radix.c revision 1.11 1 /* $NetBSD: radix.c,v 1.11 1996/03/16 23:55:36 christos Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)radix.c 8.4 (Berkeley) 11/2/94
36 */
37
38 /*
39 * Routines to build and maintain radix trees for routing lookups.
40 */
41 #include <sys/param.h>
42 #ifdef _KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #define M_DONTWAIT M_NOWAIT
46 #include <sys/domain.h>
47 #else
48 #include <stdlib.h>
49 #endif
50 #include <sys/syslog.h>
51 #include <net/radix.h>
52
53 int max_keylen;
54 struct radix_mask *rn_mkfreelist;
55 struct radix_node_head *mask_rnhead;
56 static char *addmask_key;
57 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
58 static char *rn_zeros, *rn_ones;
59
60 #define rn_masktop (mask_rnhead->rnh_treetop)
61 #undef Bcmp
62 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
63
64
65 static int rn_satsifies_leaf __P((char *, struct radix_node *, int));
66 static int rn_lexobetter __P((void *, void *));
67 static struct radix_mask *rn_new_radix_mask __P((struct radix_node *,
68 struct radix_mask *));
69 /*
70 * The data structure for the keys is a radix tree with one way
71 * branching removed. The index rn_b at an internal node n represents a bit
72 * position to be tested. The tree is arranged so that all descendants
73 * of a node n have keys whose bits all agree up to position rn_b - 1.
74 * (We say the index of n is rn_b.)
75 *
76 * There is at least one descendant which has a one bit at position rn_b,
77 * and at least one with a zero there.
78 *
79 * A route is determined by a pair of key and mask. We require that the
80 * bit-wise logical and of the key and mask to be the key.
81 * We define the index of a route to associated with the mask to be
82 * the first bit number in the mask where 0 occurs (with bit number 0
83 * representing the highest order bit).
84 *
85 * We say a mask is normal if every bit is 0, past the index of the mask.
86 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
87 * and m is a normal mask, then the route applies to every descendant of n.
88 * If the index(m) < rn_b, this implies the trailing last few bits of k
89 * before bit b are all 0, (and hence consequently true of every descendant
90 * of n), so the route applies to all descendants of the node as well.
91 *
92 * Similar logic shows that a non-normal mask m such that
93 * index(m) <= index(n) could potentially apply to many children of n.
94 * Thus, for each non-host route, we attach its mask to a list at an internal
95 * node as high in the tree as we can go.
96 *
97 * The present version of the code makes use of normal routes in short-
98 * circuiting an explict mask and compare operation when testing whether
99 * a key satisfies a normal route, and also in remembering the unique leaf
100 * that governs a subtree.
101 */
102
103 struct radix_node *
104 rn_search(v_arg, head)
105 void *v_arg;
106 struct radix_node *head;
107 {
108 register struct radix_node *x;
109 register caddr_t v;
110
111 for (x = head, v = v_arg; x->rn_b >= 0;) {
112 if (x->rn_bmask & v[x->rn_off])
113 x = x->rn_r;
114 else
115 x = x->rn_l;
116 }
117 return (x);
118 };
119
120 struct radix_node *
121 rn_search_m(v_arg, head, m_arg)
122 struct radix_node *head;
123 void *v_arg, *m_arg;
124 {
125 register struct radix_node *x;
126 register caddr_t v = v_arg, m = m_arg;
127
128 for (x = head; x->rn_b >= 0;) {
129 if ((x->rn_bmask & m[x->rn_off]) &&
130 (x->rn_bmask & v[x->rn_off]))
131 x = x->rn_r;
132 else
133 x = x->rn_l;
134 }
135 return x;
136 };
137
138 int
139 rn_refines(m_arg, n_arg)
140 void *m_arg, *n_arg;
141 {
142 register caddr_t m = m_arg, n = n_arg;
143 register caddr_t lim, lim2 = lim = n + *(u_char *)n;
144 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
145 int masks_are_equal = 1;
146
147 if (longer > 0)
148 lim -= longer;
149 while (n < lim) {
150 if (*n & ~(*m))
151 return 0;
152 if (*n++ != *m++)
153 masks_are_equal = 0;
154 }
155 while (n < lim2)
156 if (*n++)
157 return 0;
158 if (masks_are_equal && (longer < 0))
159 for (lim2 = m - longer; m < lim2; )
160 if (*m++)
161 return 1;
162 return (!masks_are_equal);
163 }
164
165 struct radix_node *
166 rn_lookup(v_arg, m_arg, head)
167 void *v_arg, *m_arg;
168 struct radix_node_head *head;
169 {
170 register struct radix_node *x;
171 caddr_t netmask = 0;
172
173 if (m_arg) {
174 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
175 return (0);
176 netmask = x->rn_key;
177 }
178 x = rn_match(v_arg, head);
179 if (x && netmask) {
180 while (x && x->rn_mask != netmask)
181 x = x->rn_dupedkey;
182 }
183 return x;
184 }
185
186 static int
187 rn_satsifies_leaf(trial, leaf, skip)
188 char *trial;
189 register struct radix_node *leaf;
190 int skip;
191 {
192 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
193 char *cplim;
194 int length = min(*(u_char *)cp, *(u_char *)cp2);
195
196 if (cp3 == 0)
197 cp3 = rn_ones;
198 else
199 length = min(length, *(u_char *)cp3);
200 cplim = cp + length; cp3 += skip; cp2 += skip;
201 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
202 if ((*cp ^ *cp2) & *cp3)
203 return 0;
204 return 1;
205 }
206
207 struct radix_node *
208 rn_match(v_arg, head)
209 void *v_arg;
210 struct radix_node_head *head;
211 {
212 caddr_t v = v_arg;
213 register struct radix_node *t = head->rnh_treetop, *x;
214 register caddr_t cp = v, cp2;
215 caddr_t cplim;
216 struct radix_node *saved_t, *top = t;
217 int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
218 register int test, b, rn_b;
219
220 /*
221 * Open code rn_search(v, top) to avoid overhead of extra
222 * subroutine call.
223 */
224 for (; t->rn_b >= 0; ) {
225 if (t->rn_bmask & cp[t->rn_off])
226 t = t->rn_r;
227 else
228 t = t->rn_l;
229 }
230 /*
231 * See if we match exactly as a host destination
232 * or at least learn how many bits match, for normal mask finesse.
233 *
234 * It doesn't hurt us to limit how many bytes to check
235 * to the length of the mask, since if it matches we had a genuine
236 * match and the leaf we have is the most specific one anyway;
237 * if it didn't match with a shorter length it would fail
238 * with a long one. This wins big for class B&C netmasks which
239 * are probably the most common case...
240 */
241 if (t->rn_mask)
242 vlen = *(u_char *)t->rn_mask;
243 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
244 for (; cp < cplim; cp++, cp2++)
245 if (*cp != *cp2)
246 goto on1;
247 /*
248 * This extra grot is in case we are explicitly asked
249 * to look up the default. Ugh!
250 */
251 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
252 t = t->rn_dupedkey;
253 return t;
254 on1:
255 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
256 for (b = 7; (test >>= 1) > 0;)
257 b--;
258 matched_off = cp - v;
259 b += matched_off << 3;
260 rn_b = -1 - b;
261 /*
262 * If there is a host route in a duped-key chain, it will be first.
263 */
264 if ((saved_t = t)->rn_mask == 0)
265 t = t->rn_dupedkey;
266 for (; t; t = t->rn_dupedkey)
267 /*
268 * Even if we don't match exactly as a host,
269 * we may match if the leaf we wound up at is
270 * a route to a net.
271 */
272 if (t->rn_flags & RNF_NORMAL) {
273 if (rn_b <= t->rn_b)
274 return t;
275 } else if (rn_satsifies_leaf(v, t, matched_off))
276 return t;
277 t = saved_t;
278 /* start searching up the tree */
279 do {
280 register struct radix_mask *m;
281 t = t->rn_p;
282 if ((m = t->rn_mklist) != NULL) {
283 /*
284 * If non-contiguous masks ever become important
285 * we can restore the masking and open coding of
286 * the search and satisfaction test and put the
287 * calculation of "off" back before the "do".
288 */
289 do {
290 if (m->rm_flags & RNF_NORMAL) {
291 if (rn_b <= m->rm_b)
292 return (m->rm_leaf);
293 } else {
294 off = min(t->rn_off, matched_off);
295 x = rn_search_m(v, t, m->rm_mask);
296 while (x && x->rn_mask != m->rm_mask)
297 x = x->rn_dupedkey;
298 if (x && rn_satsifies_leaf(v, x, off))
299 return x;
300 }
301 } while ((m = m->rm_mklist) != NULL);
302 }
303 } while (t != top);
304 return 0;
305 };
306
307 #ifdef RN_DEBUG
308 int rn_nodenum;
309 struct radix_node *rn_clist;
310 int rn_saveinfo;
311 int rn_debug = 1;
312 #endif
313
314 struct radix_node *
315 rn_newpair(v, b, nodes)
316 void *v;
317 int b;
318 struct radix_node nodes[2];
319 {
320 register struct radix_node *tt = nodes, *t = tt + 1;
321 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
322 t->rn_l = tt; t->rn_off = b >> 3;
323 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
324 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
325 #ifdef RN_DEBUG
326 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
327 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
328 #endif
329 return t;
330 }
331
332 struct radix_node *
333 rn_insert(v_arg, head, dupentry, nodes)
334 void *v_arg;
335 struct radix_node_head *head;
336 int *dupentry;
337 struct radix_node nodes[2];
338 {
339 caddr_t v = v_arg;
340 struct radix_node *top = head->rnh_treetop;
341 int head_off = top->rn_off, vlen = (int)*((u_char *)v);
342 register struct radix_node *t = rn_search(v_arg, top);
343 register caddr_t cp = v + head_off;
344 register int b;
345 struct radix_node *tt;
346 /*
347 * Find first bit at which v and t->rn_key differ
348 */
349 {
350 register caddr_t cp2 = t->rn_key + head_off;
351 register int cmp_res;
352 caddr_t cplim = v + vlen;
353
354 while (cp < cplim)
355 if (*cp2++ != *cp++)
356 goto on1;
357 *dupentry = 1;
358 return t;
359 on1:
360 *dupentry = 0;
361 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
362 for (b = (cp - v) << 3; cmp_res; b--)
363 cmp_res >>= 1;
364 }
365 {
366 register struct radix_node *p, *x = top;
367 cp = v;
368 do {
369 p = x;
370 if (cp[x->rn_off] & x->rn_bmask)
371 x = x->rn_r;
372 else x = x->rn_l;
373 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
374 #ifdef RN_DEBUG
375 if (rn_debug)
376 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
377 #endif
378 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
379 if ((cp[p->rn_off] & p->rn_bmask) == 0)
380 p->rn_l = t;
381 else
382 p->rn_r = t;
383 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
384 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
385 t->rn_r = x;
386 } else {
387 t->rn_r = tt; t->rn_l = x;
388 }
389 #ifdef RN_DEBUG
390 if (rn_debug)
391 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
392 #endif
393 }
394 return (tt);
395 }
396
397 struct radix_node *
398 rn_addmask(n_arg, search, skip)
399 int search, skip;
400 void *n_arg;
401 {
402 caddr_t netmask = (caddr_t)n_arg;
403 register struct radix_node *x;
404 register caddr_t cp, cplim;
405 register int b = 0, mlen, j;
406 int maskduplicated, m0, isnormal;
407 struct radix_node *saved_x;
408 static int last_zeroed = 0;
409
410 if ((mlen = *(u_char *)netmask) > max_keylen)
411 mlen = max_keylen;
412 if (skip == 0)
413 skip = 1;
414 if (mlen <= skip)
415 return (mask_rnhead->rnh_nodes);
416 if (skip > 1)
417 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
418 if ((m0 = mlen) > skip)
419 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
420 /*
421 * Trim trailing zeroes.
422 */
423 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
424 cp--;
425 mlen = cp - addmask_key;
426 if (mlen <= skip) {
427 if (m0 >= last_zeroed)
428 last_zeroed = mlen;
429 return (mask_rnhead->rnh_nodes);
430 }
431 if (m0 < last_zeroed)
432 Bzero(addmask_key + m0, last_zeroed - m0);
433 *addmask_key = last_zeroed = mlen;
434 x = rn_search(addmask_key, rn_masktop);
435 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
436 x = 0;
437 if (x || search)
438 return (x);
439 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
440 if ((saved_x = x) == 0)
441 return (0);
442 Bzero(x, max_keylen + 2 * sizeof (*x));
443 netmask = cp = (caddr_t)(x + 2);
444 Bcopy(addmask_key, cp, mlen);
445 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
446 if (maskduplicated) {
447 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
448 Free(saved_x);
449 return (x);
450 }
451 /*
452 * Calculate index of mask, and check for normalcy.
453 */
454 cplim = netmask + mlen; isnormal = 1;
455 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
456 cp++;
457 if (cp != cplim) {
458 for (j = 0x80; (j & *cp) != 0; j >>= 1)
459 b++;
460 if (*cp != normal_chars[b] || cp != (cplim - 1))
461 isnormal = 0;
462 }
463 b += (cp - netmask) << 3;
464 x->rn_b = -1 - b;
465 if (isnormal)
466 x->rn_flags |= RNF_NORMAL;
467 return (x);
468 }
469
470 static int /* XXX: arbitrary ordering for non-contiguous masks */
471 rn_lexobetter(m_arg, n_arg)
472 void *m_arg, *n_arg;
473 {
474 register u_char *mp = m_arg, *np = n_arg, *lim;
475
476 if (*mp > *np)
477 return 1; /* not really, but need to check longer one first */
478 if (*mp == *np)
479 for (lim = mp + *mp; mp < lim;)
480 if (*mp++ > *np++)
481 return 1;
482 return 0;
483 }
484
485 static struct radix_mask *
486 rn_new_radix_mask(tt, next)
487 register struct radix_node *tt;
488 register struct radix_mask *next;
489 {
490 register struct radix_mask *m;
491
492 MKGet(m);
493 if (m == 0) {
494 log(LOG_ERR, "Mask for route not entered\n");
495 return (0);
496 }
497 Bzero(m, sizeof *m);
498 m->rm_b = tt->rn_b;
499 m->rm_flags = tt->rn_flags;
500 if (tt->rn_flags & RNF_NORMAL)
501 m->rm_leaf = tt;
502 else
503 m->rm_mask = tt->rn_mask;
504 m->rm_mklist = next;
505 tt->rn_mklist = m;
506 return m;
507 }
508
509 struct radix_node *
510 rn_addroute(v_arg, n_arg, head, treenodes)
511 void *v_arg, *n_arg;
512 struct radix_node_head *head;
513 struct radix_node treenodes[2];
514 {
515 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
516 register struct radix_node *t, *x = NULL, *tt;
517 struct radix_node *saved_tt, *top = head->rnh_treetop;
518 short b = 0, b_leaf = 0;
519 int keyduplicated;
520 caddr_t mmask;
521 struct radix_mask *m, **mp;
522
523 /*
524 * In dealing with non-contiguous masks, there may be
525 * many different routes which have the same mask.
526 * We will find it useful to have a unique pointer to
527 * the mask to speed avoiding duplicate references at
528 * nodes and possibly save time in calculating indices.
529 */
530 if (netmask) {
531 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
532 return (0);
533 b_leaf = x->rn_b;
534 b = -1 - x->rn_b;
535 netmask = x->rn_key;
536 }
537 /*
538 * Deal with duplicated keys: attach node to previous instance
539 */
540 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
541 if (keyduplicated) {
542 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
543 if (tt->rn_mask == netmask)
544 return (0);
545 if (netmask == 0 ||
546 (tt->rn_mask &&
547 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
548 rn_refines(netmask, tt->rn_mask) ||
549 rn_lexobetter(netmask, tt->rn_mask))))
550 break;
551 }
552 /*
553 * If the mask is not duplicated, we wouldn't
554 * find it among possible duplicate key entries
555 * anyway, so the above test doesn't hurt.
556 *
557 * We sort the masks for a duplicated key the same way as
558 * in a masklist -- most specific to least specific.
559 * This may require the unfortunate nuisance of relocating
560 * the head of the list.
561 */
562 if (tt == saved_tt) {
563 struct radix_node *xx = x;
564 /* link in at head of list */
565 (tt = treenodes)->rn_dupedkey = t;
566 tt->rn_flags = t->rn_flags;
567 tt->rn_p = x = t->rn_p;
568 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
569 saved_tt = tt; x = xx;
570 } else {
571 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
572 t->rn_dupedkey = tt;
573 }
574 #ifdef RN_DEBUG
575 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
576 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
577 #endif
578 tt->rn_key = (caddr_t) v;
579 tt->rn_b = -1;
580 tt->rn_flags = RNF_ACTIVE;
581 }
582 /*
583 * Put mask in tree.
584 */
585 if (netmask) {
586 tt->rn_mask = netmask;
587 tt->rn_b = x->rn_b;
588 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
589 }
590 t = saved_tt->rn_p;
591 if (keyduplicated)
592 goto on2;
593 b_leaf = -1 - t->rn_b;
594 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
595 /* Promote general routes from below */
596 if (x->rn_b < 0) {
597 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
598 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
599 *mp = m = rn_new_radix_mask(x, 0);
600 if (m)
601 mp = &m->rm_mklist;
602 }
603 } else if (x->rn_mklist) {
604 /*
605 * Skip over masks whose index is > that of new node
606 */
607 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
608 if (m->rm_b >= b_leaf)
609 break;
610 t->rn_mklist = m; *mp = 0;
611 }
612 on2:
613 /* Add new route to highest possible ancestor's list */
614 if ((netmask == 0) || (b > t->rn_b ))
615 return tt; /* can't lift at all */
616 b_leaf = tt->rn_b;
617 do {
618 x = t;
619 t = t->rn_p;
620 } while (b <= t->rn_b && x != top);
621 /*
622 * Search through routes associated with node to
623 * insert new route according to index.
624 * Need same criteria as when sorting dupedkeys to avoid
625 * double loop on deletion.
626 */
627 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
628 if (m->rm_b < b_leaf)
629 continue;
630 if (m->rm_b > b_leaf)
631 break;
632 if (m->rm_flags & RNF_NORMAL) {
633 mmask = m->rm_leaf->rn_mask;
634 if (tt->rn_flags & RNF_NORMAL) {
635 log(LOG_ERR,
636 "Non-unique normal route, mask not entered");
637 return tt;
638 }
639 } else
640 mmask = m->rm_mask;
641 if (mmask == netmask) {
642 m->rm_refs++;
643 tt->rn_mklist = m;
644 return tt;
645 }
646 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
647 break;
648 }
649 *mp = rn_new_radix_mask(tt, *mp);
650 return tt;
651 }
652
653 struct radix_node *
654 rn_delete(v_arg, netmask_arg, head)
655 void *v_arg, *netmask_arg;
656 struct radix_node_head *head;
657 {
658 register struct radix_node *t, *p, *x, *tt;
659 struct radix_mask *m, *saved_m, **mp;
660 struct radix_node *dupedkey, *saved_tt, *top;
661 caddr_t v, netmask;
662 int b, head_off, vlen;
663
664 v = v_arg;
665 netmask = netmask_arg;
666 x = head->rnh_treetop;
667 tt = rn_search(v, x);
668 head_off = x->rn_off;
669 vlen = *(u_char *)v;
670 saved_tt = tt;
671 top = x;
672 if (tt == 0 ||
673 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
674 return (0);
675 /*
676 * Delete our route from mask lists.
677 */
678 if (netmask) {
679 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
680 return (0);
681 netmask = x->rn_key;
682 while (tt->rn_mask != netmask)
683 if ((tt = tt->rn_dupedkey) == 0)
684 return (0);
685 }
686 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
687 goto on1;
688 if (tt->rn_flags & RNF_NORMAL) {
689 if (m->rm_leaf != tt || m->rm_refs > 0) {
690 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
691 return 0; /* dangling ref could cause disaster */
692 }
693 } else {
694 if (m->rm_mask != tt->rn_mask) {
695 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
696 goto on1;
697 }
698 if (--m->rm_refs >= 0)
699 goto on1;
700 }
701 b = -1 - tt->rn_b;
702 t = saved_tt->rn_p;
703 if (b > t->rn_b)
704 goto on1; /* Wasn't lifted at all */
705 do {
706 x = t;
707 t = t->rn_p;
708 } while (b <= t->rn_b && x != top);
709 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
710 if (m == saved_m) {
711 *mp = m->rm_mklist;
712 MKFree(m);
713 break;
714 }
715 if (m == 0) {
716 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
717 if (tt->rn_flags & RNF_NORMAL)
718 return (0); /* Dangling ref to us */
719 }
720 on1:
721 /*
722 * Eliminate us from tree
723 */
724 if (tt->rn_flags & RNF_ROOT)
725 return (0);
726 #ifdef RN_DEBUG
727 /* Get us out of the creation list */
728 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
729 if (t) t->rn_ybro = tt->rn_ybro;
730 #endif
731 t = tt->rn_p;
732 if ((dupedkey = saved_tt->rn_dupedkey) != 0) {
733 if (tt == saved_tt) {
734 x = dupedkey; x->rn_p = t;
735 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
736 } else {
737 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
738 p = p->rn_dupedkey;
739 if (p) p->rn_dupedkey = tt->rn_dupedkey;
740 else log(LOG_ERR, "rn_delete: couldn't find us\n");
741 }
742 t = tt + 1;
743 if (t->rn_flags & RNF_ACTIVE) {
744 #ifndef RN_DEBUG
745 *++x = *t; p = t->rn_p;
746 #else
747 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
748 #endif
749 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
750 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
751 }
752 goto out;
753 }
754 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
755 p = t->rn_p;
756 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
757 x->rn_p = p;
758 /*
759 * Demote routes attached to us.
760 */
761 if (t->rn_mklist) {
762 if (x->rn_b >= 0) {
763 for (mp = &x->rn_mklist; (m = *mp) != NULL;)
764 mp = &m->rm_mklist;
765 *mp = t->rn_mklist;
766 } else {
767 /* If there are any key,mask pairs in a sibling
768 duped-key chain, some subset will appear sorted
769 in the same order attached to our mklist */
770 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
771 if (m == x->rn_mklist) {
772 struct radix_mask *mm = m->rm_mklist;
773 x->rn_mklist = 0;
774 if (--(m->rm_refs) < 0)
775 MKFree(m);
776 m = mm;
777 }
778 if (m)
779 log(LOG_ERR, "%s %p at %p\n",
780 "rn_delete: Orphaned Mask", m, x);
781 }
782 }
783 /*
784 * We may be holding an active internal node in the tree.
785 */
786 x = tt + 1;
787 if (t != x) {
788 #ifndef RN_DEBUG
789 *t = *x;
790 #else
791 b = t->rn_info; *t = *x; t->rn_info = b;
792 #endif
793 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
794 p = x->rn_p;
795 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
796 }
797 out:
798 tt->rn_flags &= ~RNF_ACTIVE;
799 tt[1].rn_flags &= ~RNF_ACTIVE;
800 return (tt);
801 }
802
803 int
804 rn_walktree(h, f, w)
805 struct radix_node_head *h;
806 register int (*f) __P((struct radix_node *, void *));
807 void *w;
808 {
809 int error;
810 struct radix_node *base, *next;
811 register struct radix_node *rn = h->rnh_treetop;
812 /*
813 * This gets complicated because we may delete the node
814 * while applying the function f to it, so we need to calculate
815 * the successor node in advance.
816 */
817 /* First time through node, go left */
818 while (rn->rn_b >= 0)
819 rn = rn->rn_l;
820 for (;;) {
821 base = rn;
822 /* If at right child go back up, otherwise, go right */
823 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
824 rn = rn->rn_p;
825 /* Find the next *leaf* since next node might vanish, too */
826 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
827 rn = rn->rn_l;
828 next = rn;
829 /* Process leaves */
830 while ((rn = base) != NULL) {
831 base = rn->rn_dupedkey;
832 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
833 return (error);
834 }
835 rn = next;
836 if (rn->rn_flags & RNF_ROOT)
837 return (0);
838 }
839 /* NOTREACHED */
840 }
841
842 int
843 rn_inithead(head, off)
844 void **head;
845 int off;
846 {
847 register struct radix_node_head *rnh;
848 register struct radix_node *t, *tt, *ttt;
849 if (*head)
850 return (1);
851 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
852 if (rnh == 0)
853 return (0);
854 Bzero(rnh, sizeof (*rnh));
855 *head = rnh;
856 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
857 ttt = rnh->rnh_nodes + 2;
858 t->rn_r = ttt;
859 t->rn_p = t;
860 tt = t->rn_l;
861 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
862 tt->rn_b = -1 - off;
863 *ttt = *tt;
864 ttt->rn_key = rn_ones;
865 rnh->rnh_addaddr = rn_addroute;
866 rnh->rnh_deladdr = rn_delete;
867 rnh->rnh_matchaddr = rn_match;
868 rnh->rnh_lookup = rn_lookup;
869 rnh->rnh_walktree = rn_walktree;
870 rnh->rnh_treetop = t;
871 return (1);
872 }
873
874 void
875 rn_init()
876 {
877 char *cp, *cplim;
878 #ifdef _KERNEL
879 struct domain *dom;
880
881 for (dom = domains; dom; dom = dom->dom_next)
882 if (dom->dom_maxrtkey > max_keylen)
883 max_keylen = dom->dom_maxrtkey;
884 #endif
885 if (max_keylen == 0) {
886 log(LOG_ERR,
887 "rn_init: radix functions require max_keylen be set\n");
888 return;
889 }
890 R_Malloc(rn_zeros, char *, 3 * max_keylen);
891 if (rn_zeros == NULL)
892 panic("rn_init");
893 Bzero(rn_zeros, 3 * max_keylen);
894 rn_ones = cp = rn_zeros + max_keylen;
895 addmask_key = cplim = rn_ones + max_keylen;
896 while (cp < cplim)
897 *cp++ = -1;
898 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
899 panic("rn_init 2");
900 }
901