamt 	memset(m, 0, sizeof(*m));
    582        1.9   mycroft 	m->rm_b = tt->rn_b;
    583        1.9   mycroft 	m->rm_flags = tt->rn_flags;
    584        1.9   mycroft 	if (tt->rn_flags & RNF_NORMAL)
    585        1.9   mycroft 		m->rm_leaf = tt;
    586        1.9   mycroft 	else
    587        1.9   mycroft 		m->rm_mask = tt->rn_mask;
    588        1.9   mycroft 	m->rm_mklist = next;
    589        1.9   mycroft 	tt->rn_mklist = m;
    590        1.9   mycroft 	return m;
    591        1.9   mycroft }
    592        1.9   mycroft 
    593        1.1       cgd struct radix_node *
    594       1.23      matt rn_addroute(
    595       1.23      matt 	const void *v_arg,
    596       1.23      matt 	const void *n_arg,
    597       1.23      matt 	struct radix_node_head *head,
    598       1.23      matt 	struct radix_node treenodes[2])
    599        1.1       cgd {
    600       1.33    dyoung 	const char *v = v_arg, *netmask = n_arg;
    601       1.33    dyoung 	struct radix_node *t, *x = NULL, *tt;
    602       1.33    dyoung 	struct radix_node *saved_tt, *top = head->rnh_treetop;
    603       1.10  christos 	short b = 0, b_leaf = 0;
    604        1.9   mycroft 	int keyduplicated;
    605       1.21      matt 	const char *mmask;
    606        1.1       cgd 	struct radix_mask *m, **mp;
    607        1.1       cgd 
    608        1.1       cgd 	/*
    609        1.1       cgd 	 * In dealing with non-contiguous masks, there may be
    610        1.1       cgd 	 * many different routes which have the same mask.
    611        1.1       cgd 	 * We will find it useful to have a unique pointer to
    612        1.1       cgd 	 * the mask to speed avoiding duplicate references at
    613        1.1       cgd 	 * nodes and possibly save time in calculating indices.
    614        1.1       cgd 	 */
    615       1.38    dyoung 	if (netmask != NULL) {
    616       1.37    dyoung 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
    617       1.37    dyoung 			return NULL;
    618        1.9   mycroft 		b_leaf = x->rn_b;
    619        1.9   mycroft 		b = -1 - x->rn_b;
    620        1.1       cgd 		netmask = x->rn_key;
    621        1.1       cgd 	}
    622        1.1       cgd 	/*
    623        1.1       cgd 	 * Deal with duplicated keys: attach node to previous instance
    624        1.1       cgd 	 */
    625        1.1       cgd 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
    626        1.1       cgd 	if (keyduplicated) {
    627       1.38    dyoung 		for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
    628        1.1       cgd 			if (tt->rn_mask == netmask)
    629       1.37    dyoung 				return NULL;
    630       1.38    dyoung 			if (netmask == NULL ||
    631       1.38    dyoung 			    (tt->rn_mask != NULL &&
    632       1.38    dyoung 			     (b_leaf < tt->rn_b || /* index(netmask) > node */
    633        1.9   mycroft 			       rn_refines(netmask, tt->rn_mask) ||
    634        1.9   mycroft 			       rn_lexobetter(netmask, tt->rn_mask))))
    635        1.6   mycroft 				break;
    636        1.9   mycroft 		}
    637        1.1       cgd 		/*
    638        1.1       cgd 		 * If the mask is not duplicated, we wouldn't
    639        1.1       cgd 		 * find it among possible duplicate key entries
    640        1.1       cgd 		 * anyway, so the above test doesn't hurt.
    641        1.1       cgd 		 *
    642        1.6   mycroft 		 * We sort the masks for a duplicated key the same way as
    643        1.6   mycroft 		 * in a masklist -- most specific to least specific.
    644        1.6   mycroft 		 * This may require the unfortunate nuisance of relocating
    645        1.1       cgd 		 * the head of the list.
    646       1.12  christos 		 *
    647       1.12  christos 		 * We also reverse, or doubly link the list through the
    648       1.12  christos 		 * parent pointer.
    649        1.1       cgd 		 */
    650        1.9   mycroft 		if (tt == saved_tt) {
    651        1.6   mycroft 			struct	radix_node *xx = x;
    652        1.6   mycroft 			/* link in at head of list */
    653        1.6   mycroft 			(tt = treenodes)->rn_dupedkey = t;
    654        1.6   mycroft 			tt->rn_flags = t->rn_flags;
    655        1.6   mycroft 			tt->rn_p = x = t->rn_p;
    656       1.12  christos 			t->rn_p = tt;
    657       1.33    dyoung 			if (x->rn_l == t)
    658       1.33    dyoung 				x->rn_l = tt;
    659       1.33    dyoung 			else
    660       1.33    dyoung 				x->rn_r = tt;
    661       1.33    dyoung 			saved_tt = tt;
    662       1.33    dyoung 			x = xx;
    663        1.6   mycroft 		} else {
    664        1.6   mycroft 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
    665        1.6   mycroft 			t->rn_dupedkey = tt;
    666       1.12  christos 			tt->rn_p = t;
    667       1.12  christos 			if (tt->rn_dupedkey)
    668       1.12  christos 				tt->rn_dupedkey->rn_p = tt;
    669        1.6   mycroft 		}
    670       1.36    dyoung 		tt->rn_key = v;
    671        1.1       cgd 		tt->rn_b = -1;
    672        1.9   mycroft 		tt->rn_flags = RNF_ACTIVE;
    673        1.1       cgd 	}
    674        1.1       cgd 	/*
    675        1.1       cgd 	 * Put mask in tree.
    676        1.1       cgd 	 */
    677       1.38    dyoung 	if (netmask != NULL) {
    678        1.1       cgd 		tt->rn_mask = netmask;
    679        1.1       cgd 		tt->rn_b = x->rn_b;
    680        1.9   mycroft 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
    681        1.1       cgd 	}
    682        1.1       cgd 	t = saved_tt->rn_p;
    683        1.9   mycroft 	if (keyduplicated)
    684        1.9   mycroft 		goto on2;
    685        1.1       cgd 	b_leaf = -1 - t->rn_b;
    686       1.33    dyoung 	if (t->rn_r == saved_tt)
    687       1.33    dyoung 		x = t->rn_l;
    688       1.33    dyoung 	else
    689       1.33    dyoung 		x = t->rn_r;
    690        1.1       cgd 	/* Promote general routes from below */
    691       1.28     perry 	if (x->rn_b < 0) {
    692       1.38    dyoung 		for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
    693       1.38    dyoung 			if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
    694       1.38    dyoung 			    x->rn_mklist == NULL) {
    695       1.38    dyoung 				*mp = m = rn_new_radix_mask(x, NULL);
    696       1.38    dyoung 				if (m != NULL)
    697       1.38    dyoung 					mp = &m->rm_mklist;
    698       1.38    dyoung 			}
    699        1.1       cgd 		}
    700       1.38    dyoung 	} else if (x->rn_mklist != NULL) {
    701        1.1       cgd 		/*
    702        1.1       cgd 		 * Skip over masks whose index is > that of new node
    703        1.1       cgd 		 */
    704       1.38    dyoung 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
    705        1.1       cgd 			if (m->rm_b >= b_leaf)
    706        1.1       cgd 				break;
    707       1.33    dyoung 		t->rn_mklist = m;
    708       1.38    dyoung 		*mp = NULL;
    709        1.1       cgd 	}
    710        1.9   mycroft on2:
    711        1.1       cgd 	/* Add new route to highest possible ancestor's list */
    712       1.38    dyoung 	if (netmask == NULL || b > t->rn_b)
    713        1.1       cgd 		return tt; /* can't lift at all */
    714        1.1       cgd 	b_leaf = tt->rn_b;
    715        1.1       cgd 	do {
    716        1.1       cgd 		x = t;
    717        1.1       cgd 		t = t->rn_p;
    718        1.6   mycroft 	} while (b <= t->rn_b && x != top);
    719        1.1       cgd 	/*
    720        1.1       cgd 	 * Search through routes associated with node to
    721        1.1       cgd 	 * insert new route according to index.
    722        1.9   mycroft 	 * Need same criteria as when sorting dupedkeys to avoid
    723        1.9   mycroft 	 * double loop on deletion.
    724        1.1       cgd 	 */
    725       1.38    dyoung 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
    726        1.1       cgd 		if (m->rm_b < b_leaf)
    727        1.1       cgd 			continue;
    728        1.1       cgd 		if (m->rm_b > b_leaf)
    729        1.1       cgd 			break;
    730        1.9   mycroft 		if (m->rm_flags & RNF_NORMAL) {
    731        1.9   mycroft 			mmask = m->rm_leaf->rn_mask;
    732        1.9   mycroft 			if (tt->rn_flags & RNF_NORMAL) {
    733       1.16     enami 				log(LOG_ERR, "Non-unique normal route,"
    734       1.16     enami 				    " mask not entered\n");
    735        1.9   mycroft 				return tt;
    736        1.9   mycroft 			}
    737        1.9   mycroft 		} else
    738        1.9   mycroft 			mmask = m->rm_mask;
    739        1.9   mycroft 		if (mmask == netmask) {
    740        1.1       cgd 			m->rm_refs++;
    741        1.1       cgd 			tt->rn_mklist = m;
    742        1.1       cgd 			return tt;
    743        1.1       cgd 		}
    744        1.9   mycroft 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
    745        1.6   mycroft 			break;
    746        1.1       cgd 	}
    747        1.9   mycroft 	*mp = rn_new_radix_mask(tt, *mp);
    748        1.1       cgd 	return tt;
    749        1.1       cgd }
    750        1.1       cgd 
    751        1.1       cgd struct radix_node *
    752       1.33    dyoung rn_delete1(
    753       1.23      matt 	const void *v_arg,
    754       1.23      matt 	const void *netmask_arg,
    755       1.33    dyoung 	struct radix_node_head *head,
    756       1.33    dyoung 	struct radix_node *rn)
    757       1.23      matt {
    758       1.33    dyoung 	struct radix_node *t, *p, *x, *tt;
    759       1.33    dyoung 	struct radix_mask *m, *saved_m, **mp;
    760       1.33    dyoung 	struct radix_node *dupedkey, *saved_tt, *top;
    761       1.33    dyoung 	const char *v, *netmask;
    762        1.6   mycroft 	int b, head_off, vlen;
    763        1.1       cgd 
    764       1.33    dyoung 	v = v_arg;
    765       1.33    dyoung 	netmask = netmask_arg;
    766        1.6   mycroft 	x = head->rnh_treetop;
    767        1.6   mycroft 	tt = rn_search(v, x);
    768        1.6   mycroft 	head_off = x->rn_off;
    769       1.29  christos 	vlen =  *(const u_char *)v;
    770        1.6   mycroft 	saved_tt = tt;
    771        1.6   mycroft 	top = x;
    772       1.38    dyoung 	if (tt == NULL ||
    773  1.38.30.1      yamt 	    memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
    774       1.37    dyoung 		return NULL;
    775        1.1       cgd 	/*
    776        1.1       cgd 	 * Delete our route from mask lists.
    777        1.1       cgd 	 */
    778       1.38    dyoung 	if (netmask != NULL) {
    779       1.38    dyoung 		if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
    780       1.37    dyoung 			return NULL;
    781        1.9   mycroft 		netmask = x->rn_key;
    782        1.1       cgd 		while (tt->rn_mask != netmask)
    783       1.38    dyoung 			if ((tt = tt->rn_dupedkey) == NULL)
    784       1.37    dyoung 				return NULL;
    785        1.1       cgd 	}
    786       1.38    dyoung 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
    787        1.1       cgd 		goto on1;
    788        1.9   mycroft 	if (tt->rn_flags & RNF_NORMAL) {
    789        1.9   mycroft 		if (m->rm_leaf != tt || m->rm_refs > 0) {
    790        1.9   mycroft 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
    791       1.37    dyoung 			return NULL;  /* dangling ref could cause disaster */
    792        1.9   mycroft 		}
    793       1.28     perry 	} else {
    794        1.9   mycroft 		if (m->rm_mask != tt->rn_mask) {
    795        1.9   mycroft 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
    796        1.9   mycroft 			goto on1;
    797        1.9   mycroft 		}
    798        1.9   mycroft 		if (--m->rm_refs >= 0)
    799        1.9   mycroft 			goto on1;
    800        1.1       cgd 	}
    801        1.1       cgd 	b = -1 - tt->rn_b;
    802        1.1       cgd 	t = saved_tt->rn_p;
    803        1.1       cgd 	if (b > t->rn_b)
    804        1.1       cgd 		goto on1; /* Wasn't lifted at all */
    805        1.1       cgd 	do {
    806        1.1       cgd 		x = t;
    807        1.1       cgd 		t = t->rn_p;
    808        1.6   mycroft 	} while (b <= t->rn_b && x != top);
    809       1.38    dyoung 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
    810        1.1       cgd 		if (m == saved_m) {
    811        1.1       cgd 			*mp = m->rm_mklist;
    812        1.1       cgd 			MKFree(m);
    813        1.1       cgd 			break;
    814        1.1       cgd 		}
    815       1.38    dyoung 	}
    816       1.38    dyoung 	if (m == NULL) {
    817        1.9   mycroft 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
    818        1.9   mycroft 		if (tt->rn_flags & RNF_NORMAL)
    819       1.37    dyoung 			return NULL; /* Dangling ref to us */
    820        1.9   mycroft 	}
    821        1.1       cgd on1:
    822        1.1       cgd 	/*
    823        1.1       cgd 	 * Eliminate us from tree
    824        1.1       cgd 	 */
    825        1.1       cgd 	if (tt->rn_flags & RNF_ROOT)
    826       1.37    dyoung 		return NULL;
    827        1.1       cgd #ifdef RN_DEBUG
    828       1.32    dyoung 	if (rn_debug)
    829       1.32    dyoung 		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
    830        1.6   mycroft #endif
    831        1.1       cgd 	t = tt->rn_p;
    832       1.12  christos 	dupedkey = saved_tt->rn_dupedkey;
    833       1.38    dyoung 	if (dupedkey != NULL) {
    834       1.12  christos 		/*
    835       1.12  christos 		 * Here, tt is the deletion target, and
    836       1.12  christos 		 * saved_tt is the head of the dupedkey chain.
    837       1.12  christos 		 */
    838        1.1       cgd 		if (tt == saved_tt) {
    839       1.33    dyoung 			x = dupedkey;
    840       1.33    dyoung 			x->rn_p = t;
    841       1.33    dyoung 			if (t->rn_l == tt)
    842       1.33    dyoung 				t->rn_l = x;
    843       1.33    dyoung 			else
    844       1.33    dyoung 				t->rn_r = x;
    845        1.6   mycroft 		} else {
    846       1.12  christos 			/* find node in front of tt on the chain */
    847       1.38    dyoung 			for (x = p = saved_tt;
    848       1.38    dyoung 			     p != NULL && p->rn_dupedkey != tt;)
    849        1.6   mycroft 				p = p->rn_dupedkey;
    850       1.38    dyoung 			if (p != NULL) {
    851       1.12  christos 				p->rn_dupedkey = tt->rn_dupedkey;
    852       1.38    dyoung 				if (tt->rn_dupedkey != NULL)
    853       1.12  christos 					tt->rn_dupedkey->rn_p = p;
    854       1.38    dyoung 			} else
    855       1.38    dyoung 				log(LOG_ERR, "rn_delete: couldn't find us\n");
    856        1.6   mycroft 		}
    857        1.6   mycroft 		t = tt + 1;
    858        1.6   mycroft 		if  (t->rn_flags & RNF_ACTIVE) {
    859       1.33    dyoung 			*++x = *t;
    860       1.33    dyoung 			p = t->rn_p;
    861       1.33    dyoung 			if (p->rn_l == t)
    862       1.33    dyoung 				p->rn_l = x;
    863       1.33    dyoung 			else
    864       1.33    dyoung 				p->rn_r = x;
    865       1.33    dyoung 			x->rn_l->rn_p = x;
    866       1.33    dyoung 			x->rn_r->rn_p = x;
    867        1.1       cgd 		}
    868        1.1       cgd 		goto out;
    869        1.1       cgd 	}
    870       1.33    dyoung 	if (t->rn_l == tt)
    871       1.33    dyoung 		x = t->rn_r;
    872       1.33    dyoung 	else
    873       1.33    dyoung 		x = t->rn_l;
    874        1.1       cgd 	p = t->rn_p;
    875       1.33    dyoung 	if (p->rn_r == t)
    876       1.33    dyoung 		p->rn_r = x;
    877       1.33    dyoung 	else
    878       1.33    dyoung 		p->rn_l = x;
    879        1.1       cgd 	x->rn_p = p;
    880        1.1       cgd 	/*
    881        1.1       cgd 	 * Demote routes attached to us.
    882        1.1       cgd 	 */
    883       1.38    dyoung 	if (t->rn_mklist == NULL)
    884       1.38    dyoung 		;
    885       1.38    dyoung 	else if (x->rn_b >= 0) {
    886       1.38    dyoung 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
    887       1.38    dyoung 			;
    888       1.38    dyoung 		*mp = t->rn_mklist;
    889       1.38    dyoung 	} else {
    890       1.38    dyoung 		/* If there are any key,mask pairs in a sibling
    891       1.38    dyoung 		   duped-key chain, some subset will appear sorted
    892       1.38    dyoung 		   in the same order attached to our mklist */
    893       1.38    dyoung 		for (m = t->rn_mklist;
    894       1.38    dyoung 		     m != NULL && x != NULL;
    895       1.38    dyoung 		     x = x->rn_dupedkey) {
    896       1.38    dyoung 			if (m == x->rn_mklist) {
    897       1.38    dyoung 				struct radix_mask *mm = m->rm_mklist;
    898       1.38    dyoung 				x->rn_mklist = NULL;
    899       1.38    dyoung 				if (--(m->rm_refs) < 0)
    900       1.38    dyoung 					MKFree(m);
    901       1.38    dyoung 				m = mm;
    902       1.38    dyoung 			}
    903       1.38    dyoung 		}
    904       1.38    dyoung 		if (m != NULL) {
    905       1.38    dyoung 			log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
    906       1.38    dyoung 			    m, x);
    907        1.1       cgd 		}
    908        1.1       cgd 	}
    909        1.1       cgd 	/*
    910        1.1       cgd 	 * We may be holding an active internal node in the tree.
    911        1.1       cgd 	 */
    912        1.1       cgd 	x = tt + 1;
    913        1.1       cgd 	if (t != x) {
    914        1.1       cgd 		*t = *x;
    915       1.33    dyoung 		t->rn_l->rn_p = t;
    916       1.33    dyoung 		t->rn_r->rn_p = t;
    917        1.1       cgd 		p = x->rn_p;
    918       1.33    dyoung 		if (p->rn_l == x)
    919       1.33    dyoung 			p->rn_l = t;
    920       1.33    dyoung 		else
    921       1.33    dyoung 			p->rn_r = t;
    922        1.1       cgd 	}
    923        1.1       cgd out:
    924       1.32    dyoung #ifdef RN_DEBUG
    925       1.32    dyoung 	if (rn_debug) {
    926       1.32    dyoung 		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
    927       1.32    dyoung 		    traverse(head, tt);
    928       1.32    dyoung 	}
    929       1.32    dyoung #endif /* RN_DEBUG */
    930        1.1       cgd 	tt->rn_flags &= ~RNF_ACTIVE;
    931        1.1       cgd 	tt[1].rn_flags &= ~RNF_ACTIVE;
    932       1.37    dyoung 	return tt;
    933        1.1       cgd }
    934        1.1       cgd 
    935       1.33    dyoung struct radix_node *
    936       1.33    dyoung rn_delete(
    937       1.33    dyoung 	const void *v_arg,
    938       1.33    dyoung 	const void *netmask_arg,
    939       1.33    dyoung 	struct radix_node_head *head)
    940       1.33    dyoung {
    941       1.33    dyoung 	return rn_delete1(v_arg, netmask_arg, head, NULL);
    942       1.33    dyoung }
    943       1.33    dyoung 
    944       1.32    dyoung static struct radix_node *
    945       1.32    dyoung rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
    946       1.32    dyoung {
    947       1.32    dyoung 	/* If at right child go back up, otherwise, go right */
    948       1.32    dyoung 	while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
    949       1.32    dyoung 		if (printer != NULL)
    950       1.32    dyoung 			(*printer)(arg, SUBTREE_CLOSE);
    951       1.32    dyoung 		rn = rn->rn_p;
    952       1.32    dyoung 	}
    953       1.32    dyoung 	if (printer)
    954       1.32    dyoung 		rn_nodeprint(rn->rn_p, printer, arg, "");
    955       1.32    dyoung 	/* Find the next *leaf* since next node might vanish, too */
    956       1.32    dyoung 	for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
    957       1.32    dyoung 		if (printer != NULL)
    958       1.32    dyoung 			(*printer)(arg, SUBTREE_OPEN);
    959       1.32    dyoung 		rn = rn->rn_l;
    960       1.32    dyoung 	}
    961       1.32    dyoung 	return rn;
    962       1.32    dyoung }
    963       1.32    dyoung 
    964       1.32    dyoung static struct radix_node *
    965       1.32    dyoung rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
    966       1.32    dyoung {
    967       1.32    dyoung 	/* First time through node, go left */
    968       1.32    dyoung 	while (rn->rn_b >= 0) {
    969       1.32    dyoung 		if (printer != NULL)
    970       1.32    dyoung 			(*printer)(arg, SUBTREE_OPEN);
    971       1.32    dyoung 		rn = rn->rn_l;
    972       1.32    dyoung 	}
    973       1.32    dyoung 	return rn;
    974       1.32    dyoung }
    975       1.32    dyoung 
    976        1.6   mycroft int
    977       1.23      matt rn_walktree(
    978       1.23      matt 	struct radix_node_head *h,
    979       1.23      matt 	int (*f)(struct radix_node *, void *),
    980       1.23      matt 	void *w)
    981        1.6   mycroft {
    982        1.6   mycroft 	int error;
    983       1.32    dyoung 	struct radix_node *base, *next, *rn;
    984        1.6   mycroft 	/*
    985        1.6   mycroft 	 * This gets complicated because we may delete the node
    986        1.6   mycroft 	 * while applying the function f to it, so we need to calculate
    987        1.6   mycroft 	 * the successor node in advance.
    988        1.6   mycroft 	 */
    989       1.32    dyoung 	rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
    990        1.6   mycroft 	for (;;) {
    991        1.6   mycroft 		base = rn;
    992       1.32    dyoung 		next = rn_walknext(rn, NULL, NULL);
    993        1.6   mycroft 		/* Process leaves */
    994       1.10  christos 		while ((rn = base) != NULL) {
    995        1.6   mycroft 			base = rn->rn_dupedkey;
    996        1.6   mycroft 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
    997       1.37    dyoung 				return error;
    998        1.6   mycroft 		}
    999        1.6   mycroft 		rn = next;
   1000        1.6   mycroft 		if (rn->rn_flags & RNF_ROOT)
   1001       1.37    dyoung 			return 0;
   1002        1.6   mycroft 	}
   1003        1.6   mycroft 	/* NOTREACHED */
   1004        1.6   mycroft }
   1005        1.6   mycroft 
   1006        1.6   mycroft int
   1007        1.6   mycroft rn_inithead(head, off)
   1008        1.6   mycroft 	void **head;
   1009        1.6   mycroft 	int off;
   1010        1.1       cgd {
   1011       1.14  augustss 	struct radix_node_head *rnh;
   1012       1.15    itojun 
   1013       1.37    dyoung 	if (*head != NULL)
   1014       1.37    dyoung 		return 1;
   1015        1.1       cgd 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
   1016       1.37    dyoung 	if (rnh == NULL)
   1017       1.37    dyoung 		return 0;
   1018       1.15    itojun 	*head = rnh;
   1019       1.15    itojun 	return rn_inithead0(rnh, off);
   1020       1.15    itojun }
   1021       1.15    itojun 
   1022       1.15    itojun int
   1023       1.15    itojun rn_inithead0(rnh, off)
   1024       1.15    itojun 	struct radix_node_head *rnh;
   1025       1.15    itojun 	int off;
   1026       1.15    itojun {
   1027       1.23      matt 	struct radix_node *t;
   1028       1.23      matt 	struct radix_node *tt;
   1029       1.23      matt 	struct radix_node *ttt;
   1030       1.15    itojun 
   1031  1.38.30.1      yamt 	memset(rnh, 0, sizeof(*rnh));
   1032        1.1       cgd 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
   1033        1.1       cgd 	ttt = rnh->rnh_nodes + 2;
   1034        1.1       cgd 	t->rn_r = ttt;
   1035        1.1       cgd 	t->rn_p = t;
   1036        1.1       cgd 	tt = t->rn_l;
   1037        1.1       cgd 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
   1038        1.1       cgd 	tt->rn_b = -1 - off;
   1039        1.1       cgd 	*ttt = *tt;
   1040        1.1       cgd 	ttt->rn_key = rn_ones;
   1041        1.6   mycroft 	rnh->rnh_addaddr = rn_addroute;
   1042        1.6   mycroft 	rnh->rnh_deladdr = rn_delete;
   1043        1.6   mycroft 	rnh->rnh_matchaddr = rn_match;
   1044        1.9   mycroft 	rnh->rnh_lookup = rn_lookup;
   1045        1.1       cgd 	rnh->rnh_treetop = t;
   1046       1.37    dyoung 	return 1;
   1047        1.6   mycroft }
   1048        1.6   mycroft 
   1049        1.6   mycroft void
   1050        1.6   mycroft rn_init()
   1051        1.6   mycroft {
   1052        1.6   mycroft 	char *cp, *cplim;
   1053        1.8       jtc #ifdef _KERNEL
   1054       1.27     enami 	static int initialized;
   1055       1.27     enami 	__link_set_decl(domains, struct domain);
   1056       1.27     enami 	struct domain *const *dpp;
   1057       1.27     enami 
   1058       1.27     enami 	if (initialized)
   1059       1.27     enami 		return;
   1060       1.27     enami 	initialized = 1;
   1061        1.6   mycroft 
   1062       1.27     enami 	__link_set_foreach(dpp, domains) {
   1063       1.27     enami 		if ((*dpp)->dom_maxrtkey > max_keylen)
   1064       1.27     enami 			max_keylen = (*dpp)->dom_maxrtkey;
   1065       1.27     enami 	}
   1066       1.25  christos #ifdef INET
   1067       1.24    itojun 	encap_setkeylen();
   1068        1.6   mycroft #endif
   1069       1.25  christos #endif
   1070        1.6   mycroft 	if (max_keylen == 0) {
   1071        1.9   mycroft 		log(LOG_ERR,
   1072        1.9   mycroft 		    "rn_init: radix functions require max_keylen be set\n");
   1073        1.6   mycroft 		return;
   1074        1.6   mycroft 	}
   1075        1.6   mycroft 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
   1076        1.6   mycroft 	if (rn_zeros == NULL)
   1077        1.6   mycroft 		panic("rn_init");
   1078  1.38.30.1      yamt 	memset(rn_zeros, 0, 3 * max_keylen);
   1079        1.6   mycroft 	rn_ones = cp = rn_zeros + max_keylen;
   1080        1.9   mycroft 	addmask_key = cplim = rn_ones + max_keylen;
   1081        1.6   mycroft 	while (cp < cplim)
   1082        1.6   mycroft 		*cp++ = -1;
   1083       1.19   thorpej 	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
   1084        1.6   mycroft 		panic("rn_init 2");
   1085        1.1       cgd }
   1086