Home | History | Annotate | Line # | Download | only in net
radix.c revision 1.27
      1 /*	$NetBSD: radix.c,v 1.27 2005/01/24 04:46:49 enami Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)radix.c	8.6 (Berkeley) 10/17/95
     32  */
     33 
     34 /*
     35  * Routines to build and maintain radix trees for routing lookups.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.27 2005/01/24 04:46:49 enami Exp $");
     40 
     41 #ifndef _NET_RADIX_H_
     42 #include <sys/param.h>
     43 #ifdef	_KERNEL
     44 #include "opt_inet.h"
     45 
     46 #include <sys/systm.h>
     47 #include <sys/malloc.h>
     48 #define	M_DONTWAIT M_NOWAIT
     49 #include <sys/domain.h>
     50 #include <netinet/ip_encap.h>
     51 #else
     52 #include <stdlib.h>
     53 #endif
     54 #include <sys/syslog.h>
     55 #include <net/radix.h>
     56 #endif
     57 
     58 int	max_keylen;
     59 struct radix_mask *rn_mkfreelist;
     60 struct radix_node_head *mask_rnhead;
     61 static char *addmask_key;
     62 static const char normal_chars[] =
     63     {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
     64 static char *rn_zeros, *rn_ones;
     65 
     66 #define rn_masktop (mask_rnhead->rnh_treetop)
     67 #undef Bcmp
     68 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
     69 
     70 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
     71 static int rn_lexobetter(const void *, const void *);
     72 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
     73     struct radix_mask *);
     74 
     75 /*
     76  * The data structure for the keys is a radix tree with one way
     77  * branching removed.  The index rn_b at an internal node n represents a bit
     78  * position to be tested.  The tree is arranged so that all descendants
     79  * of a node n have keys whose bits all agree up to position rn_b - 1.
     80  * (We say the index of n is rn_b.)
     81  *
     82  * There is at least one descendant which has a one bit at position rn_b,
     83  * and at least one with a zero there.
     84  *
     85  * A route is determined by a pair of key and mask.  We require that the
     86  * bit-wise logical and of the key and mask to be the key.
     87  * We define the index of a route to associated with the mask to be
     88  * the first bit number in the mask where 0 occurs (with bit number 0
     89  * representing the highest order bit).
     90  *
     91  * We say a mask is normal if every bit is 0, past the index of the mask.
     92  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
     93  * and m is a normal mask, then the route applies to every descendant of n.
     94  * If the index(m) < rn_b, this implies the trailing last few bits of k
     95  * before bit b are all 0, (and hence consequently true of every descendant
     96  * of n), so the route applies to all descendants of the node as well.
     97  *
     98  * Similar logic shows that a non-normal mask m such that
     99  * index(m) <= index(n) could potentially apply to many children of n.
    100  * Thus, for each non-host route, we attach its mask to a list at an internal
    101  * node as high in the tree as we can go.
    102  *
    103  * The present version of the code makes use of normal routes in short-
    104  * circuiting an explict mask and compare operation when testing whether
    105  * a key satisfies a normal route, and also in remembering the unique leaf
    106  * that governs a subtree.
    107  */
    108 
    109 struct radix_node *
    110 rn_search(
    111 	const void *v_arg,
    112 	struct radix_node *head)
    113 {
    114 	const u_char * const v = v_arg;
    115 	struct radix_node *x;
    116 
    117 	for (x = head; x->rn_b >= 0;) {
    118 		if (x->rn_bmask & v[x->rn_off])
    119 			x = x->rn_r;
    120 		else
    121 			x = x->rn_l;
    122 	}
    123 	return (x);
    124 }
    125 
    126 struct radix_node *
    127 rn_search_m(
    128 	const void *v_arg,
    129 	struct radix_node *head,
    130 	const void *m_arg)
    131 {
    132 	struct radix_node *x;
    133 	const u_char * const v = v_arg;
    134 	const u_char * const m = m_arg;
    135 
    136 	for (x = head; x->rn_b >= 0;) {
    137 		if ((x->rn_bmask & m[x->rn_off]) &&
    138 		    (x->rn_bmask & v[x->rn_off]))
    139 			x = x->rn_r;
    140 		else
    141 			x = x->rn_l;
    142 	}
    143 	return x;
    144 }
    145 
    146 int
    147 rn_refines(
    148 	const void *m_arg,
    149 	const void *n_arg)
    150 {
    151 	const char *m = m_arg;
    152 	const char *n = n_arg;
    153 	const char *lim = n + *(u_char *)n;
    154 	const char *lim2 = lim;
    155 	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
    156 	int masks_are_equal = 1;
    157 
    158 	if (longer > 0)
    159 		lim -= longer;
    160 	while (n < lim) {
    161 		if (*n & ~(*m))
    162 			return 0;
    163 		if (*n++ != *m++)
    164 			masks_are_equal = 0;
    165 	}
    166 	while (n < lim2)
    167 		if (*n++)
    168 			return 0;
    169 	if (masks_are_equal && (longer < 0))
    170 		for (lim2 = m - longer; m < lim2; )
    171 			if (*m++)
    172 				return 1;
    173 	return (!masks_are_equal);
    174 }
    175 
    176 struct radix_node *
    177 rn_lookup(
    178 	const void *v_arg,
    179 	const void *m_arg,
    180 	struct radix_node_head *head)
    181 {
    182 	struct radix_node *x;
    183 	const char *netmask = NULL;
    184 
    185 	if (m_arg) {
    186 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
    187 			return (0);
    188 		netmask = x->rn_key;
    189 	}
    190 	x = rn_match(v_arg, head);
    191 	if (x && netmask) {
    192 		while (x && x->rn_mask != netmask)
    193 			x = x->rn_dupedkey;
    194 	}
    195 	return x;
    196 }
    197 
    198 static int
    199 rn_satisfies_leaf(
    200 	const char *trial,
    201 	struct radix_node *leaf,
    202 	int skip)
    203 {
    204 	const char *cp = trial;
    205 	const char *cp2 = leaf->rn_key;
    206 	const char *cp3 = leaf->rn_mask;
    207 	const char *cplim;
    208 	int length = min(*(u_char *)cp, *(u_char *)cp2);
    209 
    210 	if (cp3 == 0)
    211 		cp3 = rn_ones;
    212 	else
    213 		length = min(length, *(u_char *)cp3);
    214 	cplim = cp + length; cp3 += skip; cp2 += skip;
    215 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
    216 		if ((*cp ^ *cp2) & *cp3)
    217 			return 0;
    218 	return 1;
    219 }
    220 
    221 struct radix_node *
    222 rn_match(
    223 	const void *v_arg,
    224 	struct radix_node_head *head)
    225 {
    226 	const char * const v = v_arg;
    227 	struct radix_node *t = head->rnh_treetop;
    228 	struct radix_node *top = t;
    229 	struct radix_node *x;
    230 	struct radix_node *saved_t;
    231 	const char *cp = v;
    232 	const char *cp2;
    233 	const char *cplim;
    234 	int off = t->rn_off;
    235 	int vlen = *(u_char *)cp;
    236 	int matched_off;
    237 	int test, b, rn_b;
    238 
    239 	/*
    240 	 * Open code rn_search(v, top) to avoid overhead of extra
    241 	 * subroutine call.
    242 	 */
    243 	for (; t->rn_b >= 0; ) {
    244 		if (t->rn_bmask & cp[t->rn_off])
    245 			t = t->rn_r;
    246 		else
    247 			t = t->rn_l;
    248 	}
    249 	/*
    250 	 * See if we match exactly as a host destination
    251 	 * or at least learn how many bits match, for normal mask finesse.
    252 	 *
    253 	 * It doesn't hurt us to limit how many bytes to check
    254 	 * to the length of the mask, since if it matches we had a genuine
    255 	 * match and the leaf we have is the most specific one anyway;
    256 	 * if it didn't match with a shorter length it would fail
    257 	 * with a long one.  This wins big for class B&C netmasks which
    258 	 * are probably the most common case...
    259 	 */
    260 	if (t->rn_mask)
    261 		vlen = *(u_char *)t->rn_mask;
    262 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
    263 	for (; cp < cplim; cp++, cp2++)
    264 		if (*cp != *cp2)
    265 			goto on1;
    266 	/*
    267 	 * This extra grot is in case we are explicitly asked
    268 	 * to look up the default.  Ugh!
    269 	 */
    270 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
    271 		t = t->rn_dupedkey;
    272 	return t;
    273 on1:
    274 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
    275 	for (b = 7; (test >>= 1) > 0;)
    276 		b--;
    277 	matched_off = cp - v;
    278 	b += matched_off << 3;
    279 	rn_b = -1 - b;
    280 	/*
    281 	 * If there is a host route in a duped-key chain, it will be first.
    282 	 */
    283 	if ((saved_t = t)->rn_mask == 0)
    284 		t = t->rn_dupedkey;
    285 	for (; t; t = t->rn_dupedkey)
    286 		/*
    287 		 * Even if we don't match exactly as a host,
    288 		 * we may match if the leaf we wound up at is
    289 		 * a route to a net.
    290 		 */
    291 		if (t->rn_flags & RNF_NORMAL) {
    292 			if (rn_b <= t->rn_b)
    293 				return t;
    294 		} else if (rn_satisfies_leaf(v, t, matched_off))
    295 				return t;
    296 	t = saved_t;
    297 	/* start searching up the tree */
    298 	do {
    299 		struct radix_mask *m;
    300 		t = t->rn_p;
    301 		m = t->rn_mklist;
    302 		if (m) {
    303 			/*
    304 			 * If non-contiguous masks ever become important
    305 			 * we can restore the masking and open coding of
    306 			 * the search and satisfaction test and put the
    307 			 * calculation of "off" back before the "do".
    308 			 */
    309 			do {
    310 				if (m->rm_flags & RNF_NORMAL) {
    311 					if (rn_b <= m->rm_b)
    312 						return (m->rm_leaf);
    313 				} else {
    314 					off = min(t->rn_off, matched_off);
    315 					x = rn_search_m(v, t, m->rm_mask);
    316 					while (x && x->rn_mask != m->rm_mask)
    317 						x = x->rn_dupedkey;
    318 					if (x && rn_satisfies_leaf(v, x, off))
    319 						return x;
    320 				}
    321 				m = m->rm_mklist;
    322 			} while (m);
    323 		}
    324 	} while (t != top);
    325 	return 0;
    326 }
    327 
    328 #ifdef RN_DEBUG
    329 int	rn_nodenum;
    330 struct	radix_node *rn_clist;
    331 int	rn_saveinfo;
    332 int	rn_debug =  1;
    333 #endif
    334 
    335 struct radix_node *
    336 rn_newpair(
    337 	const void *v,
    338 	int b,
    339 	struct radix_node nodes[2])
    340 {
    341 	struct radix_node *tt = nodes;
    342 	struct radix_node *t = tt + 1;
    343 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
    344 	t->rn_l = tt; t->rn_off = b >> 3;
    345 	tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
    346 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
    347 #ifdef RN_DEBUG
    348 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
    349 	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
    350 #endif
    351 	return t;
    352 }
    353 
    354 struct radix_node *
    355 rn_insert(
    356 	const void *v_arg,
    357 	struct radix_node_head *head,
    358 	int *dupentry,
    359 	struct radix_node nodes[2])
    360 {
    361 	struct radix_node *top = head->rnh_treetop;
    362 	struct radix_node *t = rn_search(v_arg, top);
    363 	struct radix_node *tt;
    364 	const char *v = v_arg;
    365 	int head_off = top->rn_off;
    366 	int vlen = *((u_char *)v);
    367 	const char *cp = v + head_off;
    368 	int b;
    369     	/*
    370 	 * Find first bit at which v and t->rn_key differ
    371 	 */
    372     {
    373 	const char *cp2 = t->rn_key + head_off;
    374 	const char *cplim = v + vlen;
    375 	int cmp_res;
    376 
    377 	while (cp < cplim)
    378 		if (*cp2++ != *cp++)
    379 			goto on1;
    380 	*dupentry = 1;
    381 	return t;
    382 on1:
    383 	*dupentry = 0;
    384 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
    385 	for (b = (cp - v) << 3; cmp_res; b--)
    386 		cmp_res >>= 1;
    387     }
    388     {
    389 	struct radix_node *p, *x = top;
    390 	cp = v;
    391 	do {
    392 		p = x;
    393 		if (cp[x->rn_off] & x->rn_bmask)
    394 			x = x->rn_r;
    395 		else x = x->rn_l;
    396 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
    397 #ifdef RN_DEBUG
    398 	if (rn_debug)
    399 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
    400 #endif
    401 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
    402 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
    403 		p->rn_l = t;
    404 	else
    405 		p->rn_r = t;
    406 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
    407 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
    408 		t->rn_r = x;
    409 	} else {
    410 		t->rn_r = tt; t->rn_l = x;
    411 	}
    412 #ifdef RN_DEBUG
    413 	if (rn_debug)
    414 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
    415 #endif
    416     }
    417 	return (tt);
    418 }
    419 
    420 struct radix_node *
    421 rn_addmask(
    422 	const void *n_arg,
    423 	int search,
    424 	int skip)
    425 {
    426 	const char *netmask = n_arg;
    427 	const char *cp;
    428 	const char *cplim;
    429 	struct radix_node *x;
    430 	struct radix_node *saved_x;
    431 	int b = 0, mlen, j;
    432 	int maskduplicated, m0, isnormal;
    433 	static int last_zeroed = 0;
    434 
    435 	if ((mlen = *(u_char *)netmask) > max_keylen)
    436 		mlen = max_keylen;
    437 	if (skip == 0)
    438 		skip = 1;
    439 	if (mlen <= skip)
    440 		return (mask_rnhead->rnh_nodes);
    441 	if (skip > 1)
    442 		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
    443 	if ((m0 = mlen) > skip)
    444 		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
    445 	/*
    446 	 * Trim trailing zeroes.
    447 	 */
    448 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
    449 		cp--;
    450 	mlen = cp - addmask_key;
    451 	if (mlen <= skip) {
    452 		if (m0 >= last_zeroed)
    453 			last_zeroed = mlen;
    454 		return (mask_rnhead->rnh_nodes);
    455 	}
    456 	if (m0 < last_zeroed)
    457 		Bzero(addmask_key + m0, last_zeroed - m0);
    458 	*addmask_key = last_zeroed = mlen;
    459 	x = rn_search(addmask_key, rn_masktop);
    460 	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
    461 		x = 0;
    462 	if (x || search)
    463 		return (x);
    464 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
    465 	if ((saved_x = x) == 0)
    466 		return (0);
    467 	Bzero(x, max_keylen + 2 * sizeof (*x));
    468 	cp = netmask = (caddr_t)(x + 2);
    469 	Bcopy(addmask_key, (caddr_t)(x + 2), mlen);
    470 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
    471 	if (maskduplicated) {
    472 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
    473 		Free(saved_x);
    474 		return (x);
    475 	}
    476 	/*
    477 	 * Calculate index of mask, and check for normalcy.
    478 	 */
    479 	cplim = netmask + mlen; isnormal = 1;
    480 	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
    481 		cp++;
    482 	if (cp != cplim) {
    483 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
    484 			b++;
    485 		if (*cp != normal_chars[b] || cp != (cplim - 1))
    486 			isnormal = 0;
    487 	}
    488 	b += (cp - netmask) << 3;
    489 	x->rn_b = -1 - b;
    490 	if (isnormal)
    491 		x->rn_flags |= RNF_NORMAL;
    492 	return (x);
    493 }
    494 
    495 static int	/* XXX: arbitrary ordering for non-contiguous masks */
    496 rn_lexobetter(
    497 	const void *m_arg,
    498 	const void *n_arg)
    499 {
    500 	const u_char *mp = m_arg;
    501 	const u_char *np = n_arg;
    502 	const u_char *lim;
    503 
    504 	if (*mp > *np)
    505 		return 1;  /* not really, but need to check longer one first */
    506 	if (*mp == *np)
    507 		for (lim = mp + *mp; mp < lim;)
    508 			if (*mp++ > *np++)
    509 				return 1;
    510 	return 0;
    511 }
    512 
    513 static struct radix_mask *
    514 rn_new_radix_mask(
    515 	struct radix_node *tt,
    516 	struct radix_mask *next)
    517 {
    518 	struct radix_mask *m;
    519 
    520 	MKGet(m);
    521 	if (m == 0) {
    522 		log(LOG_ERR, "Mask for route not entered\n");
    523 		return (0);
    524 	}
    525 	Bzero(m, sizeof *m);
    526 	m->rm_b = tt->rn_b;
    527 	m->rm_flags = tt->rn_flags;
    528 	if (tt->rn_flags & RNF_NORMAL)
    529 		m->rm_leaf = tt;
    530 	else
    531 		m->rm_mask = tt->rn_mask;
    532 	m->rm_mklist = next;
    533 	tt->rn_mklist = m;
    534 	return m;
    535 }
    536 
    537 struct radix_node *
    538 rn_addroute(
    539 	const void *v_arg,
    540 	const void *n_arg,
    541 	struct radix_node_head *head,
    542 	struct radix_node treenodes[2])
    543 {
    544 	const char *v = v_arg;
    545 	const char *netmask = n_arg;
    546 	struct radix_node *t;
    547 	struct radix_node *x = 0;
    548 	struct radix_node *tt;
    549 	struct radix_node *saved_tt;
    550 	struct radix_node *top = head->rnh_treetop;
    551 	short b = 0, b_leaf = 0;
    552 	int keyduplicated;
    553 	const char *mmask;
    554 	struct radix_mask *m, **mp;
    555 
    556 	/*
    557 	 * In dealing with non-contiguous masks, there may be
    558 	 * many different routes which have the same mask.
    559 	 * We will find it useful to have a unique pointer to
    560 	 * the mask to speed avoiding duplicate references at
    561 	 * nodes and possibly save time in calculating indices.
    562 	 */
    563 	if (netmask)  {
    564 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
    565 			return (0);
    566 		b_leaf = x->rn_b;
    567 		b = -1 - x->rn_b;
    568 		netmask = x->rn_key;
    569 	}
    570 	/*
    571 	 * Deal with duplicated keys: attach node to previous instance
    572 	 */
    573 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
    574 	if (keyduplicated) {
    575 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
    576 			if (tt->rn_mask == netmask)
    577 				return (0);
    578 			if (netmask == 0 ||
    579 			    (tt->rn_mask &&
    580 			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
    581 			       rn_refines(netmask, tt->rn_mask) ||
    582 			       rn_lexobetter(netmask, tt->rn_mask))))
    583 				break;
    584 		}
    585 		/*
    586 		 * If the mask is not duplicated, we wouldn't
    587 		 * find it among possible duplicate key entries
    588 		 * anyway, so the above test doesn't hurt.
    589 		 *
    590 		 * We sort the masks for a duplicated key the same way as
    591 		 * in a masklist -- most specific to least specific.
    592 		 * This may require the unfortunate nuisance of relocating
    593 		 * the head of the list.
    594 		 *
    595 		 * We also reverse, or doubly link the list through the
    596 		 * parent pointer.
    597 		 */
    598 		if (tt == saved_tt) {
    599 			struct	radix_node *xx = x;
    600 			/* link in at head of list */
    601 			(tt = treenodes)->rn_dupedkey = t;
    602 			tt->rn_flags = t->rn_flags;
    603 			tt->rn_p = x = t->rn_p;
    604 			t->rn_p = tt;
    605 			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
    606 			saved_tt = tt; x = xx;
    607 		} else {
    608 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
    609 			t->rn_dupedkey = tt;
    610 			tt->rn_p = t;
    611 			if (tt->rn_dupedkey)
    612 				tt->rn_dupedkey->rn_p = tt;
    613 		}
    614 #ifdef RN_DEBUG
    615 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
    616 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
    617 #endif
    618 		tt->rn_key = (caddr_t) v;
    619 		tt->rn_b = -1;
    620 		tt->rn_flags = RNF_ACTIVE;
    621 	}
    622 	/*
    623 	 * Put mask in tree.
    624 	 */
    625 	if (netmask) {
    626 		tt->rn_mask = netmask;
    627 		tt->rn_b = x->rn_b;
    628 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
    629 	}
    630 	t = saved_tt->rn_p;
    631 	if (keyduplicated)
    632 		goto on2;
    633 	b_leaf = -1 - t->rn_b;
    634 	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
    635 	/* Promote general routes from below */
    636 	if (x->rn_b < 0) {
    637 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
    638 		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
    639 			*mp = m = rn_new_radix_mask(x, 0);
    640 			if (m)
    641 				mp = &m->rm_mklist;
    642 		}
    643 	} else if (x->rn_mklist) {
    644 		/*
    645 		 * Skip over masks whose index is > that of new node
    646 		 */
    647 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
    648 			if (m->rm_b >= b_leaf)
    649 				break;
    650 		t->rn_mklist = m; *mp = 0;
    651 	}
    652 on2:
    653 	/* Add new route to highest possible ancestor's list */
    654 	if ((netmask == 0) || (b > t->rn_b ))
    655 		return tt; /* can't lift at all */
    656 	b_leaf = tt->rn_b;
    657 	do {
    658 		x = t;
    659 		t = t->rn_p;
    660 	} while (b <= t->rn_b && x != top);
    661 	/*
    662 	 * Search through routes associated with node to
    663 	 * insert new route according to index.
    664 	 * Need same criteria as when sorting dupedkeys to avoid
    665 	 * double loop on deletion.
    666 	 */
    667 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
    668 		if (m->rm_b < b_leaf)
    669 			continue;
    670 		if (m->rm_b > b_leaf)
    671 			break;
    672 		if (m->rm_flags & RNF_NORMAL) {
    673 			mmask = m->rm_leaf->rn_mask;
    674 			if (tt->rn_flags & RNF_NORMAL) {
    675 				log(LOG_ERR, "Non-unique normal route,"
    676 				    " mask not entered\n");
    677 				return tt;
    678 			}
    679 		} else
    680 			mmask = m->rm_mask;
    681 		if (mmask == netmask) {
    682 			m->rm_refs++;
    683 			tt->rn_mklist = m;
    684 			return tt;
    685 		}
    686 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
    687 			break;
    688 	}
    689 	*mp = rn_new_radix_mask(tt, *mp);
    690 	return tt;
    691 }
    692 
    693 struct radix_node *
    694 rn_delete(
    695 	const void *v_arg,
    696 	const void *netmask_arg,
    697 	struct radix_node_head *head)
    698 {
    699 	struct radix_node *t;
    700 	struct radix_node *p;
    701 	struct radix_node *x;
    702 	struct radix_node *tt;
    703 	struct radix_node *dupedkey;
    704 	struct radix_node *saved_tt;
    705 	struct radix_node *top;
    706 	struct radix_mask *m;
    707 	struct radix_mask *saved_m;
    708 	struct radix_mask **mp;
    709 	const char *v = v_arg;
    710 	const char *netmask = netmask_arg;
    711 	int b, head_off, vlen;
    712 
    713 	x = head->rnh_treetop;
    714 	tt = rn_search(v, x);
    715 	head_off = x->rn_off;
    716 	vlen =  *(u_char *)v;
    717 	saved_tt = tt;
    718 	top = x;
    719 	if (tt == 0 ||
    720 	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
    721 		return (0);
    722 	/*
    723 	 * Delete our route from mask lists.
    724 	 */
    725 	if (netmask) {
    726 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
    727 			return (0);
    728 		netmask = x->rn_key;
    729 		while (tt->rn_mask != netmask)
    730 			if ((tt = tt->rn_dupedkey) == 0)
    731 				return (0);
    732 	}
    733 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
    734 		goto on1;
    735 	if (tt->rn_flags & RNF_NORMAL) {
    736 		if (m->rm_leaf != tt || m->rm_refs > 0) {
    737 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
    738 			return 0;  /* dangling ref could cause disaster */
    739 		}
    740 	} else {
    741 		if (m->rm_mask != tt->rn_mask) {
    742 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
    743 			goto on1;
    744 		}
    745 		if (--m->rm_refs >= 0)
    746 			goto on1;
    747 	}
    748 	b = -1 - tt->rn_b;
    749 	t = saved_tt->rn_p;
    750 	if (b > t->rn_b)
    751 		goto on1; /* Wasn't lifted at all */
    752 	do {
    753 		x = t;
    754 		t = t->rn_p;
    755 	} while (b <= t->rn_b && x != top);
    756 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
    757 		if (m == saved_m) {
    758 			*mp = m->rm_mklist;
    759 			MKFree(m);
    760 			break;
    761 		}
    762 	if (m == 0) {
    763 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
    764 		if (tt->rn_flags & RNF_NORMAL)
    765 			return (0); /* Dangling ref to us */
    766 	}
    767 on1:
    768 	/*
    769 	 * Eliminate us from tree
    770 	 */
    771 	if (tt->rn_flags & RNF_ROOT)
    772 		return (0);
    773 #ifdef RN_DEBUG
    774 	/* Get us out of the creation list */
    775 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
    776 	if (t) t->rn_ybro = tt->rn_ybro;
    777 #endif
    778 	t = tt->rn_p;
    779 	dupedkey = saved_tt->rn_dupedkey;
    780 	if (dupedkey) {
    781 		/*
    782 		 * Here, tt is the deletion target, and
    783 		 * saved_tt is the head of the dupedkey chain.
    784 		 */
    785 		if (tt == saved_tt) {
    786 			x = dupedkey; x->rn_p = t;
    787 			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
    788 		} else {
    789 			/* find node in front of tt on the chain */
    790 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
    791 				p = p->rn_dupedkey;
    792 			if (p) {
    793 				p->rn_dupedkey = tt->rn_dupedkey;
    794 				if (tt->rn_dupedkey)
    795 					tt->rn_dupedkey->rn_p = p;
    796 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
    797 		}
    798 		t = tt + 1;
    799 		if  (t->rn_flags & RNF_ACTIVE) {
    800 #ifndef RN_DEBUG
    801 			*++x = *t; p = t->rn_p;
    802 #else
    803 			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
    804 #endif
    805 			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
    806 			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
    807 		}
    808 		goto out;
    809 	}
    810 	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
    811 	p = t->rn_p;
    812 	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
    813 	x->rn_p = p;
    814 	/*
    815 	 * Demote routes attached to us.
    816 	 */
    817 	if (t->rn_mklist) {
    818 		if (x->rn_b >= 0) {
    819 			for (mp = &x->rn_mklist; (m = *mp);)
    820 				mp = &m->rm_mklist;
    821 			*mp = t->rn_mklist;
    822 		} else {
    823 			/* If there are any key,mask pairs in a sibling
    824 			   duped-key chain, some subset will appear sorted
    825 			   in the same order attached to our mklist */
    826 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
    827 				if (m == x->rn_mklist) {
    828 					struct radix_mask *mm = m->rm_mklist;
    829 					x->rn_mklist = 0;
    830 					if (--(m->rm_refs) < 0)
    831 						MKFree(m);
    832 					m = mm;
    833 				}
    834 			if (m)
    835 				log(LOG_ERR, "%s %p at %p\n",
    836 				    "rn_delete: Orphaned Mask", m, x);
    837 		}
    838 	}
    839 	/*
    840 	 * We may be holding an active internal node in the tree.
    841 	 */
    842 	x = tt + 1;
    843 	if (t != x) {
    844 #ifndef RN_DEBUG
    845 		*t = *x;
    846 #else
    847 		b = t->rn_info; *t = *x; t->rn_info = b;
    848 #endif
    849 		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
    850 		p = x->rn_p;
    851 		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
    852 	}
    853 out:
    854 	tt->rn_flags &= ~RNF_ACTIVE;
    855 	tt[1].rn_flags &= ~RNF_ACTIVE;
    856 	return (tt);
    857 }
    858 
    859 int
    860 rn_walktree(
    861 	struct radix_node_head *h,
    862 	int (*f)(struct radix_node *, void *),
    863 	void *w)
    864 {
    865 	int error;
    866 	struct radix_node *base;
    867 	struct radix_node *next;
    868 	struct radix_node *rn = h->rnh_treetop;
    869 	/*
    870 	 * This gets complicated because we may delete the node
    871 	 * while applying the function f to it, so we need to calculate
    872 	 * the successor node in advance.
    873 	 */
    874 	/* First time through node, go left */
    875 	while (rn->rn_b >= 0)
    876 		rn = rn->rn_l;
    877 	for (;;) {
    878 		base = rn;
    879 		/* If at right child go back up, otherwise, go right */
    880 		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
    881 			rn = rn->rn_p;
    882 		/* Find the next *leaf* since next node might vanish, too */
    883 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
    884 			rn = rn->rn_l;
    885 		next = rn;
    886 		/* Process leaves */
    887 		while ((rn = base) != NULL) {
    888 			base = rn->rn_dupedkey;
    889 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
    890 				return (error);
    891 		}
    892 		rn = next;
    893 		if (rn->rn_flags & RNF_ROOT)
    894 			return (0);
    895 	}
    896 	/* NOTREACHED */
    897 }
    898 
    899 int
    900 rn_inithead(head, off)
    901 	void **head;
    902 	int off;
    903 {
    904 	struct radix_node_head *rnh;
    905 
    906 	if (*head)
    907 		return (1);
    908 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
    909 	if (rnh == 0)
    910 		return (0);
    911 	*head = rnh;
    912 	return rn_inithead0(rnh, off);
    913 }
    914 
    915 int
    916 rn_inithead0(rnh, off)
    917 	struct radix_node_head *rnh;
    918 	int off;
    919 {
    920 	struct radix_node *t;
    921 	struct radix_node *tt;
    922 	struct radix_node *ttt;
    923 
    924 	Bzero(rnh, sizeof (*rnh));
    925 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
    926 	ttt = rnh->rnh_nodes + 2;
    927 	t->rn_r = ttt;
    928 	t->rn_p = t;
    929 	tt = t->rn_l;
    930 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
    931 	tt->rn_b = -1 - off;
    932 	*ttt = *tt;
    933 	ttt->rn_key = rn_ones;
    934 	rnh->rnh_addaddr = rn_addroute;
    935 	rnh->rnh_deladdr = rn_delete;
    936 	rnh->rnh_matchaddr = rn_match;
    937 	rnh->rnh_lookup = rn_lookup;
    938 	rnh->rnh_walktree = rn_walktree;
    939 	rnh->rnh_treetop = t;
    940 	return (1);
    941 }
    942 
    943 void
    944 rn_init()
    945 {
    946 	char *cp, *cplim;
    947 #ifdef _KERNEL
    948 	static int initialized;
    949 	__link_set_decl(domains, struct domain);
    950 	struct domain *const *dpp;
    951 
    952 	if (initialized)
    953 		return;
    954 	initialized = 1;
    955 
    956 	__link_set_foreach(dpp, domains) {
    957 		if ((*dpp)->dom_maxrtkey > max_keylen)
    958 			max_keylen = (*dpp)->dom_maxrtkey;
    959 	}
    960 #ifdef INET
    961 	encap_setkeylen();
    962 #endif
    963 #endif
    964 	if (max_keylen == 0) {
    965 		log(LOG_ERR,
    966 		    "rn_init: radix functions require max_keylen be set\n");
    967 		return;
    968 	}
    969 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
    970 	if (rn_zeros == NULL)
    971 		panic("rn_init");
    972 	Bzero(rn_zeros, 3 * max_keylen);
    973 	rn_ones = cp = rn_zeros + max_keylen;
    974 	addmask_key = cplim = rn_ones + max_keylen;
    975 	while (cp < cplim)
    976 		*cp++ = -1;
    977 	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
    978 		panic("rn_init 2");
    979 }
    980