radix.c revision 1.19 1 /* $NetBSD: radix.c,v 1.19 2002/11/25 02:03:01 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)radix.c 8.6 (Berkeley) 10/17/95
36 */
37
38 /*
39 * Routines to build and maintain radix trees for routing lookups.
40 */
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.19 2002/11/25 02:03:01 thorpej Exp $");
44
45 #ifndef _NET_RADIX_H_
46 #include <sys/param.h>
47 #ifdef _KERNEL
48 #include <sys/systm.h>
49 #include <sys/malloc.h>
50 #define M_DONTWAIT M_NOWAIT
51 #include <sys/domain.h>
52 #else
53 #include <stdlib.h>
54 #endif
55 #include <sys/syslog.h>
56 #include <net/radix.h>
57 #endif
58
59 int max_keylen;
60 struct radix_mask *rn_mkfreelist;
61 struct radix_node_head *mask_rnhead;
62 static char *addmask_key;
63 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
64 static char *rn_zeros, *rn_ones;
65
66 #define rn_masktop (mask_rnhead->rnh_treetop)
67 #undef Bcmp
68 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
69
70 static int rn_satisfies_leaf __P((char *, struct radix_node *, int));
71 static int rn_lexobetter __P((void *, void *));
72 static struct radix_mask *rn_new_radix_mask __P((struct radix_node *,
73 struct radix_mask *));
74
75 /*
76 * The data structure for the keys is a radix tree with one way
77 * branching removed. The index rn_b at an internal node n represents a bit
78 * position to be tested. The tree is arranged so that all descendants
79 * of a node n have keys whose bits all agree up to position rn_b - 1.
80 * (We say the index of n is rn_b.)
81 *
82 * There is at least one descendant which has a one bit at position rn_b,
83 * and at least one with a zero there.
84 *
85 * A route is determined by a pair of key and mask. We require that the
86 * bit-wise logical and of the key and mask to be the key.
87 * We define the index of a route to associated with the mask to be
88 * the first bit number in the mask where 0 occurs (with bit number 0
89 * representing the highest order bit).
90 *
91 * We say a mask is normal if every bit is 0, past the index of the mask.
92 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
93 * and m is a normal mask, then the route applies to every descendant of n.
94 * If the index(m) < rn_b, this implies the trailing last few bits of k
95 * before bit b are all 0, (and hence consequently true of every descendant
96 * of n), so the route applies to all descendants of the node as well.
97 *
98 * Similar logic shows that a non-normal mask m such that
99 * index(m) <= index(n) could potentially apply to many children of n.
100 * Thus, for each non-host route, we attach its mask to a list at an internal
101 * node as high in the tree as we can go.
102 *
103 * The present version of the code makes use of normal routes in short-
104 * circuiting an explict mask and compare operation when testing whether
105 * a key satisfies a normal route, and also in remembering the unique leaf
106 * that governs a subtree.
107 */
108
109 struct radix_node *
110 rn_search(v_arg, head)
111 void *v_arg;
112 struct radix_node *head;
113 {
114 struct radix_node *x;
115 caddr_t v;
116
117 for (x = head, v = v_arg; x->rn_b >= 0;) {
118 if (x->rn_bmask & v[x->rn_off])
119 x = x->rn_r;
120 else
121 x = x->rn_l;
122 }
123 return (x);
124 }
125
126 struct radix_node *
127 rn_search_m(v_arg, head, m_arg)
128 struct radix_node *head;
129 void *v_arg, *m_arg;
130 {
131 struct radix_node *x;
132 caddr_t v = v_arg, m = m_arg;
133
134 for (x = head; x->rn_b >= 0;) {
135 if ((x->rn_bmask & m[x->rn_off]) &&
136 (x->rn_bmask & v[x->rn_off]))
137 x = x->rn_r;
138 else
139 x = x->rn_l;
140 }
141 return x;
142 }
143
144 int
145 rn_refines(m_arg, n_arg)
146 void *m_arg, *n_arg;
147 {
148 caddr_t m = m_arg, n = n_arg;
149 caddr_t lim, lim2 = lim = n + *(u_char *)n;
150 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
151 int masks_are_equal = 1;
152
153 if (longer > 0)
154 lim -= longer;
155 while (n < lim) {
156 if (*n & ~(*m))
157 return 0;
158 if (*n++ != *m++)
159 masks_are_equal = 0;
160 }
161 while (n < lim2)
162 if (*n++)
163 return 0;
164 if (masks_are_equal && (longer < 0))
165 for (lim2 = m - longer; m < lim2; )
166 if (*m++)
167 return 1;
168 return (!masks_are_equal);
169 }
170
171 struct radix_node *
172 rn_lookup(v_arg, m_arg, head)
173 void *v_arg, *m_arg;
174 struct radix_node_head *head;
175 {
176 struct radix_node *x;
177 caddr_t netmask = 0;
178
179 if (m_arg) {
180 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
181 return (0);
182 netmask = x->rn_key;
183 }
184 x = rn_match(v_arg, head);
185 if (x && netmask) {
186 while (x && x->rn_mask != netmask)
187 x = x->rn_dupedkey;
188 }
189 return x;
190 }
191
192 static int
193 rn_satisfies_leaf(trial, leaf, skip)
194 char *trial;
195 struct radix_node *leaf;
196 int skip;
197 {
198 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
199 char *cplim;
200 int length = min(*(u_char *)cp, *(u_char *)cp2);
201
202 if (cp3 == 0)
203 cp3 = rn_ones;
204 else
205 length = min(length, *(u_char *)cp3);
206 cplim = cp + length; cp3 += skip; cp2 += skip;
207 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
208 if ((*cp ^ *cp2) & *cp3)
209 return 0;
210 return 1;
211 }
212
213 struct radix_node *
214 rn_match(v_arg, head)
215 void *v_arg;
216 struct radix_node_head *head;
217 {
218 caddr_t v = v_arg;
219 struct radix_node *t = head->rnh_treetop, *x;
220 caddr_t cp = v, cp2;
221 caddr_t cplim;
222 struct radix_node *saved_t, *top = t;
223 int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
224 int test, b, rn_b;
225
226 /*
227 * Open code rn_search(v, top) to avoid overhead of extra
228 * subroutine call.
229 */
230 for (; t->rn_b >= 0; ) {
231 if (t->rn_bmask & cp[t->rn_off])
232 t = t->rn_r;
233 else
234 t = t->rn_l;
235 }
236 /*
237 * See if we match exactly as a host destination
238 * or at least learn how many bits match, for normal mask finesse.
239 *
240 * It doesn't hurt us to limit how many bytes to check
241 * to the length of the mask, since if it matches we had a genuine
242 * match and the leaf we have is the most specific one anyway;
243 * if it didn't match with a shorter length it would fail
244 * with a long one. This wins big for class B&C netmasks which
245 * are probably the most common case...
246 */
247 if (t->rn_mask)
248 vlen = *(u_char *)t->rn_mask;
249 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
250 for (; cp < cplim; cp++, cp2++)
251 if (*cp != *cp2)
252 goto on1;
253 /*
254 * This extra grot is in case we are explicitly asked
255 * to look up the default. Ugh!
256 */
257 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
258 t = t->rn_dupedkey;
259 return t;
260 on1:
261 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
262 for (b = 7; (test >>= 1) > 0;)
263 b--;
264 matched_off = cp - v;
265 b += matched_off << 3;
266 rn_b = -1 - b;
267 /*
268 * If there is a host route in a duped-key chain, it will be first.
269 */
270 if ((saved_t = t)->rn_mask == 0)
271 t = t->rn_dupedkey;
272 for (; t; t = t->rn_dupedkey)
273 /*
274 * Even if we don't match exactly as a host,
275 * we may match if the leaf we wound up at is
276 * a route to a net.
277 */
278 if (t->rn_flags & RNF_NORMAL) {
279 if (rn_b <= t->rn_b)
280 return t;
281 } else if (rn_satisfies_leaf(v, t, matched_off))
282 return t;
283 t = saved_t;
284 /* start searching up the tree */
285 do {
286 struct radix_mask *m;
287 t = t->rn_p;
288 m = t->rn_mklist;
289 if (m) {
290 /*
291 * If non-contiguous masks ever become important
292 * we can restore the masking and open coding of
293 * the search and satisfaction test and put the
294 * calculation of "off" back before the "do".
295 */
296 do {
297 if (m->rm_flags & RNF_NORMAL) {
298 if (rn_b <= m->rm_b)
299 return (m->rm_leaf);
300 } else {
301 off = min(t->rn_off, matched_off);
302 x = rn_search_m(v, t, m->rm_mask);
303 while (x && x->rn_mask != m->rm_mask)
304 x = x->rn_dupedkey;
305 if (x && rn_satisfies_leaf(v, x, off))
306 return x;
307 }
308 m = m->rm_mklist;
309 } while (m);
310 }
311 } while (t != top);
312 return 0;
313 }
314
315 #ifdef RN_DEBUG
316 int rn_nodenum;
317 struct radix_node *rn_clist;
318 int rn_saveinfo;
319 int rn_debug = 1;
320 #endif
321
322 struct radix_node *
323 rn_newpair(v, b, nodes)
324 void *v;
325 int b;
326 struct radix_node nodes[2];
327 {
328 struct radix_node *tt = nodes, *t = tt + 1;
329 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
330 t->rn_l = tt; t->rn_off = b >> 3;
331 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
332 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
333 #ifdef RN_DEBUG
334 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
335 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
336 #endif
337 return t;
338 }
339
340 struct radix_node *
341 rn_insert(v_arg, head, dupentry, nodes)
342 void *v_arg;
343 struct radix_node_head *head;
344 int *dupentry;
345 struct radix_node nodes[2];
346 {
347 caddr_t v = v_arg;
348 struct radix_node *top = head->rnh_treetop;
349 int head_off = top->rn_off, vlen = (int)*((u_char *)v);
350 struct radix_node *t = rn_search(v_arg, top);
351 caddr_t cp = v + head_off;
352 int b;
353 struct radix_node *tt;
354 /*
355 * Find first bit at which v and t->rn_key differ
356 */
357 {
358 caddr_t cp2 = t->rn_key + head_off;
359 int cmp_res;
360 caddr_t cplim = v + vlen;
361
362 while (cp < cplim)
363 if (*cp2++ != *cp++)
364 goto on1;
365 *dupentry = 1;
366 return t;
367 on1:
368 *dupentry = 0;
369 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
370 for (b = (cp - v) << 3; cmp_res; b--)
371 cmp_res >>= 1;
372 }
373 {
374 struct radix_node *p, *x = top;
375 cp = v;
376 do {
377 p = x;
378 if (cp[x->rn_off] & x->rn_bmask)
379 x = x->rn_r;
380 else x = x->rn_l;
381 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
382 #ifdef RN_DEBUG
383 if (rn_debug)
384 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
385 #endif
386 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
387 if ((cp[p->rn_off] & p->rn_bmask) == 0)
388 p->rn_l = t;
389 else
390 p->rn_r = t;
391 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
392 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
393 t->rn_r = x;
394 } else {
395 t->rn_r = tt; t->rn_l = x;
396 }
397 #ifdef RN_DEBUG
398 if (rn_debug)
399 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
400 #endif
401 }
402 return (tt);
403 }
404
405 struct radix_node *
406 rn_addmask(n_arg, search, skip)
407 int search, skip;
408 void *n_arg;
409 {
410 caddr_t netmask = (caddr_t)n_arg;
411 struct radix_node *x;
412 caddr_t cp, cplim;
413 int b = 0, mlen, j;
414 int maskduplicated, m0, isnormal;
415 struct radix_node *saved_x;
416 static int last_zeroed = 0;
417
418 if ((mlen = *(u_char *)netmask) > max_keylen)
419 mlen = max_keylen;
420 if (skip == 0)
421 skip = 1;
422 if (mlen <= skip)
423 return (mask_rnhead->rnh_nodes);
424 if (skip > 1)
425 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
426 if ((m0 = mlen) > skip)
427 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
428 /*
429 * Trim trailing zeroes.
430 */
431 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
432 cp--;
433 mlen = cp - addmask_key;
434 if (mlen <= skip) {
435 if (m0 >= last_zeroed)
436 last_zeroed = mlen;
437 return (mask_rnhead->rnh_nodes);
438 }
439 if (m0 < last_zeroed)
440 Bzero(addmask_key + m0, last_zeroed - m0);
441 *addmask_key = last_zeroed = mlen;
442 x = rn_search(addmask_key, rn_masktop);
443 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
444 x = 0;
445 if (x || search)
446 return (x);
447 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
448 if ((saved_x = x) == 0)
449 return (0);
450 Bzero(x, max_keylen + 2 * sizeof (*x));
451 netmask = cp = (caddr_t)(x + 2);
452 Bcopy(addmask_key, cp, mlen);
453 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
454 if (maskduplicated) {
455 log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
456 Free(saved_x);
457 return (x);
458 }
459 /*
460 * Calculate index of mask, and check for normalcy.
461 */
462 cplim = netmask + mlen; isnormal = 1;
463 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
464 cp++;
465 if (cp != cplim) {
466 for (j = 0x80; (j & *cp) != 0; j >>= 1)
467 b++;
468 if (*cp != normal_chars[b] || cp != (cplim - 1))
469 isnormal = 0;
470 }
471 b += (cp - netmask) << 3;
472 x->rn_b = -1 - b;
473 if (isnormal)
474 x->rn_flags |= RNF_NORMAL;
475 return (x);
476 }
477
478 static int /* XXX: arbitrary ordering for non-contiguous masks */
479 rn_lexobetter(m_arg, n_arg)
480 void *m_arg, *n_arg;
481 {
482 u_char *mp = m_arg, *np = n_arg, *lim;
483
484 if (*mp > *np)
485 return 1; /* not really, but need to check longer one first */
486 if (*mp == *np)
487 for (lim = mp + *mp; mp < lim;)
488 if (*mp++ > *np++)
489 return 1;
490 return 0;
491 }
492
493 static struct radix_mask *
494 rn_new_radix_mask(tt, next)
495 struct radix_node *tt;
496 struct radix_mask *next;
497 {
498 struct radix_mask *m;
499
500 MKGet(m);
501 if (m == 0) {
502 log(LOG_ERR, "Mask for route not entered\n");
503 return (0);
504 }
505 Bzero(m, sizeof *m);
506 m->rm_b = tt->rn_b;
507 m->rm_flags = tt->rn_flags;
508 if (tt->rn_flags & RNF_NORMAL)
509 m->rm_leaf = tt;
510 else
511 m->rm_mask = tt->rn_mask;
512 m->rm_mklist = next;
513 tt->rn_mklist = m;
514 return m;
515 }
516
517 struct radix_node *
518 rn_addroute(v_arg, n_arg, head, treenodes)
519 void *v_arg, *n_arg;
520 struct radix_node_head *head;
521 struct radix_node treenodes[2];
522 {
523 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
524 struct radix_node *t, *x = 0, *tt;
525 struct radix_node *saved_tt, *top = head->rnh_treetop;
526 short b = 0, b_leaf = 0;
527 int keyduplicated;
528 caddr_t mmask;
529 struct radix_mask *m, **mp;
530
531 /*
532 * In dealing with non-contiguous masks, there may be
533 * many different routes which have the same mask.
534 * We will find it useful to have a unique pointer to
535 * the mask to speed avoiding duplicate references at
536 * nodes and possibly save time in calculating indices.
537 */
538 if (netmask) {
539 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
540 return (0);
541 b_leaf = x->rn_b;
542 b = -1 - x->rn_b;
543 netmask = x->rn_key;
544 }
545 /*
546 * Deal with duplicated keys: attach node to previous instance
547 */
548 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
549 if (keyduplicated) {
550 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
551 if (tt->rn_mask == netmask)
552 return (0);
553 if (netmask == 0 ||
554 (tt->rn_mask &&
555 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
556 rn_refines(netmask, tt->rn_mask) ||
557 rn_lexobetter(netmask, tt->rn_mask))))
558 break;
559 }
560 /*
561 * If the mask is not duplicated, we wouldn't
562 * find it among possible duplicate key entries
563 * anyway, so the above test doesn't hurt.
564 *
565 * We sort the masks for a duplicated key the same way as
566 * in a masklist -- most specific to least specific.
567 * This may require the unfortunate nuisance of relocating
568 * the head of the list.
569 *
570 * We also reverse, or doubly link the list through the
571 * parent pointer.
572 */
573 if (tt == saved_tt) {
574 struct radix_node *xx = x;
575 /* link in at head of list */
576 (tt = treenodes)->rn_dupedkey = t;
577 tt->rn_flags = t->rn_flags;
578 tt->rn_p = x = t->rn_p;
579 t->rn_p = tt;
580 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
581 saved_tt = tt; x = xx;
582 } else {
583 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
584 t->rn_dupedkey = tt;
585 tt->rn_p = t;
586 if (tt->rn_dupedkey)
587 tt->rn_dupedkey->rn_p = tt;
588 }
589 #ifdef RN_DEBUG
590 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
591 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
592 #endif
593 tt->rn_key = (caddr_t) v;
594 tt->rn_b = -1;
595 tt->rn_flags = RNF_ACTIVE;
596 }
597 /*
598 * Put mask in tree.
599 */
600 if (netmask) {
601 tt->rn_mask = netmask;
602 tt->rn_b = x->rn_b;
603 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
604 }
605 t = saved_tt->rn_p;
606 if (keyduplicated)
607 goto on2;
608 b_leaf = -1 - t->rn_b;
609 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
610 /* Promote general routes from below */
611 if (x->rn_b < 0) {
612 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
613 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
614 *mp = m = rn_new_radix_mask(x, 0);
615 if (m)
616 mp = &m->rm_mklist;
617 }
618 } else if (x->rn_mklist) {
619 /*
620 * Skip over masks whose index is > that of new node
621 */
622 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
623 if (m->rm_b >= b_leaf)
624 break;
625 t->rn_mklist = m; *mp = 0;
626 }
627 on2:
628 /* Add new route to highest possible ancestor's list */
629 if ((netmask == 0) || (b > t->rn_b ))
630 return tt; /* can't lift at all */
631 b_leaf = tt->rn_b;
632 do {
633 x = t;
634 t = t->rn_p;
635 } while (b <= t->rn_b && x != top);
636 /*
637 * Search through routes associated with node to
638 * insert new route according to index.
639 * Need same criteria as when sorting dupedkeys to avoid
640 * double loop on deletion.
641 */
642 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
643 if (m->rm_b < b_leaf)
644 continue;
645 if (m->rm_b > b_leaf)
646 break;
647 if (m->rm_flags & RNF_NORMAL) {
648 mmask = m->rm_leaf->rn_mask;
649 if (tt->rn_flags & RNF_NORMAL) {
650 log(LOG_ERR, "Non-unique normal route,"
651 " mask not entered\n");
652 return tt;
653 }
654 } else
655 mmask = m->rm_mask;
656 if (mmask == netmask) {
657 m->rm_refs++;
658 tt->rn_mklist = m;
659 return tt;
660 }
661 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
662 break;
663 }
664 *mp = rn_new_radix_mask(tt, *mp);
665 return tt;
666 }
667
668 struct radix_node *
669 rn_delete(v_arg, netmask_arg, head)
670 void *v_arg, *netmask_arg;
671 struct radix_node_head *head;
672 {
673 struct radix_node *t, *p, *x, *tt;
674 struct radix_mask *m, *saved_m, **mp;
675 struct radix_node *dupedkey, *saved_tt, *top;
676 caddr_t v, netmask;
677 int b, head_off, vlen;
678
679 v = v_arg;
680 netmask = netmask_arg;
681 x = head->rnh_treetop;
682 tt = rn_search(v, x);
683 head_off = x->rn_off;
684 vlen = *(u_char *)v;
685 saved_tt = tt;
686 top = x;
687 if (tt == 0 ||
688 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
689 return (0);
690 /*
691 * Delete our route from mask lists.
692 */
693 if (netmask) {
694 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
695 return (0);
696 netmask = x->rn_key;
697 while (tt->rn_mask != netmask)
698 if ((tt = tt->rn_dupedkey) == 0)
699 return (0);
700 }
701 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
702 goto on1;
703 if (tt->rn_flags & RNF_NORMAL) {
704 if (m->rm_leaf != tt || m->rm_refs > 0) {
705 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
706 return 0; /* dangling ref could cause disaster */
707 }
708 } else {
709 if (m->rm_mask != tt->rn_mask) {
710 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
711 goto on1;
712 }
713 if (--m->rm_refs >= 0)
714 goto on1;
715 }
716 b = -1 - tt->rn_b;
717 t = saved_tt->rn_p;
718 if (b > t->rn_b)
719 goto on1; /* Wasn't lifted at all */
720 do {
721 x = t;
722 t = t->rn_p;
723 } while (b <= t->rn_b && x != top);
724 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
725 if (m == saved_m) {
726 *mp = m->rm_mklist;
727 MKFree(m);
728 break;
729 }
730 if (m == 0) {
731 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
732 if (tt->rn_flags & RNF_NORMAL)
733 return (0); /* Dangling ref to us */
734 }
735 on1:
736 /*
737 * Eliminate us from tree
738 */
739 if (tt->rn_flags & RNF_ROOT)
740 return (0);
741 #ifdef RN_DEBUG
742 /* Get us out of the creation list */
743 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
744 if (t) t->rn_ybro = tt->rn_ybro;
745 #endif
746 t = tt->rn_p;
747 dupedkey = saved_tt->rn_dupedkey;
748 if (dupedkey) {
749 /*
750 * Here, tt is the deletion target, and
751 * saved_tt is the head of the dupedkey chain.
752 */
753 if (tt == saved_tt) {
754 x = dupedkey; x->rn_p = t;
755 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
756 } else {
757 /* find node in front of tt on the chain */
758 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
759 p = p->rn_dupedkey;
760 if (p) {
761 p->rn_dupedkey = tt->rn_dupedkey;
762 if (tt->rn_dupedkey)
763 tt->rn_dupedkey->rn_p = p;
764 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
765 }
766 t = tt + 1;
767 if (t->rn_flags & RNF_ACTIVE) {
768 #ifndef RN_DEBUG
769 *++x = *t; p = t->rn_p;
770 #else
771 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
772 #endif
773 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
774 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
775 }
776 goto out;
777 }
778 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
779 p = t->rn_p;
780 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
781 x->rn_p = p;
782 /*
783 * Demote routes attached to us.
784 */
785 if (t->rn_mklist) {
786 if (x->rn_b >= 0) {
787 for (mp = &x->rn_mklist; (m = *mp);)
788 mp = &m->rm_mklist;
789 *mp = t->rn_mklist;
790 } else {
791 /* If there are any key,mask pairs in a sibling
792 duped-key chain, some subset will appear sorted
793 in the same order attached to our mklist */
794 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
795 if (m == x->rn_mklist) {
796 struct radix_mask *mm = m->rm_mklist;
797 x->rn_mklist = 0;
798 if (--(m->rm_refs) < 0)
799 MKFree(m);
800 m = mm;
801 }
802 if (m)
803 log(LOG_ERR, "%s %p at %p\n",
804 "rn_delete: Orphaned Mask", m, x);
805 }
806 }
807 /*
808 * We may be holding an active internal node in the tree.
809 */
810 x = tt + 1;
811 if (t != x) {
812 #ifndef RN_DEBUG
813 *t = *x;
814 #else
815 b = t->rn_info; *t = *x; t->rn_info = b;
816 #endif
817 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
818 p = x->rn_p;
819 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
820 }
821 out:
822 tt->rn_flags &= ~RNF_ACTIVE;
823 tt[1].rn_flags &= ~RNF_ACTIVE;
824 return (tt);
825 }
826
827 int
828 rn_walktree(h, f, w)
829 struct radix_node_head *h;
830 int (*f) __P((struct radix_node *, void *));
831 void *w;
832 {
833 int error;
834 struct radix_node *base, *next;
835 struct radix_node *rn = h->rnh_treetop;
836 /*
837 * This gets complicated because we may delete the node
838 * while applying the function f to it, so we need to calculate
839 * the successor node in advance.
840 */
841 /* First time through node, go left */
842 while (rn->rn_b >= 0)
843 rn = rn->rn_l;
844 for (;;) {
845 base = rn;
846 /* If at right child go back up, otherwise, go right */
847 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
848 rn = rn->rn_p;
849 /* Find the next *leaf* since next node might vanish, too */
850 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
851 rn = rn->rn_l;
852 next = rn;
853 /* Process leaves */
854 while ((rn = base) != NULL) {
855 base = rn->rn_dupedkey;
856 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
857 return (error);
858 }
859 rn = next;
860 if (rn->rn_flags & RNF_ROOT)
861 return (0);
862 }
863 /* NOTREACHED */
864 }
865
866 int
867 rn_inithead(head, off)
868 void **head;
869 int off;
870 {
871 struct radix_node_head *rnh;
872
873 if (*head)
874 return (1);
875 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
876 if (rnh == 0)
877 return (0);
878 *head = rnh;
879 return rn_inithead0(rnh, off);
880 }
881
882 int
883 rn_inithead0(rnh, off)
884 struct radix_node_head *rnh;
885 int off;
886 {
887 struct radix_node *t, *tt, *ttt;
888
889 Bzero(rnh, sizeof (*rnh));
890 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
891 ttt = rnh->rnh_nodes + 2;
892 t->rn_r = ttt;
893 t->rn_p = t;
894 tt = t->rn_l;
895 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
896 tt->rn_b = -1 - off;
897 *ttt = *tt;
898 ttt->rn_key = rn_ones;
899 rnh->rnh_addaddr = rn_addroute;
900 rnh->rnh_deladdr = rn_delete;
901 rnh->rnh_matchaddr = rn_match;
902 rnh->rnh_lookup = rn_lookup;
903 rnh->rnh_walktree = rn_walktree;
904 rnh->rnh_treetop = t;
905 return (1);
906 }
907
908 void
909 rn_init()
910 {
911 char *cp, *cplim;
912 #ifdef _KERNEL
913 struct domain *dom;
914
915 for (dom = domains; dom; dom = dom->dom_next)
916 if (dom->dom_maxrtkey > max_keylen)
917 max_keylen = dom->dom_maxrtkey;
918 #endif
919 if (max_keylen == 0) {
920 log(LOG_ERR,
921 "rn_init: radix functions require max_keylen be set\n");
922 return;
923 }
924 R_Malloc(rn_zeros, char *, 3 * max_keylen);
925 if (rn_zeros == NULL)
926 panic("rn_init");
927 Bzero(rn_zeros, 3 * max_keylen);
928 rn_ones = cp = rn_zeros + max_keylen;
929 addmask_key = cplim = rn_ones + max_keylen;
930 while (cp < cplim)
931 *cp++ = -1;
932 if (rn_inithead((void *)&mask_rnhead, 0) == 0)
933 panic("rn_init 2");
934 }
935