Home | History | Annotate | Line # | Download | only in net
radix.c revision 1.31
      1 /*	$NetBSD: radix.c,v 1.31 2006/02/25 00:58:35 wiz Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1988, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)radix.c	8.6 (Berkeley) 10/17/95
     32  */
     33 
     34 /*
     35  * Routines to build and maintain radix trees for routing lookups.
     36  */
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.31 2006/02/25 00:58:35 wiz Exp $");
     40 
     41 #ifndef _NET_RADIX_H_
     42 #include <sys/param.h>
     43 #ifdef	_KERNEL
     44 #include "opt_inet.h"
     45 
     46 #include <sys/systm.h>
     47 #include <sys/malloc.h>
     48 #define	M_DONTWAIT M_NOWAIT
     49 #include <sys/domain.h>
     50 #include <netinet/ip_encap.h>
     51 #else
     52 #include <stdlib.h>
     53 #endif
     54 #include <sys/syslog.h>
     55 #include <net/radix.h>
     56 #endif
     57 
     58 int	max_keylen;
     59 struct radix_mask *rn_mkfreelist;
     60 struct radix_node_head *mask_rnhead;
     61 static char *addmask_key;
     62 static const char normal_chars[] =
     63     {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
     64 static char *rn_zeros, *rn_ones;
     65 
     66 #define rn_masktop (mask_rnhead->rnh_treetop)
     67 
     68 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
     69 static int rn_lexobetter(const void *, const void *);
     70 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
     71     struct radix_mask *);
     72 
     73 /*
     74  * The data structure for the keys is a radix tree with one way
     75  * branching removed.  The index rn_b at an internal node n represents a bit
     76  * position to be tested.  The tree is arranged so that all descendants
     77  * of a node n have keys whose bits all agree up to position rn_b - 1.
     78  * (We say the index of n is rn_b.)
     79  *
     80  * There is at least one descendant which has a one bit at position rn_b,
     81  * and at least one with a zero there.
     82  *
     83  * A route is determined by a pair of key and mask.  We require that the
     84  * bit-wise logical and of the key and mask to be the key.
     85  * We define the index of a route to associated with the mask to be
     86  * the first bit number in the mask where 0 occurs (with bit number 0
     87  * representing the highest order bit).
     88  *
     89  * We say a mask is normal if every bit is 0, past the index of the mask.
     90  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
     91  * and m is a normal mask, then the route applies to every descendant of n.
     92  * If the index(m) < rn_b, this implies the trailing last few bits of k
     93  * before bit b are all 0, (and hence consequently true of every descendant
     94  * of n), so the route applies to all descendants of the node as well.
     95  *
     96  * Similar logic shows that a non-normal mask m such that
     97  * index(m) <= index(n) could potentially apply to many children of n.
     98  * Thus, for each non-host route, we attach its mask to a list at an internal
     99  * node as high in the tree as we can go.
    100  *
    101  * The present version of the code makes use of normal routes in short-
    102  * circuiting an explicit mask and compare operation when testing whether
    103  * a key satisfies a normal route, and also in remembering the unique leaf
    104  * that governs a subtree.
    105  */
    106 
    107 struct radix_node *
    108 rn_search(
    109 	const void *v_arg,
    110 	struct radix_node *head)
    111 {
    112 	const u_char * const v = v_arg;
    113 	struct radix_node *x;
    114 
    115 	for (x = head; x->rn_b >= 0;) {
    116 		if (x->rn_bmask & v[x->rn_off])
    117 			x = x->rn_r;
    118 		else
    119 			x = x->rn_l;
    120 	}
    121 	return (x);
    122 }
    123 
    124 struct radix_node *
    125 rn_search_m(
    126 	const void *v_arg,
    127 	struct radix_node *head,
    128 	const void *m_arg)
    129 {
    130 	struct radix_node *x;
    131 	const u_char * const v = v_arg;
    132 	const u_char * const m = m_arg;
    133 
    134 	for (x = head; x->rn_b >= 0;) {
    135 		if ((x->rn_bmask & m[x->rn_off]) &&
    136 		    (x->rn_bmask & v[x->rn_off]))
    137 			x = x->rn_r;
    138 		else
    139 			x = x->rn_l;
    140 	}
    141 	return x;
    142 }
    143 
    144 int
    145 rn_refines(
    146 	const void *m_arg,
    147 	const void *n_arg)
    148 {
    149 	const char *m = m_arg;
    150 	const char *n = n_arg;
    151 	const char *lim = n + *(const u_char *)n;
    152 	const char *lim2 = lim;
    153 	int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
    154 	int masks_are_equal = 1;
    155 
    156 	if (longer > 0)
    157 		lim -= longer;
    158 	while (n < lim) {
    159 		if (*n & ~(*m))
    160 			return 0;
    161 		if (*n++ != *m++)
    162 			masks_are_equal = 0;
    163 	}
    164 	while (n < lim2)
    165 		if (*n++)
    166 			return 0;
    167 	if (masks_are_equal && (longer < 0))
    168 		for (lim2 = m - longer; m < lim2; )
    169 			if (*m++)
    170 				return 1;
    171 	return (!masks_are_equal);
    172 }
    173 
    174 struct radix_node *
    175 rn_lookup(
    176 	const void *v_arg,
    177 	const void *m_arg,
    178 	struct radix_node_head *head)
    179 {
    180 	struct radix_node *x;
    181 	const char *netmask = NULL;
    182 
    183 	if (m_arg) {
    184 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
    185 			return (0);
    186 		netmask = x->rn_key;
    187 	}
    188 	x = rn_match(v_arg, head);
    189 	if (x && netmask) {
    190 		while (x && x->rn_mask != netmask)
    191 			x = x->rn_dupedkey;
    192 	}
    193 	return x;
    194 }
    195 
    196 static int
    197 rn_satisfies_leaf(
    198 	const char *trial,
    199 	struct radix_node *leaf,
    200 	int skip)
    201 {
    202 	const char *cp = trial;
    203 	const char *cp2 = leaf->rn_key;
    204 	const char *cp3 = leaf->rn_mask;
    205 	const char *cplim;
    206 	int length = min(*(const u_char *)cp, *(const u_char *)cp2);
    207 
    208 	if (cp3 == 0)
    209 		cp3 = rn_ones;
    210 	else
    211 		length = min(length, *(const u_char *)cp3);
    212 	cplim = cp + length; cp3 += skip; cp2 += skip;
    213 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
    214 		if ((*cp ^ *cp2) & *cp3)
    215 			return 0;
    216 	return 1;
    217 }
    218 
    219 struct radix_node *
    220 rn_match(
    221 	const void *v_arg,
    222 	struct radix_node_head *head)
    223 {
    224 	const char * const v = v_arg;
    225 	struct radix_node *t = head->rnh_treetop;
    226 	struct radix_node *top = t;
    227 	struct radix_node *x;
    228 	struct radix_node *saved_t;
    229 	const char *cp = v;
    230 	const char *cp2;
    231 	const char *cplim;
    232 	int off = t->rn_off;
    233 	int vlen = *(const u_char *)cp;
    234 	int matched_off;
    235 	int test, b, rn_b;
    236 
    237 	/*
    238 	 * Open code rn_search(v, top) to avoid overhead of extra
    239 	 * subroutine call.
    240 	 */
    241 	for (; t->rn_b >= 0; ) {
    242 		if (t->rn_bmask & cp[t->rn_off])
    243 			t = t->rn_r;
    244 		else
    245 			t = t->rn_l;
    246 	}
    247 	/*
    248 	 * See if we match exactly as a host destination
    249 	 * or at least learn how many bits match, for normal mask finesse.
    250 	 *
    251 	 * It doesn't hurt us to limit how many bytes to check
    252 	 * to the length of the mask, since if it matches we had a genuine
    253 	 * match and the leaf we have is the most specific one anyway;
    254 	 * if it didn't match with a shorter length it would fail
    255 	 * with a long one.  This wins big for class B&C netmasks which
    256 	 * are probably the most common case...
    257 	 */
    258 	if (t->rn_mask)
    259 		vlen = *(const u_char *)t->rn_mask;
    260 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
    261 	for (; cp < cplim; cp++, cp2++)
    262 		if (*cp != *cp2)
    263 			goto on1;
    264 	/*
    265 	 * This extra grot is in case we are explicitly asked
    266 	 * to look up the default.  Ugh!
    267 	 */
    268 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
    269 		t = t->rn_dupedkey;
    270 	return t;
    271 on1:
    272 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
    273 	for (b = 7; (test >>= 1) > 0;)
    274 		b--;
    275 	matched_off = cp - v;
    276 	b += matched_off << 3;
    277 	rn_b = -1 - b;
    278 	/*
    279 	 * If there is a host route in a duped-key chain, it will be first.
    280 	 */
    281 	if ((saved_t = t)->rn_mask == 0)
    282 		t = t->rn_dupedkey;
    283 	for (; t; t = t->rn_dupedkey)
    284 		/*
    285 		 * Even if we don't match exactly as a host,
    286 		 * we may match if the leaf we wound up at is
    287 		 * a route to a net.
    288 		 */
    289 		if (t->rn_flags & RNF_NORMAL) {
    290 			if (rn_b <= t->rn_b)
    291 				return t;
    292 		} else if (rn_satisfies_leaf(v, t, matched_off))
    293 				return t;
    294 	t = saved_t;
    295 	/* start searching up the tree */
    296 	do {
    297 		struct radix_mask *m;
    298 		t = t->rn_p;
    299 		m = t->rn_mklist;
    300 		if (m) {
    301 			/*
    302 			 * If non-contiguous masks ever become important
    303 			 * we can restore the masking and open coding of
    304 			 * the search and satisfaction test and put the
    305 			 * calculation of "off" back before the "do".
    306 			 */
    307 			do {
    308 				if (m->rm_flags & RNF_NORMAL) {
    309 					if (rn_b <= m->rm_b)
    310 						return (m->rm_leaf);
    311 				} else {
    312 					off = min(t->rn_off, matched_off);
    313 					x = rn_search_m(v, t, m->rm_mask);
    314 					while (x && x->rn_mask != m->rm_mask)
    315 						x = x->rn_dupedkey;
    316 					if (x && rn_satisfies_leaf(v, x, off))
    317 						return x;
    318 				}
    319 				m = m->rm_mklist;
    320 			} while (m);
    321 		}
    322 	} while (t != top);
    323 	return 0;
    324 }
    325 
    326 #ifdef RN_DEBUG
    327 int	rn_nodenum;
    328 struct	radix_node *rn_clist;
    329 int	rn_saveinfo;
    330 int	rn_debug =  1;
    331 #endif
    332 
    333 struct radix_node *
    334 rn_newpair(
    335 	const void *v,
    336 	int b,
    337 	struct radix_node nodes[2])
    338 {
    339 	struct radix_node *tt = nodes;
    340 	struct radix_node *t = tt + 1;
    341 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
    342 	t->rn_l = tt; t->rn_off = b >> 3;
    343 	tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
    344 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
    345 #ifdef RN_DEBUG
    346 	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
    347 	tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
    348 #endif
    349 	return t;
    350 }
    351 
    352 struct radix_node *
    353 rn_insert(
    354 	const void *v_arg,
    355 	struct radix_node_head *head,
    356 	int *dupentry,
    357 	struct radix_node nodes[2])
    358 {
    359 	struct radix_node *top = head->rnh_treetop;
    360 	struct radix_node *t = rn_search(v_arg, top);
    361 	struct radix_node *tt;
    362 	const char *v = v_arg;
    363 	int head_off = top->rn_off;
    364 	int vlen = *((const u_char *)v);
    365 	const char *cp = v + head_off;
    366 	int b;
    367     	/*
    368 	 * Find first bit at which v and t->rn_key differ
    369 	 */
    370     {
    371 	const char *cp2 = t->rn_key + head_off;
    372 	const char *cplim = v + vlen;
    373 	int cmp_res;
    374 
    375 	while (cp < cplim)
    376 		if (*cp2++ != *cp++)
    377 			goto on1;
    378 	*dupentry = 1;
    379 	return t;
    380 on1:
    381 	*dupentry = 0;
    382 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
    383 	for (b = (cp - v) << 3; cmp_res; b--)
    384 		cmp_res >>= 1;
    385     }
    386     {
    387 	struct radix_node *p, *x = top;
    388 	cp = v;
    389 	do {
    390 		p = x;
    391 		if (cp[x->rn_off] & x->rn_bmask)
    392 			x = x->rn_r;
    393 		else x = x->rn_l;
    394 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
    395 #ifdef RN_DEBUG
    396 	if (rn_debug)
    397 		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
    398 #endif
    399 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
    400 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
    401 		p->rn_l = t;
    402 	else
    403 		p->rn_r = t;
    404 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
    405 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
    406 		t->rn_r = x;
    407 	} else {
    408 		t->rn_r = tt; t->rn_l = x;
    409 	}
    410 #ifdef RN_DEBUG
    411 	if (rn_debug)
    412 		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
    413 #endif
    414     }
    415 	return (tt);
    416 }
    417 
    418 struct radix_node *
    419 rn_addmask(
    420 	const void *n_arg,
    421 	int search,
    422 	int skip)
    423 {
    424 	const char *netmask = n_arg;
    425 	const char *cp;
    426 	const char *cplim;
    427 	struct radix_node *x;
    428 	struct radix_node *saved_x;
    429 	int b = 0, mlen, j;
    430 	int maskduplicated, m0, isnormal;
    431 	static int last_zeroed = 0;
    432 
    433 	if ((mlen = *(const u_char *)netmask) > max_keylen)
    434 		mlen = max_keylen;
    435 	if (skip == 0)
    436 		skip = 1;
    437 	if (mlen <= skip)
    438 		return (mask_rnhead->rnh_nodes);
    439 	if (skip > 1)
    440 		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
    441 	if ((m0 = mlen) > skip)
    442 		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
    443 	/*
    444 	 * Trim trailing zeroes.
    445 	 */
    446 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
    447 		cp--;
    448 	mlen = cp - addmask_key;
    449 	if (mlen <= skip) {
    450 		if (m0 >= last_zeroed)
    451 			last_zeroed = mlen;
    452 		return (mask_rnhead->rnh_nodes);
    453 	}
    454 	if (m0 < last_zeroed)
    455 		Bzero(addmask_key + m0, last_zeroed - m0);
    456 	*addmask_key = last_zeroed = mlen;
    457 	x = rn_search(addmask_key, rn_masktop);
    458 	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
    459 		x = 0;
    460 	if (x || search)
    461 		return (x);
    462 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
    463 	if ((saved_x = x) == 0)
    464 		return (0);
    465 	Bzero(x, max_keylen + 2 * sizeof (*x));
    466 	cp = netmask = (caddr_t)(x + 2);
    467 	Bcopy(addmask_key, (caddr_t)(x + 2), mlen);
    468 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
    469 	if (maskduplicated) {
    470 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
    471 		Free(saved_x);
    472 		return (x);
    473 	}
    474 	/*
    475 	 * Calculate index of mask, and check for normalcy.
    476 	 */
    477 	cplim = netmask + mlen; isnormal = 1;
    478 	for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
    479 		cp++;
    480 	if (cp != cplim) {
    481 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
    482 			b++;
    483 		if (*cp != normal_chars[b] || cp != (cplim - 1))
    484 			isnormal = 0;
    485 	}
    486 	b += (cp - netmask) << 3;
    487 	x->rn_b = -1 - b;
    488 	if (isnormal)
    489 		x->rn_flags |= RNF_NORMAL;
    490 	return (x);
    491 }
    492 
    493 static int	/* XXX: arbitrary ordering for non-contiguous masks */
    494 rn_lexobetter(
    495 	const void *m_arg,
    496 	const void *n_arg)
    497 {
    498 	const u_char *mp = m_arg;
    499 	const u_char *np = n_arg;
    500 	const u_char *lim;
    501 
    502 	if (*mp > *np)
    503 		return 1;  /* not really, but need to check longer one first */
    504 	if (*mp == *np)
    505 		for (lim = mp + *mp; mp < lim;)
    506 			if (*mp++ > *np++)
    507 				return 1;
    508 	return 0;
    509 }
    510 
    511 static struct radix_mask *
    512 rn_new_radix_mask(
    513 	struct radix_node *tt,
    514 	struct radix_mask *next)
    515 {
    516 	struct radix_mask *m;
    517 
    518 	MKGet(m);
    519 	if (m == 0) {
    520 		log(LOG_ERR, "Mask for route not entered\n");
    521 		return (0);
    522 	}
    523 	Bzero(m, sizeof *m);
    524 	m->rm_b = tt->rn_b;
    525 	m->rm_flags = tt->rn_flags;
    526 	if (tt->rn_flags & RNF_NORMAL)
    527 		m->rm_leaf = tt;
    528 	else
    529 		m->rm_mask = tt->rn_mask;
    530 	m->rm_mklist = next;
    531 	tt->rn_mklist = m;
    532 	return m;
    533 }
    534 
    535 struct radix_node *
    536 rn_addroute(
    537 	const void *v_arg,
    538 	const void *n_arg,
    539 	struct radix_node_head *head,
    540 	struct radix_node treenodes[2])
    541 {
    542 	const char *v = v_arg;
    543 	const char *netmask = n_arg;
    544 	struct radix_node *t;
    545 	struct radix_node *x = 0;
    546 	struct radix_node *tt;
    547 	struct radix_node *saved_tt;
    548 	struct radix_node *top = head->rnh_treetop;
    549 	short b = 0, b_leaf = 0;
    550 	int keyduplicated;
    551 	const char *mmask;
    552 	struct radix_mask *m, **mp;
    553 
    554 	/*
    555 	 * In dealing with non-contiguous masks, there may be
    556 	 * many different routes which have the same mask.
    557 	 * We will find it useful to have a unique pointer to
    558 	 * the mask to speed avoiding duplicate references at
    559 	 * nodes and possibly save time in calculating indices.
    560 	 */
    561 	if (netmask)  {
    562 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
    563 			return (0);
    564 		b_leaf = x->rn_b;
    565 		b = -1 - x->rn_b;
    566 		netmask = x->rn_key;
    567 	}
    568 	/*
    569 	 * Deal with duplicated keys: attach node to previous instance
    570 	 */
    571 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
    572 	if (keyduplicated) {
    573 		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
    574 			if (tt->rn_mask == netmask)
    575 				return (0);
    576 			if (netmask == 0 ||
    577 			    (tt->rn_mask &&
    578 			     ((b_leaf < tt->rn_b) || /* index(netmask) > node */
    579 			       rn_refines(netmask, tt->rn_mask) ||
    580 			       rn_lexobetter(netmask, tt->rn_mask))))
    581 				break;
    582 		}
    583 		/*
    584 		 * If the mask is not duplicated, we wouldn't
    585 		 * find it among possible duplicate key entries
    586 		 * anyway, so the above test doesn't hurt.
    587 		 *
    588 		 * We sort the masks for a duplicated key the same way as
    589 		 * in a masklist -- most specific to least specific.
    590 		 * This may require the unfortunate nuisance of relocating
    591 		 * the head of the list.
    592 		 *
    593 		 * We also reverse, or doubly link the list through the
    594 		 * parent pointer.
    595 		 */
    596 		if (tt == saved_tt) {
    597 			struct	radix_node *xx = x;
    598 			/* link in at head of list */
    599 			(tt = treenodes)->rn_dupedkey = t;
    600 			tt->rn_flags = t->rn_flags;
    601 			tt->rn_p = x = t->rn_p;
    602 			t->rn_p = tt;
    603 			if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
    604 			saved_tt = tt; x = xx;
    605 		} else {
    606 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
    607 			t->rn_dupedkey = tt;
    608 			tt->rn_p = t;
    609 			if (tt->rn_dupedkey)
    610 				tt->rn_dupedkey->rn_p = tt;
    611 		}
    612 #ifdef RN_DEBUG
    613 		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
    614 		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
    615 #endif
    616 		tt->rn_key = __UNCONST(v); /*XXXUNCONST*/
    617 		tt->rn_b = -1;
    618 		tt->rn_flags = RNF_ACTIVE;
    619 	}
    620 	/*
    621 	 * Put mask in tree.
    622 	 */
    623 	if (netmask) {
    624 		tt->rn_mask = netmask;
    625 		tt->rn_b = x->rn_b;
    626 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
    627 	}
    628 	t = saved_tt->rn_p;
    629 	if (keyduplicated)
    630 		goto on2;
    631 	b_leaf = -1 - t->rn_b;
    632 	if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
    633 	/* Promote general routes from below */
    634 	if (x->rn_b < 0) {
    635 	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
    636 		if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
    637 			*mp = m = rn_new_radix_mask(x, 0);
    638 			if (m)
    639 				mp = &m->rm_mklist;
    640 		}
    641 	} else if (x->rn_mklist) {
    642 		/*
    643 		 * Skip over masks whose index is > that of new node
    644 		 */
    645 		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
    646 			if (m->rm_b >= b_leaf)
    647 				break;
    648 		t->rn_mklist = m; *mp = 0;
    649 	}
    650 on2:
    651 	/* Add new route to highest possible ancestor's list */
    652 	if ((netmask == 0) || (b > t->rn_b ))
    653 		return tt; /* can't lift at all */
    654 	b_leaf = tt->rn_b;
    655 	do {
    656 		x = t;
    657 		t = t->rn_p;
    658 	} while (b <= t->rn_b && x != top);
    659 	/*
    660 	 * Search through routes associated with node to
    661 	 * insert new route according to index.
    662 	 * Need same criteria as when sorting dupedkeys to avoid
    663 	 * double loop on deletion.
    664 	 */
    665 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
    666 		if (m->rm_b < b_leaf)
    667 			continue;
    668 		if (m->rm_b > b_leaf)
    669 			break;
    670 		if (m->rm_flags & RNF_NORMAL) {
    671 			mmask = m->rm_leaf->rn_mask;
    672 			if (tt->rn_flags & RNF_NORMAL) {
    673 				log(LOG_ERR, "Non-unique normal route,"
    674 				    " mask not entered\n");
    675 				return tt;
    676 			}
    677 		} else
    678 			mmask = m->rm_mask;
    679 		if (mmask == netmask) {
    680 			m->rm_refs++;
    681 			tt->rn_mklist = m;
    682 			return tt;
    683 		}
    684 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
    685 			break;
    686 	}
    687 	*mp = rn_new_radix_mask(tt, *mp);
    688 	return tt;
    689 }
    690 
    691 struct radix_node *
    692 rn_delete(
    693 	const void *v_arg,
    694 	const void *netmask_arg,
    695 	struct radix_node_head *head)
    696 {
    697 	struct radix_node *t;
    698 	struct radix_node *p;
    699 	struct radix_node *x;
    700 	struct radix_node *tt;
    701 	struct radix_node *dupedkey;
    702 	struct radix_node *saved_tt;
    703 	struct radix_node *top;
    704 	struct radix_mask *m;
    705 	struct radix_mask *saved_m;
    706 	struct radix_mask **mp;
    707 	const char *v = v_arg;
    708 	const char *netmask = netmask_arg;
    709 	int b, head_off, vlen;
    710 
    711 	x = head->rnh_treetop;
    712 	tt = rn_search(v, x);
    713 	head_off = x->rn_off;
    714 	vlen =  *(const u_char *)v;
    715 	saved_tt = tt;
    716 	top = x;
    717 	if (tt == 0 ||
    718 	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
    719 		return (0);
    720 	/*
    721 	 * Delete our route from mask lists.
    722 	 */
    723 	if (netmask) {
    724 		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
    725 			return (0);
    726 		netmask = x->rn_key;
    727 		while (tt->rn_mask != netmask)
    728 			if ((tt = tt->rn_dupedkey) == 0)
    729 				return (0);
    730 	}
    731 	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
    732 		goto on1;
    733 	if (tt->rn_flags & RNF_NORMAL) {
    734 		if (m->rm_leaf != tt || m->rm_refs > 0) {
    735 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
    736 			return 0;  /* dangling ref could cause disaster */
    737 		}
    738 	} else {
    739 		if (m->rm_mask != tt->rn_mask) {
    740 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
    741 			goto on1;
    742 		}
    743 		if (--m->rm_refs >= 0)
    744 			goto on1;
    745 	}
    746 	b = -1 - tt->rn_b;
    747 	t = saved_tt->rn_p;
    748 	if (b > t->rn_b)
    749 		goto on1; /* Wasn't lifted at all */
    750 	do {
    751 		x = t;
    752 		t = t->rn_p;
    753 	} while (b <= t->rn_b && x != top);
    754 	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
    755 		if (m == saved_m) {
    756 			*mp = m->rm_mklist;
    757 			MKFree(m);
    758 			break;
    759 		}
    760 	if (m == 0) {
    761 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
    762 		if (tt->rn_flags & RNF_NORMAL)
    763 			return (0); /* Dangling ref to us */
    764 	}
    765 on1:
    766 	/*
    767 	 * Eliminate us from tree
    768 	 */
    769 	if (tt->rn_flags & RNF_ROOT)
    770 		return (0);
    771 #ifdef RN_DEBUG
    772 	/* Get us out of the creation list */
    773 	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
    774 	if (t) t->rn_ybro = tt->rn_ybro;
    775 #endif
    776 	t = tt->rn_p;
    777 	dupedkey = saved_tt->rn_dupedkey;
    778 	if (dupedkey) {
    779 		/*
    780 		 * Here, tt is the deletion target, and
    781 		 * saved_tt is the head of the dupedkey chain.
    782 		 */
    783 		if (tt == saved_tt) {
    784 			x = dupedkey; x->rn_p = t;
    785 			if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
    786 		} else {
    787 			/* find node in front of tt on the chain */
    788 			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
    789 				p = p->rn_dupedkey;
    790 			if (p) {
    791 				p->rn_dupedkey = tt->rn_dupedkey;
    792 				if (tt->rn_dupedkey)
    793 					tt->rn_dupedkey->rn_p = p;
    794 			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
    795 		}
    796 		t = tt + 1;
    797 		if  (t->rn_flags & RNF_ACTIVE) {
    798 #ifndef RN_DEBUG
    799 			*++x = *t; p = t->rn_p;
    800 #else
    801 			b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
    802 #endif
    803 			if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
    804 			x->rn_l->rn_p = x; x->rn_r->rn_p = x;
    805 		}
    806 		goto out;
    807 	}
    808 	if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
    809 	p = t->rn_p;
    810 	if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
    811 	x->rn_p = p;
    812 	/*
    813 	 * Demote routes attached to us.
    814 	 */
    815 	if (t->rn_mklist) {
    816 		if (x->rn_b >= 0) {
    817 			for (mp = &x->rn_mklist; (m = *mp);)
    818 				mp = &m->rm_mklist;
    819 			*mp = t->rn_mklist;
    820 		} else {
    821 			/* If there are any key,mask pairs in a sibling
    822 			   duped-key chain, some subset will appear sorted
    823 			   in the same order attached to our mklist */
    824 			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
    825 				if (m == x->rn_mklist) {
    826 					struct radix_mask *mm = m->rm_mklist;
    827 					x->rn_mklist = 0;
    828 					if (--(m->rm_refs) < 0)
    829 						MKFree(m);
    830 					m = mm;
    831 				}
    832 			if (m)
    833 				log(LOG_ERR, "%s %p at %p\n",
    834 				    "rn_delete: Orphaned Mask", m, x);
    835 		}
    836 	}
    837 	/*
    838 	 * We may be holding an active internal node in the tree.
    839 	 */
    840 	x = tt + 1;
    841 	if (t != x) {
    842 #ifndef RN_DEBUG
    843 		*t = *x;
    844 #else
    845 		b = t->rn_info; *t = *x; t->rn_info = b;
    846 #endif
    847 		t->rn_l->rn_p = t; t->rn_r->rn_p = t;
    848 		p = x->rn_p;
    849 		if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
    850 	}
    851 out:
    852 	tt->rn_flags &= ~RNF_ACTIVE;
    853 	tt[1].rn_flags &= ~RNF_ACTIVE;
    854 	return (tt);
    855 }
    856 
    857 int
    858 rn_walktree(
    859 	struct radix_node_head *h,
    860 	int (*f)(struct radix_node *, void *),
    861 	void *w)
    862 {
    863 	int error;
    864 	struct radix_node *base;
    865 	struct radix_node *next;
    866 	struct radix_node *rn = h->rnh_treetop;
    867 	/*
    868 	 * This gets complicated because we may delete the node
    869 	 * while applying the function f to it, so we need to calculate
    870 	 * the successor node in advance.
    871 	 */
    872 	/* First time through node, go left */
    873 	while (rn->rn_b >= 0)
    874 		rn = rn->rn_l;
    875 	for (;;) {
    876 		base = rn;
    877 		/* If at right child go back up, otherwise, go right */
    878 		while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
    879 			rn = rn->rn_p;
    880 		/* Find the next *leaf* since next node might vanish, too */
    881 		for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
    882 			rn = rn->rn_l;
    883 		next = rn;
    884 		/* Process leaves */
    885 		while ((rn = base) != NULL) {
    886 			base = rn->rn_dupedkey;
    887 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
    888 				return (error);
    889 		}
    890 		rn = next;
    891 		if (rn->rn_flags & RNF_ROOT)
    892 			return (0);
    893 	}
    894 	/* NOTREACHED */
    895 }
    896 
    897 int
    898 rn_inithead(head, off)
    899 	void **head;
    900 	int off;
    901 {
    902 	struct radix_node_head *rnh;
    903 
    904 	if (*head)
    905 		return (1);
    906 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
    907 	if (rnh == 0)
    908 		return (0);
    909 	*head = rnh;
    910 	return rn_inithead0(rnh, off);
    911 }
    912 
    913 int
    914 rn_inithead0(rnh, off)
    915 	struct radix_node_head *rnh;
    916 	int off;
    917 {
    918 	struct radix_node *t;
    919 	struct radix_node *tt;
    920 	struct radix_node *ttt;
    921 
    922 	Bzero(rnh, sizeof (*rnh));
    923 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
    924 	ttt = rnh->rnh_nodes + 2;
    925 	t->rn_r = ttt;
    926 	t->rn_p = t;
    927 	tt = t->rn_l;
    928 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
    929 	tt->rn_b = -1 - off;
    930 	*ttt = *tt;
    931 	ttt->rn_key = rn_ones;
    932 	rnh->rnh_addaddr = rn_addroute;
    933 	rnh->rnh_deladdr = rn_delete;
    934 	rnh->rnh_matchaddr = rn_match;
    935 	rnh->rnh_lookup = rn_lookup;
    936 	rnh->rnh_walktree = rn_walktree;
    937 	rnh->rnh_treetop = t;
    938 	return (1);
    939 }
    940 
    941 void
    942 rn_init()
    943 {
    944 	char *cp, *cplim;
    945 #ifdef _KERNEL
    946 	static int initialized;
    947 	__link_set_decl(domains, struct domain);
    948 	struct domain *const *dpp;
    949 
    950 	if (initialized)
    951 		return;
    952 	initialized = 1;
    953 
    954 	__link_set_foreach(dpp, domains) {
    955 		if ((*dpp)->dom_maxrtkey > max_keylen)
    956 			max_keylen = (*dpp)->dom_maxrtkey;
    957 	}
    958 #ifdef INET
    959 	encap_setkeylen();
    960 #endif
    961 #endif
    962 	if (max_keylen == 0) {
    963 		log(LOG_ERR,
    964 		    "rn_init: radix functions require max_keylen be set\n");
    965 		return;
    966 	}
    967 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
    968 	if (rn_zeros == NULL)
    969 		panic("rn_init");
    970 	Bzero(rn_zeros, 3 * max_keylen);
    971 	rn_ones = cp = rn_zeros + max_keylen;
    972 	addmask_key = cplim = rn_ones + max_keylen;
    973 	while (cp < cplim)
    974 		*cp++ = -1;
    975 	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
    976 		panic("rn_init 2");
    977 }
    978