radix.c revision 1.23 1 /* $NetBSD: radix.c,v 1.23 2004/04/21 21:03:43 matt Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 */
33
34 /*
35 * Routines to build and maintain radix trees for routing lookups.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.23 2004/04/21 21:03:43 matt Exp $");
40
41 #ifndef _NET_RADIX_H_
42 #include <sys/param.h>
43 #ifdef _KERNEL
44 #include <sys/systm.h>
45 #include <sys/malloc.h>
46 #define M_DONTWAIT M_NOWAIT
47 #include <sys/domain.h>
48 #else
49 #include <stdlib.h>
50 #endif
51 #include <sys/syslog.h>
52 #include <net/radix.h>
53 #endif
54
55 int max_keylen;
56 struct radix_mask *rn_mkfreelist;
57 struct radix_node_head *mask_rnhead;
58 static char *addmask_key;
59 static const char normal_chars[] =
60 {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
61 static char *rn_zeros, *rn_ones;
62
63 #define rn_masktop (mask_rnhead->rnh_treetop)
64 #undef Bcmp
65 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
66
67 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
68 static int rn_lexobetter(const void *, const void *);
69 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
70 struct radix_mask *);
71
72 /*
73 * The data structure for the keys is a radix tree with one way
74 * branching removed. The index rn_b at an internal node n represents a bit
75 * position to be tested. The tree is arranged so that all descendants
76 * of a node n have keys whose bits all agree up to position rn_b - 1.
77 * (We say the index of n is rn_b.)
78 *
79 * There is at least one descendant which has a one bit at position rn_b,
80 * and at least one with a zero there.
81 *
82 * A route is determined by a pair of key and mask. We require that the
83 * bit-wise logical and of the key and mask to be the key.
84 * We define the index of a route to associated with the mask to be
85 * the first bit number in the mask where 0 occurs (with bit number 0
86 * representing the highest order bit).
87 *
88 * We say a mask is normal if every bit is 0, past the index of the mask.
89 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
90 * and m is a normal mask, then the route applies to every descendant of n.
91 * If the index(m) < rn_b, this implies the trailing last few bits of k
92 * before bit b are all 0, (and hence consequently true of every descendant
93 * of n), so the route applies to all descendants of the node as well.
94 *
95 * Similar logic shows that a non-normal mask m such that
96 * index(m) <= index(n) could potentially apply to many children of n.
97 * Thus, for each non-host route, we attach its mask to a list at an internal
98 * node as high in the tree as we can go.
99 *
100 * The present version of the code makes use of normal routes in short-
101 * circuiting an explict mask and compare operation when testing whether
102 * a key satisfies a normal route, and also in remembering the unique leaf
103 * that governs a subtree.
104 */
105
106 struct radix_node *
107 rn_search(
108 const void *v_arg,
109 struct radix_node *head)
110 {
111 const u_char * const v = v_arg;
112 struct radix_node *x;
113
114 for (x = head; x->rn_b >= 0;) {
115 if (x->rn_bmask & v[x->rn_off])
116 x = x->rn_r;
117 else
118 x = x->rn_l;
119 }
120 return (x);
121 }
122
123 struct radix_node *
124 rn_search_m(
125 const void *v_arg,
126 struct radix_node *head,
127 const void *m_arg)
128 {
129 struct radix_node *x;
130 const u_char * const v = v_arg;
131 const u_char * const m = m_arg;
132
133 for (x = head; x->rn_b >= 0;) {
134 if ((x->rn_bmask & m[x->rn_off]) &&
135 (x->rn_bmask & v[x->rn_off]))
136 x = x->rn_r;
137 else
138 x = x->rn_l;
139 }
140 return x;
141 }
142
143 int
144 rn_refines(
145 const void *m_arg,
146 const void *n_arg)
147 {
148 const char *m = m_arg;
149 const char *n = n_arg;
150 const char *lim = n + *(u_char *)n;
151 const char *lim2 = lim;
152 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
153 int masks_are_equal = 1;
154
155 if (longer > 0)
156 lim -= longer;
157 while (n < lim) {
158 if (*n & ~(*m))
159 return 0;
160 if (*n++ != *m++)
161 masks_are_equal = 0;
162 }
163 while (n < lim2)
164 if (*n++)
165 return 0;
166 if (masks_are_equal && (longer < 0))
167 for (lim2 = m - longer; m < lim2; )
168 if (*m++)
169 return 1;
170 return (!masks_are_equal);
171 }
172
173 struct radix_node *
174 rn_lookup(
175 const void *v_arg,
176 const void *m_arg,
177 struct radix_node_head *head)
178 {
179 struct radix_node *x;
180 const char *netmask = NULL;
181
182 if (m_arg) {
183 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
184 return (0);
185 netmask = x->rn_key;
186 }
187 x = rn_match(v_arg, head);
188 if (x && netmask) {
189 while (x && x->rn_mask != netmask)
190 x = x->rn_dupedkey;
191 }
192 return x;
193 }
194
195 static int
196 rn_satisfies_leaf(
197 const char *trial,
198 struct radix_node *leaf,
199 int skip)
200 {
201 const char *cp = trial;
202 const char *cp2 = leaf->rn_key;
203 const char *cp3 = leaf->rn_mask;
204 const char *cplim;
205 int length = min(*(u_char *)cp, *(u_char *)cp2);
206
207 if (cp3 == 0)
208 cp3 = rn_ones;
209 else
210 length = min(length, *(u_char *)cp3);
211 cplim = cp + length; cp3 += skip; cp2 += skip;
212 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
213 if ((*cp ^ *cp2) & *cp3)
214 return 0;
215 return 1;
216 }
217
218 struct radix_node *
219 rn_match(
220 const void *v_arg,
221 struct radix_node_head *head)
222 {
223 const char * const v = v_arg;
224 struct radix_node *t = head->rnh_treetop;
225 struct radix_node *top = t;
226 struct radix_node *x;
227 struct radix_node *saved_t;
228 const char *cp = v;
229 const char *cp2;
230 const char *cplim;
231 int off = t->rn_off;
232 int vlen = *(u_char *)cp;
233 int matched_off;
234 int test, b, rn_b;
235
236 /*
237 * Open code rn_search(v, top) to avoid overhead of extra
238 * subroutine call.
239 */
240 for (; t->rn_b >= 0; ) {
241 if (t->rn_bmask & cp[t->rn_off])
242 t = t->rn_r;
243 else
244 t = t->rn_l;
245 }
246 /*
247 * See if we match exactly as a host destination
248 * or at least learn how many bits match, for normal mask finesse.
249 *
250 * It doesn't hurt us to limit how many bytes to check
251 * to the length of the mask, since if it matches we had a genuine
252 * match and the leaf we have is the most specific one anyway;
253 * if it didn't match with a shorter length it would fail
254 * with a long one. This wins big for class B&C netmasks which
255 * are probably the most common case...
256 */
257 if (t->rn_mask)
258 vlen = *(u_char *)t->rn_mask;
259 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
260 for (; cp < cplim; cp++, cp2++)
261 if (*cp != *cp2)
262 goto on1;
263 /*
264 * This extra grot is in case we are explicitly asked
265 * to look up the default. Ugh!
266 */
267 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
268 t = t->rn_dupedkey;
269 return t;
270 on1:
271 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
272 for (b = 7; (test >>= 1) > 0;)
273 b--;
274 matched_off = cp - v;
275 b += matched_off << 3;
276 rn_b = -1 - b;
277 /*
278 * If there is a host route in a duped-key chain, it will be first.
279 */
280 if ((saved_t = t)->rn_mask == 0)
281 t = t->rn_dupedkey;
282 for (; t; t = t->rn_dupedkey)
283 /*
284 * Even if we don't match exactly as a host,
285 * we may match if the leaf we wound up at is
286 * a route to a net.
287 */
288 if (t->rn_flags & RNF_NORMAL) {
289 if (rn_b <= t->rn_b)
290 return t;
291 } else if (rn_satisfies_leaf(v, t, matched_off))
292 return t;
293 t = saved_t;
294 /* start searching up the tree */
295 do {
296 struct radix_mask *m;
297 t = t->rn_p;
298 m = t->rn_mklist;
299 if (m) {
300 /*
301 * If non-contiguous masks ever become important
302 * we can restore the masking and open coding of
303 * the search and satisfaction test and put the
304 * calculation of "off" back before the "do".
305 */
306 do {
307 if (m->rm_flags & RNF_NORMAL) {
308 if (rn_b <= m->rm_b)
309 return (m->rm_leaf);
310 } else {
311 off = min(t->rn_off, matched_off);
312 x = rn_search_m(v, t, m->rm_mask);
313 while (x && x->rn_mask != m->rm_mask)
314 x = x->rn_dupedkey;
315 if (x && rn_satisfies_leaf(v, x, off))
316 return x;
317 }
318 m = m->rm_mklist;
319 } while (m);
320 }
321 } while (t != top);
322 return 0;
323 }
324
325 #ifdef RN_DEBUG
326 int rn_nodenum;
327 struct radix_node *rn_clist;
328 int rn_saveinfo;
329 int rn_debug = 1;
330 #endif
331
332 struct radix_node *
333 rn_newpair(
334 const void *v,
335 int b,
336 struct radix_node nodes[2])
337 {
338 struct radix_node *tt = nodes;
339 struct radix_node *t = tt + 1;
340 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
341 t->rn_l = tt; t->rn_off = b >> 3;
342 tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
343 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
344 #ifdef RN_DEBUG
345 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
346 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
347 #endif
348 return t;
349 }
350
351 struct radix_node *
352 rn_insert(
353 const void *v_arg,
354 struct radix_node_head *head,
355 int *dupentry,
356 struct radix_node nodes[2])
357 {
358 struct radix_node *top = head->rnh_treetop;
359 struct radix_node *t = rn_search(v_arg, top);
360 struct radix_node *tt;
361 const char *v = v_arg;
362 int head_off = top->rn_off;
363 int vlen = *((u_char *)v);
364 const char *cp = v + head_off;
365 int b;
366 /*
367 * Find first bit at which v and t->rn_key differ
368 */
369 {
370 const char *cp2 = t->rn_key + head_off;
371 const char *cplim = v + vlen;
372 int cmp_res;
373
374 while (cp < cplim)
375 if (*cp2++ != *cp++)
376 goto on1;
377 *dupentry = 1;
378 return t;
379 on1:
380 *dupentry = 0;
381 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
382 for (b = (cp - v) << 3; cmp_res; b--)
383 cmp_res >>= 1;
384 }
385 {
386 struct radix_node *p, *x = top;
387 cp = v;
388 do {
389 p = x;
390 if (cp[x->rn_off] & x->rn_bmask)
391 x = x->rn_r;
392 else x = x->rn_l;
393 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
394 #ifdef RN_DEBUG
395 if (rn_debug)
396 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
397 #endif
398 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
399 if ((cp[p->rn_off] & p->rn_bmask) == 0)
400 p->rn_l = t;
401 else
402 p->rn_r = t;
403 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
404 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
405 t->rn_r = x;
406 } else {
407 t->rn_r = tt; t->rn_l = x;
408 }
409 #ifdef RN_DEBUG
410 if (rn_debug)
411 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
412 #endif
413 }
414 return (tt);
415 }
416
417 struct radix_node *
418 rn_addmask(
419 const void *n_arg,
420 int search,
421 int skip)
422 {
423 const char *netmask = n_arg;
424 const char *cp;
425 const char *cplim;
426 struct radix_node *x;
427 struct radix_node *saved_x;
428 int b = 0, mlen, j;
429 int maskduplicated, m0, isnormal;
430 static int last_zeroed = 0;
431
432 if ((mlen = *(u_char *)netmask) > max_keylen)
433 mlen = max_keylen;
434 if (skip == 0)
435 skip = 1;
436 if (mlen <= skip)
437 return (mask_rnhead->rnh_nodes);
438 if (skip > 1)
439 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
440 if ((m0 = mlen) > skip)
441 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
442 /*
443 * Trim trailing zeroes.
444 */
445 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
446 cp--;
447 mlen = cp - addmask_key;
448 if (mlen <= skip) {
449 if (m0 >= last_zeroed)
450 last_zeroed = mlen;
451 return (mask_rnhead->rnh_nodes);
452 }
453 if (m0 < last_zeroed)
454 Bzero(addmask_key + m0, last_zeroed - m0);
455 *addmask_key = last_zeroed = mlen;
456 x = rn_search(addmask_key, rn_masktop);
457 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
458 x = 0;
459 if (x || search)
460 return (x);
461 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
462 if ((saved_x = x) == 0)
463 return (0);
464 Bzero(x, max_keylen + 2 * sizeof (*x));
465 cp = netmask = (caddr_t)(x + 2);
466 Bcopy(addmask_key, (caddr_t)(x + 2), mlen);
467 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
468 if (maskduplicated) {
469 log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
470 Free(saved_x);
471 return (x);
472 }
473 /*
474 * Calculate index of mask, and check for normalcy.
475 */
476 cplim = netmask + mlen; isnormal = 1;
477 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
478 cp++;
479 if (cp != cplim) {
480 for (j = 0x80; (j & *cp) != 0; j >>= 1)
481 b++;
482 if (*cp != normal_chars[b] || cp != (cplim - 1))
483 isnormal = 0;
484 }
485 b += (cp - netmask) << 3;
486 x->rn_b = -1 - b;
487 if (isnormal)
488 x->rn_flags |= RNF_NORMAL;
489 return (x);
490 }
491
492 static int /* XXX: arbitrary ordering for non-contiguous masks */
493 rn_lexobetter(
494 const void *m_arg,
495 const void *n_arg)
496 {
497 const u_char *mp = m_arg;
498 const u_char *np = n_arg;
499 const u_char *lim;
500
501 if (*mp > *np)
502 return 1; /* not really, but need to check longer one first */
503 if (*mp == *np)
504 for (lim = mp + *mp; mp < lim;)
505 if (*mp++ > *np++)
506 return 1;
507 return 0;
508 }
509
510 static struct radix_mask *
511 rn_new_radix_mask(
512 struct radix_node *tt,
513 struct radix_mask *next)
514 {
515 struct radix_mask *m;
516
517 MKGet(m);
518 if (m == 0) {
519 log(LOG_ERR, "Mask for route not entered\n");
520 return (0);
521 }
522 Bzero(m, sizeof *m);
523 m->rm_b = tt->rn_b;
524 m->rm_flags = tt->rn_flags;
525 if (tt->rn_flags & RNF_NORMAL)
526 m->rm_leaf = tt;
527 else
528 m->rm_mask = tt->rn_mask;
529 m->rm_mklist = next;
530 tt->rn_mklist = m;
531 return m;
532 }
533
534 struct radix_node *
535 rn_addroute(
536 const void *v_arg,
537 const void *n_arg,
538 struct radix_node_head *head,
539 struct radix_node treenodes[2])
540 {
541 const char *v = v_arg;
542 const char *netmask = n_arg;
543 struct radix_node *t;
544 struct radix_node *x = 0;
545 struct radix_node *tt;
546 struct radix_node *saved_tt;
547 struct radix_node *top = head->rnh_treetop;
548 short b = 0, b_leaf = 0;
549 int keyduplicated;
550 const char *mmask;
551 struct radix_mask *m, **mp;
552
553 /*
554 * In dealing with non-contiguous masks, there may be
555 * many different routes which have the same mask.
556 * We will find it useful to have a unique pointer to
557 * the mask to speed avoiding duplicate references at
558 * nodes and possibly save time in calculating indices.
559 */
560 if (netmask) {
561 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
562 return (0);
563 b_leaf = x->rn_b;
564 b = -1 - x->rn_b;
565 netmask = x->rn_key;
566 }
567 /*
568 * Deal with duplicated keys: attach node to previous instance
569 */
570 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
571 if (keyduplicated) {
572 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
573 if (tt->rn_mask == netmask)
574 return (0);
575 if (netmask == 0 ||
576 (tt->rn_mask &&
577 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
578 rn_refines(netmask, tt->rn_mask) ||
579 rn_lexobetter(netmask, tt->rn_mask))))
580 break;
581 }
582 /*
583 * If the mask is not duplicated, we wouldn't
584 * find it among possible duplicate key entries
585 * anyway, so the above test doesn't hurt.
586 *
587 * We sort the masks for a duplicated key the same way as
588 * in a masklist -- most specific to least specific.
589 * This may require the unfortunate nuisance of relocating
590 * the head of the list.
591 *
592 * We also reverse, or doubly link the list through the
593 * parent pointer.
594 */
595 if (tt == saved_tt) {
596 struct radix_node *xx = x;
597 /* link in at head of list */
598 (tt = treenodes)->rn_dupedkey = t;
599 tt->rn_flags = t->rn_flags;
600 tt->rn_p = x = t->rn_p;
601 t->rn_p = tt;
602 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
603 saved_tt = tt; x = xx;
604 } else {
605 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
606 t->rn_dupedkey = tt;
607 tt->rn_p = t;
608 if (tt->rn_dupedkey)
609 tt->rn_dupedkey->rn_p = tt;
610 }
611 #ifdef RN_DEBUG
612 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
613 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
614 #endif
615 tt->rn_key = (caddr_t) v;
616 tt->rn_b = -1;
617 tt->rn_flags = RNF_ACTIVE;
618 }
619 /*
620 * Put mask in tree.
621 */
622 if (netmask) {
623 tt->rn_mask = netmask;
624 tt->rn_b = x->rn_b;
625 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
626 }
627 t = saved_tt->rn_p;
628 if (keyduplicated)
629 goto on2;
630 b_leaf = -1 - t->rn_b;
631 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
632 /* Promote general routes from below */
633 if (x->rn_b < 0) {
634 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
635 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
636 *mp = m = rn_new_radix_mask(x, 0);
637 if (m)
638 mp = &m->rm_mklist;
639 }
640 } else if (x->rn_mklist) {
641 /*
642 * Skip over masks whose index is > that of new node
643 */
644 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
645 if (m->rm_b >= b_leaf)
646 break;
647 t->rn_mklist = m; *mp = 0;
648 }
649 on2:
650 /* Add new route to highest possible ancestor's list */
651 if ((netmask == 0) || (b > t->rn_b ))
652 return tt; /* can't lift at all */
653 b_leaf = tt->rn_b;
654 do {
655 x = t;
656 t = t->rn_p;
657 } while (b <= t->rn_b && x != top);
658 /*
659 * Search through routes associated with node to
660 * insert new route according to index.
661 * Need same criteria as when sorting dupedkeys to avoid
662 * double loop on deletion.
663 */
664 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
665 if (m->rm_b < b_leaf)
666 continue;
667 if (m->rm_b > b_leaf)
668 break;
669 if (m->rm_flags & RNF_NORMAL) {
670 mmask = m->rm_leaf->rn_mask;
671 if (tt->rn_flags & RNF_NORMAL) {
672 log(LOG_ERR, "Non-unique normal route,"
673 " mask not entered\n");
674 return tt;
675 }
676 } else
677 mmask = m->rm_mask;
678 if (mmask == netmask) {
679 m->rm_refs++;
680 tt->rn_mklist = m;
681 return tt;
682 }
683 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
684 break;
685 }
686 *mp = rn_new_radix_mask(tt, *mp);
687 return tt;
688 }
689
690 struct radix_node *
691 rn_delete(
692 const void *v_arg,
693 const void *netmask_arg,
694 struct radix_node_head *head)
695 {
696 struct radix_node *t;
697 struct radix_node *p;
698 struct radix_node *x;
699 struct radix_node *tt;
700 struct radix_node *dupedkey;
701 struct radix_node *saved_tt;
702 struct radix_node *top;
703 struct radix_mask *m;
704 struct radix_mask *saved_m;
705 struct radix_mask **mp;
706 const char *v = v_arg;
707 const char *netmask = netmask_arg;
708 int b, head_off, vlen;
709
710 x = head->rnh_treetop;
711 tt = rn_search(v, x);
712 head_off = x->rn_off;
713 vlen = *(u_char *)v;
714 saved_tt = tt;
715 top = x;
716 if (tt == 0 ||
717 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
718 return (0);
719 /*
720 * Delete our route from mask lists.
721 */
722 if (netmask) {
723 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
724 return (0);
725 netmask = x->rn_key;
726 while (tt->rn_mask != netmask)
727 if ((tt = tt->rn_dupedkey) == 0)
728 return (0);
729 }
730 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
731 goto on1;
732 if (tt->rn_flags & RNF_NORMAL) {
733 if (m->rm_leaf != tt || m->rm_refs > 0) {
734 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
735 return 0; /* dangling ref could cause disaster */
736 }
737 } else {
738 if (m->rm_mask != tt->rn_mask) {
739 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
740 goto on1;
741 }
742 if (--m->rm_refs >= 0)
743 goto on1;
744 }
745 b = -1 - tt->rn_b;
746 t = saved_tt->rn_p;
747 if (b > t->rn_b)
748 goto on1; /* Wasn't lifted at all */
749 do {
750 x = t;
751 t = t->rn_p;
752 } while (b <= t->rn_b && x != top);
753 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
754 if (m == saved_m) {
755 *mp = m->rm_mklist;
756 MKFree(m);
757 break;
758 }
759 if (m == 0) {
760 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
761 if (tt->rn_flags & RNF_NORMAL)
762 return (0); /* Dangling ref to us */
763 }
764 on1:
765 /*
766 * Eliminate us from tree
767 */
768 if (tt->rn_flags & RNF_ROOT)
769 return (0);
770 #ifdef RN_DEBUG
771 /* Get us out of the creation list */
772 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
773 if (t) t->rn_ybro = tt->rn_ybro;
774 #endif
775 t = tt->rn_p;
776 dupedkey = saved_tt->rn_dupedkey;
777 if (dupedkey) {
778 /*
779 * Here, tt is the deletion target, and
780 * saved_tt is the head of the dupedkey chain.
781 */
782 if (tt == saved_tt) {
783 x = dupedkey; x->rn_p = t;
784 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
785 } else {
786 /* find node in front of tt on the chain */
787 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
788 p = p->rn_dupedkey;
789 if (p) {
790 p->rn_dupedkey = tt->rn_dupedkey;
791 if (tt->rn_dupedkey)
792 tt->rn_dupedkey->rn_p = p;
793 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
794 }
795 t = tt + 1;
796 if (t->rn_flags & RNF_ACTIVE) {
797 #ifndef RN_DEBUG
798 *++x = *t; p = t->rn_p;
799 #else
800 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
801 #endif
802 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
803 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
804 }
805 goto out;
806 }
807 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
808 p = t->rn_p;
809 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
810 x->rn_p = p;
811 /*
812 * Demote routes attached to us.
813 */
814 if (t->rn_mklist) {
815 if (x->rn_b >= 0) {
816 for (mp = &x->rn_mklist; (m = *mp);)
817 mp = &m->rm_mklist;
818 *mp = t->rn_mklist;
819 } else {
820 /* If there are any key,mask pairs in a sibling
821 duped-key chain, some subset will appear sorted
822 in the same order attached to our mklist */
823 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
824 if (m == x->rn_mklist) {
825 struct radix_mask *mm = m->rm_mklist;
826 x->rn_mklist = 0;
827 if (--(m->rm_refs) < 0)
828 MKFree(m);
829 m = mm;
830 }
831 if (m)
832 log(LOG_ERR, "%s %p at %p\n",
833 "rn_delete: Orphaned Mask", m, x);
834 }
835 }
836 /*
837 * We may be holding an active internal node in the tree.
838 */
839 x = tt + 1;
840 if (t != x) {
841 #ifndef RN_DEBUG
842 *t = *x;
843 #else
844 b = t->rn_info; *t = *x; t->rn_info = b;
845 #endif
846 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
847 p = x->rn_p;
848 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
849 }
850 out:
851 tt->rn_flags &= ~RNF_ACTIVE;
852 tt[1].rn_flags &= ~RNF_ACTIVE;
853 return (tt);
854 }
855
856 int
857 rn_walktree(
858 struct radix_node_head *h,
859 int (*f)(struct radix_node *, void *),
860 void *w)
861 {
862 int error;
863 struct radix_node *base;
864 struct radix_node *next;
865 struct radix_node *rn = h->rnh_treetop;
866 /*
867 * This gets complicated because we may delete the node
868 * while applying the function f to it, so we need to calculate
869 * the successor node in advance.
870 */
871 /* First time through node, go left */
872 while (rn->rn_b >= 0)
873 rn = rn->rn_l;
874 for (;;) {
875 base = rn;
876 /* If at right child go back up, otherwise, go right */
877 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
878 rn = rn->rn_p;
879 /* Find the next *leaf* since next node might vanish, too */
880 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
881 rn = rn->rn_l;
882 next = rn;
883 /* Process leaves */
884 while ((rn = base) != NULL) {
885 base = rn->rn_dupedkey;
886 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
887 return (error);
888 }
889 rn = next;
890 if (rn->rn_flags & RNF_ROOT)
891 return (0);
892 }
893 /* NOTREACHED */
894 }
895
896 int
897 rn_inithead(head, off)
898 void **head;
899 int off;
900 {
901 struct radix_node_head *rnh;
902
903 if (*head)
904 return (1);
905 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
906 if (rnh == 0)
907 return (0);
908 *head = rnh;
909 return rn_inithead0(rnh, off);
910 }
911
912 int
913 rn_inithead0(rnh, off)
914 struct radix_node_head *rnh;
915 int off;
916 {
917 struct radix_node *t;
918 struct radix_node *tt;
919 struct radix_node *ttt;
920
921 Bzero(rnh, sizeof (*rnh));
922 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
923 ttt = rnh->rnh_nodes + 2;
924 t->rn_r = ttt;
925 t->rn_p = t;
926 tt = t->rn_l;
927 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
928 tt->rn_b = -1 - off;
929 *ttt = *tt;
930 ttt->rn_key = rn_ones;
931 rnh->rnh_addaddr = rn_addroute;
932 rnh->rnh_deladdr = rn_delete;
933 rnh->rnh_matchaddr = rn_match;
934 rnh->rnh_lookup = rn_lookup;
935 rnh->rnh_walktree = rn_walktree;
936 rnh->rnh_treetop = t;
937 return (1);
938 }
939
940 void
941 rn_init()
942 {
943 char *cp, *cplim;
944 #ifdef _KERNEL
945 struct domain *dom;
946
947 for (dom = domains; dom; dom = dom->dom_next)
948 if (dom->dom_maxrtkey > max_keylen)
949 max_keylen = dom->dom_maxrtkey;
950 #endif
951 if (max_keylen == 0) {
952 log(LOG_ERR,
953 "rn_init: radix functions require max_keylen be set\n");
954 return;
955 }
956 R_Malloc(rn_zeros, char *, 3 * max_keylen);
957 if (rn_zeros == NULL)
958 panic("rn_init");
959 Bzero(rn_zeros, 3 * max_keylen);
960 rn_ones = cp = rn_zeros + max_keylen;
961 addmask_key = cplim = rn_ones + max_keylen;
962 while (cp < cplim)
963 *cp++ = -1;
964 if (rn_inithead((void *)&mask_rnhead, 0) == 0)
965 panic("rn_init 2");
966 }
967