radix.c revision 1.6 1 1.1 cgd /*
2 1.6 mycroft * Copyright (c) 1988, 1989, 1993
3 1.6 mycroft * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.6 mycroft * from: @(#)radix.c 8.2 (Berkeley) 1/4/94
34 1.6 mycroft * $Id: radix.c,v 1.6 1994/05/13 06:03:03 mycroft Exp $
35 1.1 cgd */
36 1.1 cgd
37 1.1 cgd /*
38 1.1 cgd * Routines to build and maintain radix trees for routing lookups.
39 1.1 cgd */
40 1.1 cgd #ifndef RNF_NORMAL
41 1.4 mycroft #include <sys/param.h>
42 1.4 mycroft #include <sys/systm.h>
43 1.4 mycroft #include <sys/malloc.h>
44 1.1 cgd #define M_DONTWAIT M_NOWAIT
45 1.6 mycroft #ifdef KERNEL
46 1.6 mycroft #include <sys/domain.h>
47 1.6 mycroft #endif
48 1.6 mycroft #endif
49 1.6 mycroft
50 1.4 mycroft #include <net/radix.h>
51 1.6 mycroft
52 1.6 mycroft int max_keylen;
53 1.6 mycroft struct radix_mask *rn_mkfreelist;
54 1.1 cgd struct radix_node_head *mask_rnhead;
55 1.6 mycroft static int gotOddMasks;
56 1.6 mycroft static char *maskedKey;
57 1.6 mycroft static char *rn_zeros, *rn_ones;
58 1.6 mycroft
59 1.6 mycroft #define rn_masktop (mask_rnhead->rnh_treetop)
60 1.1 cgd #undef Bcmp
61 1.1 cgd #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
62 1.1 cgd /*
63 1.1 cgd * The data structure for the keys is a radix tree with one way
64 1.1 cgd * branching removed. The index rn_b at an internal node n represents a bit
65 1.1 cgd * position to be tested. The tree is arranged so that all descendants
66 1.1 cgd * of a node n have keys whose bits all agree up to position rn_b - 1.
67 1.1 cgd * (We say the index of n is rn_b.)
68 1.1 cgd *
69 1.1 cgd * There is at least one descendant which has a one bit at position rn_b,
70 1.1 cgd * and at least one with a zero there.
71 1.1 cgd *
72 1.1 cgd * A route is determined by a pair of key and mask. We require that the
73 1.1 cgd * bit-wise logical and of the key and mask to be the key.
74 1.1 cgd * We define the index of a route to associated with the mask to be
75 1.1 cgd * the first bit number in the mask where 0 occurs (with bit number 0
76 1.1 cgd * representing the highest order bit).
77 1.1 cgd *
78 1.1 cgd * We say a mask is normal if every bit is 0, past the index of the mask.
79 1.1 cgd * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
80 1.1 cgd * and m is a normal mask, then the route applies to every descendant of n.
81 1.1 cgd * If the index(m) < rn_b, this implies the trailing last few bits of k
82 1.1 cgd * before bit b are all 0, (and hence consequently true of every descendant
83 1.1 cgd * of n), so the route applies to all descendants of the node as well.
84 1.1 cgd *
85 1.1 cgd * The present version of the code makes no use of normal routes,
86 1.1 cgd * but similar logic shows that a non-normal mask m such that
87 1.1 cgd * index(m) <= index(n) could potentially apply to many children of n.
88 1.1 cgd * Thus, for each non-host route, we attach its mask to a list at an internal
89 1.1 cgd * node as high in the tree as we can go.
90 1.1 cgd */
91 1.1 cgd
92 1.1 cgd struct radix_node *
93 1.6 mycroft rn_search(v_arg, head)
94 1.6 mycroft void *v_arg;
95 1.1 cgd struct radix_node *head;
96 1.1 cgd {
97 1.1 cgd register struct radix_node *x;
98 1.6 mycroft register caddr_t v;
99 1.1 cgd
100 1.6 mycroft for (x = head, v = v_arg; x->rn_b >= 0;) {
101 1.1 cgd if (x->rn_bmask & v[x->rn_off])
102 1.1 cgd x = x->rn_r;
103 1.1 cgd else
104 1.1 cgd x = x->rn_l;
105 1.1 cgd }
106 1.6 mycroft return (x);
107 1.1 cgd };
108 1.1 cgd
109 1.1 cgd struct radix_node *
110 1.6 mycroft rn_search_m(v_arg, head, m_arg)
111 1.1 cgd struct radix_node *head;
112 1.6 mycroft void *v_arg, *m_arg;
113 1.1 cgd {
114 1.1 cgd register struct radix_node *x;
115 1.6 mycroft register caddr_t v = v_arg, m = m_arg;
116 1.1 cgd
117 1.1 cgd for (x = head; x->rn_b >= 0;) {
118 1.1 cgd if ((x->rn_bmask & m[x->rn_off]) &&
119 1.1 cgd (x->rn_bmask & v[x->rn_off]))
120 1.1 cgd x = x->rn_r;
121 1.1 cgd else
122 1.1 cgd x = x->rn_l;
123 1.1 cgd }
124 1.1 cgd return x;
125 1.1 cgd };
126 1.1 cgd
127 1.6 mycroft int
128 1.6 mycroft rn_refines(m_arg, n_arg)
129 1.6 mycroft void *m_arg, *n_arg;
130 1.6 mycroft {
131 1.6 mycroft register caddr_t m = m_arg, n = n_arg;
132 1.6 mycroft register caddr_t lim, lim2 = lim = n + *(u_char *)n;
133 1.6 mycroft int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
134 1.6 mycroft int masks_are_equal = 1;
135 1.6 mycroft
136 1.6 mycroft if (longer > 0)
137 1.6 mycroft lim -= longer;
138 1.6 mycroft while (n < lim) {
139 1.6 mycroft if (*n & ~(*m))
140 1.6 mycroft return 0;
141 1.6 mycroft if (*n++ != *m++)
142 1.6 mycroft masks_are_equal = 0;
143 1.6 mycroft
144 1.6 mycroft }
145 1.6 mycroft while (n < lim2)
146 1.6 mycroft if (*n++)
147 1.6 mycroft return 0;
148 1.6 mycroft if (masks_are_equal && (longer < 0))
149 1.6 mycroft for (lim2 = m - longer; m < lim2; )
150 1.6 mycroft if (*m++)
151 1.6 mycroft return 1;
152 1.6 mycroft return (!masks_are_equal);
153 1.6 mycroft }
154 1.1 cgd
155 1.1 cgd
156 1.1 cgd struct radix_node *
157 1.6 mycroft rn_match(v_arg, head)
158 1.6 mycroft void *v_arg;
159 1.6 mycroft struct radix_node_head *head;
160 1.1 cgd {
161 1.6 mycroft caddr_t v = v_arg;
162 1.6 mycroft register struct radix_node *t = head->rnh_treetop, *x;
163 1.1 cgd register caddr_t cp = v, cp2, cp3;
164 1.1 cgd caddr_t cplim, mstart;
165 1.6 mycroft struct radix_node *saved_t, *top = t;
166 1.1 cgd int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
167 1.1 cgd
168 1.1 cgd /*
169 1.6 mycroft * Open code rn_search(v, top) to avoid overhead of extra
170 1.1 cgd * subroutine call.
171 1.1 cgd */
172 1.1 cgd for (; t->rn_b >= 0; ) {
173 1.1 cgd if (t->rn_bmask & cp[t->rn_off])
174 1.1 cgd t = t->rn_r;
175 1.1 cgd else
176 1.1 cgd t = t->rn_l;
177 1.1 cgd }
178 1.1 cgd /*
179 1.1 cgd * See if we match exactly as a host destination
180 1.1 cgd */
181 1.1 cgd cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
182 1.1 cgd for (; cp < cplim; cp++, cp2++)
183 1.1 cgd if (*cp != *cp2)
184 1.1 cgd goto on1;
185 1.1 cgd /*
186 1.1 cgd * This extra grot is in case we are explicitly asked
187 1.1 cgd * to look up the default. Ugh!
188 1.1 cgd */
189 1.1 cgd if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
190 1.1 cgd t = t->rn_dupedkey;
191 1.1 cgd return t;
192 1.1 cgd on1:
193 1.1 cgd matched_off = cp - v;
194 1.1 cgd saved_t = t;
195 1.1 cgd do {
196 1.1 cgd if (t->rn_mask) {
197 1.1 cgd /*
198 1.1 cgd * Even if we don't match exactly as a hosts;
199 1.1 cgd * we may match if the leaf we wound up at is
200 1.1 cgd * a route to a net.
201 1.1 cgd */
202 1.1 cgd cp3 = matched_off + t->rn_mask;
203 1.1 cgd cp2 = matched_off + t->rn_key;
204 1.1 cgd for (; cp < cplim; cp++)
205 1.1 cgd if ((*cp2++ ^ *cp) & *cp3++)
206 1.1 cgd break;
207 1.1 cgd if (cp == cplim)
208 1.1 cgd return t;
209 1.1 cgd cp = matched_off + v;
210 1.1 cgd }
211 1.1 cgd } while (t = t->rn_dupedkey);
212 1.1 cgd t = saved_t;
213 1.1 cgd /* start searching up the tree */
214 1.1 cgd do {
215 1.1 cgd register struct radix_mask *m;
216 1.1 cgd t = t->rn_p;
217 1.1 cgd if (m = t->rn_mklist) {
218 1.1 cgd /*
219 1.1 cgd * After doing measurements here, it may
220 1.1 cgd * turn out to be faster to open code
221 1.1 cgd * rn_search_m here instead of always
222 1.1 cgd * copying and masking.
223 1.1 cgd */
224 1.1 cgd off = min(t->rn_off, matched_off);
225 1.1 cgd mstart = maskedKey + off;
226 1.1 cgd do {
227 1.1 cgd cp2 = mstart;
228 1.1 cgd cp3 = m->rm_mask + off;
229 1.1 cgd for (cp = v + off; cp < cplim;)
230 1.1 cgd *cp2++ = *cp++ & *cp3++;
231 1.1 cgd x = rn_search(maskedKey, t);
232 1.1 cgd while (x && x->rn_mask != m->rm_mask)
233 1.1 cgd x = x->rn_dupedkey;
234 1.1 cgd if (x &&
235 1.1 cgd (Bcmp(mstart, x->rn_key + off,
236 1.1 cgd vlen - off) == 0))
237 1.1 cgd return x;
238 1.1 cgd } while (m = m->rm_mklist);
239 1.1 cgd }
240 1.6 mycroft } while (t != top);
241 1.1 cgd return 0;
242 1.1 cgd };
243 1.1 cgd
244 1.1 cgd #ifdef RN_DEBUG
245 1.1 cgd int rn_nodenum;
246 1.1 cgd struct radix_node *rn_clist;
247 1.1 cgd int rn_saveinfo;
248 1.6 mycroft int rn_debug = 1;
249 1.1 cgd #endif
250 1.1 cgd
251 1.1 cgd struct radix_node *
252 1.1 cgd rn_newpair(v, b, nodes)
253 1.6 mycroft void *v;
254 1.6 mycroft int b;
255 1.1 cgd struct radix_node nodes[2];
256 1.1 cgd {
257 1.1 cgd register struct radix_node *tt = nodes, *t = tt + 1;
258 1.1 cgd t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
259 1.1 cgd t->rn_l = tt; t->rn_off = b >> 3;
260 1.6 mycroft tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
261 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ACTIVE;
262 1.1 cgd #ifdef RN_DEBUG
263 1.1 cgd tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
264 1.1 cgd tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
265 1.1 cgd #endif
266 1.1 cgd return t;
267 1.1 cgd }
268 1.1 cgd
269 1.1 cgd struct radix_node *
270 1.6 mycroft rn_insert(v_arg, head, dupentry, nodes)
271 1.6 mycroft void *v_arg;
272 1.6 mycroft struct radix_node_head *head;
273 1.1 cgd int *dupentry;
274 1.1 cgd struct radix_node nodes[2];
275 1.1 cgd {
276 1.6 mycroft caddr_t v = v_arg;
277 1.6 mycroft struct radix_node *top = head->rnh_treetop;
278 1.6 mycroft int head_off = top->rn_off, vlen = (int)*((u_char *)v);
279 1.6 mycroft register struct radix_node *t = rn_search(v_arg, top);
280 1.1 cgd register caddr_t cp = v + head_off;
281 1.1 cgd register int b;
282 1.1 cgd struct radix_node *tt;
283 1.1 cgd /*
284 1.1 cgd *find first bit at which v and t->rn_key differ
285 1.1 cgd */
286 1.1 cgd {
287 1.1 cgd register caddr_t cp2 = t->rn_key + head_off;
288 1.1 cgd register int cmp_res;
289 1.1 cgd caddr_t cplim = v + vlen;
290 1.1 cgd
291 1.1 cgd while (cp < cplim)
292 1.1 cgd if (*cp2++ != *cp++)
293 1.1 cgd goto on1;
294 1.1 cgd *dupentry = 1;
295 1.1 cgd return t;
296 1.1 cgd on1:
297 1.1 cgd *dupentry = 0;
298 1.1 cgd cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
299 1.1 cgd for (b = (cp - v) << 3; cmp_res; b--)
300 1.1 cgd cmp_res >>= 1;
301 1.1 cgd }
302 1.1 cgd {
303 1.6 mycroft register struct radix_node *p, *x = top;
304 1.1 cgd cp = v;
305 1.1 cgd do {
306 1.1 cgd p = x;
307 1.1 cgd if (cp[x->rn_off] & x->rn_bmask)
308 1.1 cgd x = x->rn_r;
309 1.1 cgd else x = x->rn_l;
310 1.1 cgd } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
311 1.1 cgd #ifdef RN_DEBUG
312 1.1 cgd if (rn_debug)
313 1.1 cgd printf("Going In:\n"), traverse(p);
314 1.1 cgd #endif
315 1.6 mycroft t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
316 1.1 cgd if ((cp[p->rn_off] & p->rn_bmask) == 0)
317 1.1 cgd p->rn_l = t;
318 1.1 cgd else
319 1.1 cgd p->rn_r = t;
320 1.1 cgd x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
321 1.1 cgd if ((cp[t->rn_off] & t->rn_bmask) == 0) {
322 1.1 cgd t->rn_r = x;
323 1.1 cgd } else {
324 1.1 cgd t->rn_r = tt; t->rn_l = x;
325 1.1 cgd }
326 1.1 cgd #ifdef RN_DEBUG
327 1.1 cgd if (rn_debug)
328 1.1 cgd printf("Coming out:\n"), traverse(p);
329 1.1 cgd #endif
330 1.1 cgd }
331 1.1 cgd return (tt);
332 1.1 cgd }
333 1.1 cgd
334 1.1 cgd struct radix_node *
335 1.6 mycroft rn_addmask(n_arg, search, skip)
336 1.6 mycroft int search, skip;
337 1.6 mycroft void *n_arg;
338 1.1 cgd {
339 1.6 mycroft caddr_t netmask = (caddr_t)n_arg;
340 1.1 cgd register struct radix_node *x;
341 1.1 cgd register caddr_t cp, cplim;
342 1.1 cgd register int b, mlen, j;
343 1.1 cgd int maskduplicated;
344 1.1 cgd
345 1.1 cgd mlen = *(u_char *)netmask;
346 1.1 cgd if (search) {
347 1.6 mycroft x = rn_search(netmask, rn_masktop);
348 1.1 cgd mlen = *(u_char *)netmask;
349 1.1 cgd if (Bcmp(netmask, x->rn_key, mlen) == 0)
350 1.1 cgd return (x);
351 1.1 cgd }
352 1.6 mycroft R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
353 1.1 cgd if (x == 0)
354 1.1 cgd return (0);
355 1.6 mycroft Bzero(x, max_keylen + 2 * sizeof (*x));
356 1.1 cgd cp = (caddr_t)(x + 2);
357 1.1 cgd Bcopy(netmask, cp, mlen);
358 1.1 cgd netmask = cp;
359 1.6 mycroft x = rn_insert(netmask, mask_rnhead, &maskduplicated, x);
360 1.1 cgd /*
361 1.1 cgd * Calculate index of mask.
362 1.1 cgd */
363 1.1 cgd cplim = netmask + mlen;
364 1.1 cgd for (cp = netmask + skip; cp < cplim; cp++)
365 1.1 cgd if (*(u_char *)cp != 0xff)
366 1.1 cgd break;
367 1.1 cgd b = (cp - netmask) << 3;
368 1.1 cgd if (cp != cplim) {
369 1.1 cgd if (*cp != 0) {
370 1.1 cgd gotOddMasks = 1;
371 1.1 cgd for (j = 0x80; j; b++, j >>= 1)
372 1.1 cgd if ((j & *cp) == 0)
373 1.1 cgd break;
374 1.1 cgd }
375 1.1 cgd }
376 1.1 cgd x->rn_b = -1 - b;
377 1.1 cgd return (x);
378 1.1 cgd }
379 1.1 cgd
380 1.1 cgd struct radix_node *
381 1.6 mycroft rn_addroute(v_arg, n_arg, head, treenodes)
382 1.6 mycroft void *v_arg, *n_arg;
383 1.6 mycroft struct radix_node_head *head;
384 1.1 cgd struct radix_node treenodes[2];
385 1.1 cgd {
386 1.6 mycroft caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
387 1.1 cgd register struct radix_node *t, *x, *tt;
388 1.6 mycroft struct radix_node *saved_tt, *top = head->rnh_treetop;
389 1.1 cgd short b = 0, b_leaf;
390 1.6 mycroft int mlen, keyduplicated;
391 1.6 mycroft caddr_t cplim;
392 1.1 cgd struct radix_mask *m, **mp;
393 1.1 cgd
394 1.1 cgd /*
395 1.1 cgd * In dealing with non-contiguous masks, there may be
396 1.1 cgd * many different routes which have the same mask.
397 1.1 cgd * We will find it useful to have a unique pointer to
398 1.1 cgd * the mask to speed avoiding duplicate references at
399 1.1 cgd * nodes and possibly save time in calculating indices.
400 1.1 cgd */
401 1.1 cgd if (netmask) {
402 1.6 mycroft x = rn_search(netmask, rn_masktop);
403 1.1 cgd mlen = *(u_char *)netmask;
404 1.1 cgd if (Bcmp(netmask, x->rn_key, mlen) != 0) {
405 1.6 mycroft x = rn_addmask(netmask, 0, top->rn_off);
406 1.1 cgd if (x == 0)
407 1.1 cgd return (0);
408 1.1 cgd }
409 1.1 cgd netmask = x->rn_key;
410 1.1 cgd b = -1 - x->rn_b;
411 1.1 cgd }
412 1.1 cgd /*
413 1.1 cgd * Deal with duplicated keys: attach node to previous instance
414 1.1 cgd */
415 1.1 cgd saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
416 1.1 cgd if (keyduplicated) {
417 1.1 cgd do {
418 1.1 cgd if (tt->rn_mask == netmask)
419 1.1 cgd return (0);
420 1.1 cgd t = tt;
421 1.6 mycroft if (netmask == 0 ||
422 1.6 mycroft (tt->rn_mask && rn_refines(netmask, tt->rn_mask)))
423 1.6 mycroft break;
424 1.1 cgd } while (tt = tt->rn_dupedkey);
425 1.1 cgd /*
426 1.1 cgd * If the mask is not duplicated, we wouldn't
427 1.1 cgd * find it among possible duplicate key entries
428 1.1 cgd * anyway, so the above test doesn't hurt.
429 1.1 cgd *
430 1.6 mycroft * We sort the masks for a duplicated key the same way as
431 1.6 mycroft * in a masklist -- most specific to least specific.
432 1.6 mycroft * This may require the unfortunate nuisance of relocating
433 1.1 cgd * the head of the list.
434 1.1 cgd */
435 1.6 mycroft if (tt && t == saved_tt) {
436 1.6 mycroft struct radix_node *xx = x;
437 1.6 mycroft /* link in at head of list */
438 1.6 mycroft (tt = treenodes)->rn_dupedkey = t;
439 1.6 mycroft tt->rn_flags = t->rn_flags;
440 1.6 mycroft tt->rn_p = x = t->rn_p;
441 1.6 mycroft if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
442 1.6 mycroft saved_tt = tt; x = xx;
443 1.6 mycroft } else {
444 1.6 mycroft (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
445 1.6 mycroft t->rn_dupedkey = tt;
446 1.6 mycroft }
447 1.1 cgd #ifdef RN_DEBUG
448 1.1 cgd t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
449 1.1 cgd tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
450 1.1 cgd #endif
451 1.1 cgd t = saved_tt;
452 1.1 cgd tt->rn_key = (caddr_t) v;
453 1.1 cgd tt->rn_b = -1;
454 1.1 cgd tt->rn_flags = t->rn_flags & ~RNF_ROOT;
455 1.1 cgd }
456 1.1 cgd /*
457 1.1 cgd * Put mask in tree.
458 1.1 cgd */
459 1.1 cgd if (netmask) {
460 1.1 cgd tt->rn_mask = netmask;
461 1.1 cgd tt->rn_b = x->rn_b;
462 1.1 cgd }
463 1.1 cgd t = saved_tt->rn_p;
464 1.1 cgd b_leaf = -1 - t->rn_b;
465 1.1 cgd if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
466 1.1 cgd /* Promote general routes from below */
467 1.1 cgd if (x->rn_b < 0) {
468 1.1 cgd if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
469 1.1 cgd MKGet(m);
470 1.1 cgd if (m) {
471 1.1 cgd Bzero(m, sizeof *m);
472 1.1 cgd m->rm_b = x->rn_b;
473 1.1 cgd m->rm_mask = x->rn_mask;
474 1.1 cgd x->rn_mklist = t->rn_mklist = m;
475 1.1 cgd }
476 1.1 cgd }
477 1.1 cgd } else if (x->rn_mklist) {
478 1.1 cgd /*
479 1.1 cgd * Skip over masks whose index is > that of new node
480 1.1 cgd */
481 1.1 cgd for (mp = &x->rn_mklist; m = *mp; mp = &m->rm_mklist)
482 1.1 cgd if (m->rm_b >= b_leaf)
483 1.1 cgd break;
484 1.1 cgd t->rn_mklist = m; *mp = 0;
485 1.1 cgd }
486 1.1 cgd /* Add new route to highest possible ancestor's list */
487 1.1 cgd if ((netmask == 0) || (b > t->rn_b ))
488 1.1 cgd return tt; /* can't lift at all */
489 1.1 cgd b_leaf = tt->rn_b;
490 1.1 cgd do {
491 1.1 cgd x = t;
492 1.1 cgd t = t->rn_p;
493 1.6 mycroft } while (b <= t->rn_b && x != top);
494 1.1 cgd /*
495 1.1 cgd * Search through routes associated with node to
496 1.1 cgd * insert new route according to index.
497 1.1 cgd * For nodes of equal index, place more specific
498 1.1 cgd * masks first.
499 1.1 cgd */
500 1.1 cgd cplim = netmask + mlen;
501 1.1 cgd for (mp = &x->rn_mklist; m = *mp; mp = &m->rm_mklist) {
502 1.1 cgd if (m->rm_b < b_leaf)
503 1.1 cgd continue;
504 1.1 cgd if (m->rm_b > b_leaf)
505 1.1 cgd break;
506 1.1 cgd if (m->rm_mask == netmask) {
507 1.1 cgd m->rm_refs++;
508 1.1 cgd tt->rn_mklist = m;
509 1.1 cgd return tt;
510 1.1 cgd }
511 1.6 mycroft if (rn_refines(netmask, m->rm_mask))
512 1.6 mycroft break;
513 1.1 cgd }
514 1.1 cgd MKGet(m);
515 1.1 cgd if (m == 0) {
516 1.1 cgd printf("Mask for route not entered\n");
517 1.1 cgd return (tt);
518 1.1 cgd }
519 1.1 cgd Bzero(m, sizeof *m);
520 1.1 cgd m->rm_b = b_leaf;
521 1.1 cgd m->rm_mask = netmask;
522 1.1 cgd m->rm_mklist = *mp;
523 1.1 cgd *mp = m;
524 1.1 cgd tt->rn_mklist = m;
525 1.1 cgd return tt;
526 1.1 cgd }
527 1.1 cgd
528 1.1 cgd struct radix_node *
529 1.6 mycroft rn_delete(v_arg, netmask_arg, head)
530 1.6 mycroft void *v_arg, *netmask_arg;
531 1.6 mycroft struct radix_node_head *head;
532 1.1 cgd {
533 1.6 mycroft register struct radix_node *t, *p, *x, *tt;
534 1.1 cgd struct radix_mask *m, *saved_m, **mp;
535 1.6 mycroft struct radix_node *dupedkey, *saved_tt, *top;
536 1.6 mycroft caddr_t v, netmask;
537 1.6 mycroft int b, head_off, vlen;
538 1.1 cgd
539 1.6 mycroft v = v_arg;
540 1.6 mycroft netmask = netmask_arg;
541 1.6 mycroft x = head->rnh_treetop;
542 1.6 mycroft tt = rn_search(v, x);
543 1.6 mycroft head_off = x->rn_off;
544 1.6 mycroft vlen = *(u_char *)v;
545 1.6 mycroft saved_tt = tt;
546 1.6 mycroft top = x;
547 1.1 cgd if (tt == 0 ||
548 1.1 cgd Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
549 1.1 cgd return (0);
550 1.1 cgd /*
551 1.1 cgd * Delete our route from mask lists.
552 1.1 cgd */
553 1.1 cgd if (dupedkey = tt->rn_dupedkey) {
554 1.1 cgd if (netmask)
555 1.6 mycroft netmask = rn_search(netmask, rn_masktop)->rn_key;
556 1.1 cgd while (tt->rn_mask != netmask)
557 1.1 cgd if ((tt = tt->rn_dupedkey) == 0)
558 1.1 cgd return (0);
559 1.1 cgd }
560 1.1 cgd if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
561 1.1 cgd goto on1;
562 1.1 cgd if (m->rm_mask != tt->rn_mask) {
563 1.1 cgd printf("rn_delete: inconsistent annotation\n");
564 1.1 cgd goto on1;
565 1.1 cgd }
566 1.1 cgd if (--m->rm_refs >= 0)
567 1.1 cgd goto on1;
568 1.1 cgd b = -1 - tt->rn_b;
569 1.1 cgd t = saved_tt->rn_p;
570 1.1 cgd if (b > t->rn_b)
571 1.1 cgd goto on1; /* Wasn't lifted at all */
572 1.1 cgd do {
573 1.1 cgd x = t;
574 1.1 cgd t = t->rn_p;
575 1.6 mycroft } while (b <= t->rn_b && x != top);
576 1.1 cgd for (mp = &x->rn_mklist; m = *mp; mp = &m->rm_mklist)
577 1.1 cgd if (m == saved_m) {
578 1.1 cgd *mp = m->rm_mklist;
579 1.1 cgd MKFree(m);
580 1.1 cgd break;
581 1.1 cgd }
582 1.1 cgd if (m == 0)
583 1.1 cgd printf("rn_delete: couldn't find our annotation\n");
584 1.1 cgd on1:
585 1.1 cgd /*
586 1.1 cgd * Eliminate us from tree
587 1.1 cgd */
588 1.1 cgd if (tt->rn_flags & RNF_ROOT)
589 1.1 cgd return (0);
590 1.1 cgd #ifdef RN_DEBUG
591 1.1 cgd /* Get us out of the creation list */
592 1.1 cgd for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
593 1.1 cgd if (t) t->rn_ybro = tt->rn_ybro;
594 1.6 mycroft #endif
595 1.1 cgd t = tt->rn_p;
596 1.1 cgd if (dupedkey) {
597 1.1 cgd if (tt == saved_tt) {
598 1.1 cgd x = dupedkey; x->rn_p = t;
599 1.1 cgd if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
600 1.6 mycroft } else {
601 1.6 mycroft for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
602 1.6 mycroft p = p->rn_dupedkey;
603 1.6 mycroft if (p) p->rn_dupedkey = tt->rn_dupedkey;
604 1.6 mycroft else printf("rn_delete: couldn't find us\n");
605 1.6 mycroft }
606 1.6 mycroft t = tt + 1;
607 1.6 mycroft if (t->rn_flags & RNF_ACTIVE) {
608 1.1 cgd #ifndef RN_DEBUG
609 1.6 mycroft *++x = *t; p = t->rn_p;
610 1.1 cgd #else
611 1.6 mycroft b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
612 1.1 cgd #endif
613 1.1 cgd if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
614 1.1 cgd x->rn_l->rn_p = x; x->rn_r->rn_p = x;
615 1.1 cgd }
616 1.1 cgd goto out;
617 1.1 cgd }
618 1.1 cgd if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
619 1.1 cgd p = t->rn_p;
620 1.1 cgd if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
621 1.1 cgd x->rn_p = p;
622 1.1 cgd /*
623 1.1 cgd * Demote routes attached to us.
624 1.1 cgd */
625 1.1 cgd if (t->rn_mklist) {
626 1.1 cgd if (x->rn_b >= 0) {
627 1.1 cgd for (mp = &x->rn_mklist; m = *mp;)
628 1.1 cgd mp = &m->rm_mklist;
629 1.1 cgd *mp = t->rn_mklist;
630 1.1 cgd } else {
631 1.1 cgd for (m = t->rn_mklist; m;) {
632 1.1 cgd struct radix_mask *mm = m->rm_mklist;
633 1.1 cgd if (m == x->rn_mklist && (--(m->rm_refs) < 0)) {
634 1.1 cgd x->rn_mklist = 0;
635 1.1 cgd MKFree(m);
636 1.1 cgd } else
637 1.1 cgd printf("%s %x at %x\n",
638 1.1 cgd "rn_delete: Orphaned Mask", m, x);
639 1.1 cgd m = mm;
640 1.1 cgd }
641 1.1 cgd }
642 1.1 cgd }
643 1.1 cgd /*
644 1.1 cgd * We may be holding an active internal node in the tree.
645 1.1 cgd */
646 1.1 cgd x = tt + 1;
647 1.1 cgd if (t != x) {
648 1.1 cgd #ifndef RN_DEBUG
649 1.1 cgd *t = *x;
650 1.1 cgd #else
651 1.1 cgd b = t->rn_info; *t = *x; t->rn_info = b;
652 1.1 cgd #endif
653 1.1 cgd t->rn_l->rn_p = t; t->rn_r->rn_p = t;
654 1.1 cgd p = x->rn_p;
655 1.1 cgd if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
656 1.1 cgd }
657 1.1 cgd out:
658 1.1 cgd tt->rn_flags &= ~RNF_ACTIVE;
659 1.1 cgd tt[1].rn_flags &= ~RNF_ACTIVE;
660 1.1 cgd return (tt);
661 1.1 cgd }
662 1.1 cgd
663 1.6 mycroft int
664 1.6 mycroft rn_walktree(h, f, w)
665 1.6 mycroft struct radix_node_head *h;
666 1.6 mycroft register int (*f)();
667 1.6 mycroft void *w;
668 1.6 mycroft {
669 1.6 mycroft int error;
670 1.6 mycroft struct radix_node *base, *next;
671 1.6 mycroft register struct radix_node *rn = h->rnh_treetop;
672 1.6 mycroft /*
673 1.6 mycroft * This gets complicated because we may delete the node
674 1.6 mycroft * while applying the function f to it, so we need to calculate
675 1.6 mycroft * the successor node in advance.
676 1.6 mycroft */
677 1.6 mycroft /* First time through node, go left */
678 1.6 mycroft while (rn->rn_b >= 0)
679 1.6 mycroft rn = rn->rn_l;
680 1.6 mycroft for (;;) {
681 1.6 mycroft base = rn;
682 1.6 mycroft /* If at right child go back up, otherwise, go right */
683 1.6 mycroft while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
684 1.6 mycroft rn = rn->rn_p;
685 1.6 mycroft /* Find the next *leaf* since next node might vanish, too */
686 1.6 mycroft for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
687 1.6 mycroft rn = rn->rn_l;
688 1.6 mycroft next = rn;
689 1.6 mycroft /* Process leaves */
690 1.6 mycroft while (rn = base) {
691 1.6 mycroft base = rn->rn_dupedkey;
692 1.6 mycroft if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
693 1.6 mycroft return (error);
694 1.6 mycroft }
695 1.6 mycroft rn = next;
696 1.6 mycroft if (rn->rn_flags & RNF_ROOT)
697 1.6 mycroft return (0);
698 1.6 mycroft }
699 1.6 mycroft /* NOTREACHED */
700 1.6 mycroft }
701 1.6 mycroft
702 1.6 mycroft int
703 1.6 mycroft rn_inithead(head, off)
704 1.6 mycroft void **head;
705 1.6 mycroft int off;
706 1.1 cgd {
707 1.1 cgd register struct radix_node_head *rnh;
708 1.1 cgd register struct radix_node *t, *tt, *ttt;
709 1.1 cgd if (*head)
710 1.1 cgd return (1);
711 1.1 cgd R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
712 1.1 cgd if (rnh == 0)
713 1.1 cgd return (0);
714 1.1 cgd Bzero(rnh, sizeof (*rnh));
715 1.1 cgd *head = rnh;
716 1.1 cgd t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
717 1.1 cgd ttt = rnh->rnh_nodes + 2;
718 1.1 cgd t->rn_r = ttt;
719 1.1 cgd t->rn_p = t;
720 1.1 cgd tt = t->rn_l;
721 1.1 cgd tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
722 1.1 cgd tt->rn_b = -1 - off;
723 1.1 cgd *ttt = *tt;
724 1.1 cgd ttt->rn_key = rn_ones;
725 1.6 mycroft rnh->rnh_addaddr = rn_addroute;
726 1.6 mycroft rnh->rnh_deladdr = rn_delete;
727 1.6 mycroft rnh->rnh_matchaddr = rn_match;
728 1.6 mycroft rnh->rnh_walktree = rn_walktree;
729 1.1 cgd rnh->rnh_treetop = t;
730 1.1 cgd return (1);
731 1.6 mycroft }
732 1.6 mycroft
733 1.6 mycroft void
734 1.6 mycroft rn_init()
735 1.6 mycroft {
736 1.6 mycroft char *cp, *cplim;
737 1.6 mycroft #ifdef KERNEL
738 1.6 mycroft struct domain *dom;
739 1.6 mycroft
740 1.6 mycroft for (dom = domains; dom; dom = dom->dom_next)
741 1.6 mycroft if (dom->dom_maxrtkey > max_keylen)
742 1.6 mycroft max_keylen = dom->dom_maxrtkey;
743 1.6 mycroft #endif
744 1.6 mycroft if (max_keylen == 0) {
745 1.6 mycroft printf("rn_init: radix functions require max_keylen be set\n");
746 1.6 mycroft return;
747 1.6 mycroft }
748 1.6 mycroft R_Malloc(rn_zeros, char *, 3 * max_keylen);
749 1.6 mycroft if (rn_zeros == NULL)
750 1.6 mycroft panic("rn_init");
751 1.6 mycroft Bzero(rn_zeros, 3 * max_keylen);
752 1.6 mycroft rn_ones = cp = rn_zeros + max_keylen;
753 1.6 mycroft maskedKey = cplim = rn_ones + max_keylen;
754 1.6 mycroft while (cp < cplim)
755 1.6 mycroft *cp++ = -1;
756 1.6 mycroft if (rn_inithead((void **)&mask_rnhead, 0) == 0)
757 1.6 mycroft panic("rn_init 2");
758 1.1 cgd }
759