radix.c revision 1.32 1 /* $NetBSD: radix.c,v 1.32 2006/12/04 01:45:50 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 */
33
34 /*
35 * Routines to build and maintain radix trees for routing lookups.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.32 2006/12/04 01:45:50 dyoung Exp $");
40
41 #ifndef _NET_RADIX_H_
42 #include <sys/param.h>
43 #ifdef _KERNEL
44 #include "opt_inet.h"
45
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #define M_DONTWAIT M_NOWAIT
49 #include <sys/domain.h>
50 #include <netinet/ip_encap.h>
51 #else
52 #include <stdlib.h>
53 #endif
54 #include <machine/stdarg.h>
55 #include <sys/syslog.h>
56 #include <net/radix.h>
57 #endif
58
59 typedef void (*rn_printer_t)(void *, const char *fmt, ...);
60
61 int max_keylen;
62 struct radix_mask *rn_mkfreelist;
63 struct radix_node_head *mask_rnhead;
64 static char *addmask_key;
65 static const char normal_chars[] =
66 {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
67 static char *rn_zeros, *rn_ones;
68
69 #define rn_masktop (mask_rnhead->rnh_treetop)
70
71 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
72 static int rn_lexobetter(const void *, const void *);
73 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
74 struct radix_mask *);
75 static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
76 void *);
77 static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
78 void *);
79 static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
80 const char *);
81
82 #define SUBTREE_OPEN "[ "
83 #define SUBTREE_CLOSE " ]"
84
85 #ifdef RN_DEBUG
86 static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
87 #endif /* RN_DEBUG */
88
89 /*
90 * The data structure for the keys is a radix tree with one way
91 * branching removed. The index rn_b at an internal node n represents a bit
92 * position to be tested. The tree is arranged so that all descendants
93 * of a node n have keys whose bits all agree up to position rn_b - 1.
94 * (We say the index of n is rn_b.)
95 *
96 * There is at least one descendant which has a one bit at position rn_b,
97 * and at least one with a zero there.
98 *
99 * A route is determined by a pair of key and mask. We require that the
100 * bit-wise logical and of the key and mask to be the key.
101 * We define the index of a route to associated with the mask to be
102 * the first bit number in the mask where 0 occurs (with bit number 0
103 * representing the highest order bit).
104 *
105 * We say a mask is normal if every bit is 0, past the index of the mask.
106 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
107 * and m is a normal mask, then the route applies to every descendant of n.
108 * If the index(m) < rn_b, this implies the trailing last few bits of k
109 * before bit b are all 0, (and hence consequently true of every descendant
110 * of n), so the route applies to all descendants of the node as well.
111 *
112 * Similar logic shows that a non-normal mask m such that
113 * index(m) <= index(n) could potentially apply to many children of n.
114 * Thus, for each non-host route, we attach its mask to a list at an internal
115 * node as high in the tree as we can go.
116 *
117 * The present version of the code makes use of normal routes in short-
118 * circuiting an explicit mask and compare operation when testing whether
119 * a key satisfies a normal route, and also in remembering the unique leaf
120 * that governs a subtree.
121 */
122
123 struct radix_node *
124 rn_search(
125 const void *v_arg,
126 struct radix_node *head)
127 {
128 const u_char * const v = v_arg;
129 struct radix_node *x;
130
131 for (x = head; x->rn_b >= 0;) {
132 if (x->rn_bmask & v[x->rn_off])
133 x = x->rn_r;
134 else
135 x = x->rn_l;
136 }
137 return (x);
138 }
139
140 struct radix_node *
141 rn_search_m(
142 const void *v_arg,
143 struct radix_node *head,
144 const void *m_arg)
145 {
146 struct radix_node *x;
147 const u_char * const v = v_arg;
148 const u_char * const m = m_arg;
149
150 for (x = head; x->rn_b >= 0;) {
151 if ((x->rn_bmask & m[x->rn_off]) &&
152 (x->rn_bmask & v[x->rn_off]))
153 x = x->rn_r;
154 else
155 x = x->rn_l;
156 }
157 return x;
158 }
159
160 int
161 rn_refines(
162 const void *m_arg,
163 const void *n_arg)
164 {
165 const char *m = m_arg;
166 const char *n = n_arg;
167 const char *lim = n + *(const u_char *)n;
168 const char *lim2 = lim;
169 int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
170 int masks_are_equal = 1;
171
172 if (longer > 0)
173 lim -= longer;
174 while (n < lim) {
175 if (*n & ~(*m))
176 return 0;
177 if (*n++ != *m++)
178 masks_are_equal = 0;
179 }
180 while (n < lim2)
181 if (*n++)
182 return 0;
183 if (masks_are_equal && (longer < 0))
184 for (lim2 = m - longer; m < lim2; )
185 if (*m++)
186 return 1;
187 return (!masks_are_equal);
188 }
189
190 struct radix_node *
191 rn_lookup(
192 const void *v_arg,
193 const void *m_arg,
194 struct radix_node_head *head)
195 {
196 struct radix_node *x;
197 const char *netmask = NULL;
198
199 if (m_arg) {
200 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
201 return (0);
202 netmask = x->rn_key;
203 }
204 x = rn_match(v_arg, head);
205 if (x && netmask) {
206 while (x && x->rn_mask != netmask)
207 x = x->rn_dupedkey;
208 }
209 return x;
210 }
211
212 static int
213 rn_satisfies_leaf(
214 const char *trial,
215 struct radix_node *leaf,
216 int skip)
217 {
218 const char *cp = trial;
219 const char *cp2 = leaf->rn_key;
220 const char *cp3 = leaf->rn_mask;
221 const char *cplim;
222 int length = min(*(const u_char *)cp, *(const u_char *)cp2);
223
224 if (cp3 == 0)
225 cp3 = rn_ones;
226 else
227 length = min(length, *(const u_char *)cp3);
228 cplim = cp + length; cp3 += skip; cp2 += skip;
229 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
230 if ((*cp ^ *cp2) & *cp3)
231 return 0;
232 return 1;
233 }
234
235 struct radix_node *
236 rn_match(
237 const void *v_arg,
238 struct radix_node_head *head)
239 {
240 const char * const v = v_arg;
241 struct radix_node *t = head->rnh_treetop;
242 struct radix_node *top = t;
243 struct radix_node *x;
244 struct radix_node *saved_t;
245 const char *cp = v;
246 const char *cp2;
247 const char *cplim;
248 int off = t->rn_off;
249 int vlen = *(const u_char *)cp;
250 int matched_off;
251 int test, b, rn_b;
252
253 /*
254 * Open code rn_search(v, top) to avoid overhead of extra
255 * subroutine call.
256 */
257 for (; t->rn_b >= 0; ) {
258 if (t->rn_bmask & cp[t->rn_off])
259 t = t->rn_r;
260 else
261 t = t->rn_l;
262 }
263 /*
264 * See if we match exactly as a host destination
265 * or at least learn how many bits match, for normal mask finesse.
266 *
267 * It doesn't hurt us to limit how many bytes to check
268 * to the length of the mask, since if it matches we had a genuine
269 * match and the leaf we have is the most specific one anyway;
270 * if it didn't match with a shorter length it would fail
271 * with a long one. This wins big for class B&C netmasks which
272 * are probably the most common case...
273 */
274 if (t->rn_mask)
275 vlen = *(const u_char *)t->rn_mask;
276 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
277 for (; cp < cplim; cp++, cp2++)
278 if (*cp != *cp2)
279 goto on1;
280 /*
281 * This extra grot is in case we are explicitly asked
282 * to look up the default. Ugh!
283 */
284 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
285 t = t->rn_dupedkey;
286 return t;
287 on1:
288 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
289 for (b = 7; (test >>= 1) > 0;)
290 b--;
291 matched_off = cp - v;
292 b += matched_off << 3;
293 rn_b = -1 - b;
294 /*
295 * If there is a host route in a duped-key chain, it will be first.
296 */
297 if ((saved_t = t)->rn_mask == 0)
298 t = t->rn_dupedkey;
299 for (; t; t = t->rn_dupedkey)
300 /*
301 * Even if we don't match exactly as a host,
302 * we may match if the leaf we wound up at is
303 * a route to a net.
304 */
305 if (t->rn_flags & RNF_NORMAL) {
306 if (rn_b <= t->rn_b)
307 return t;
308 } else if (rn_satisfies_leaf(v, t, matched_off))
309 return t;
310 t = saved_t;
311 /* start searching up the tree */
312 do {
313 struct radix_mask *m;
314 t = t->rn_p;
315 m = t->rn_mklist;
316 if (m) {
317 /*
318 * If non-contiguous masks ever become important
319 * we can restore the masking and open coding of
320 * the search and satisfaction test and put the
321 * calculation of "off" back before the "do".
322 */
323 do {
324 if (m->rm_flags & RNF_NORMAL) {
325 if (rn_b <= m->rm_b)
326 return (m->rm_leaf);
327 } else {
328 off = min(t->rn_off, matched_off);
329 x = rn_search_m(v, t, m->rm_mask);
330 while (x && x->rn_mask != m->rm_mask)
331 x = x->rn_dupedkey;
332 if (x && rn_satisfies_leaf(v, x, off))
333 return x;
334 }
335 m = m->rm_mklist;
336 } while (m);
337 }
338 } while (t != top);
339 return 0;
340 }
341
342 static void
343 rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
344 const char *delim)
345 {
346 (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
347 delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
348 rn->rn_l, rn->rn_r);
349 }
350
351 #ifdef RN_DEBUG
352 int rn_nodenum;
353 struct radix_node *rn_clist;
354 int rn_saveinfo;
355 int rn_debug = 1;
356
357 static void
358 rn_dbg_print(void *arg, const char *fmt, ...)
359 {
360 va_list ap;
361
362 va_start(ap, fmt);
363 vlog(LOG_DEBUG, fmt, ap);
364 va_end(ap);
365 }
366
367 static void
368 rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
369 {
370 struct radix_node *dup, *rn;
371 const char *delim;
372
373 if (printer == NULL)
374 return;
375
376 rn = rn_walkfirst(h->rnh_treetop, printer, arg);
377 for (;;) {
378 /* Process leaves */
379 delim = "";
380 for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
381 if ((dup->rn_flags & RNF_ROOT) != 0)
382 continue;
383 rn_nodeprint(dup, printer, arg, delim);
384 delim = ", ";
385 }
386 rn = rn_walknext(rn, printer, arg);
387 if (rn->rn_flags & RNF_ROOT)
388 return;
389 }
390 /* NOTREACHED */
391 }
392
393 #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
394 #endif /* RN_DEBUG */
395
396 struct radix_node *
397 rn_newpair(
398 const void *v,
399 int b,
400 struct radix_node nodes[2])
401 {
402 struct radix_node *tt = nodes;
403 struct radix_node *t = tt + 1;
404 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
405 t->rn_l = tt; t->rn_off = b >> 3;
406 tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
407 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
408 #ifdef RN_DEBUG
409 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
410 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
411 #endif
412 return t;
413 }
414
415 struct radix_node *
416 rn_insert(
417 const void *v_arg,
418 struct radix_node_head *head,
419 int *dupentry,
420 struct radix_node nodes[2])
421 {
422 struct radix_node *top = head->rnh_treetop;
423 struct radix_node *t = rn_search(v_arg, top);
424 struct radix_node *tt;
425 const char *v = v_arg;
426 int head_off = top->rn_off;
427 int vlen = *((const u_char *)v);
428 const char *cp = v + head_off;
429 int b;
430 /*
431 * Find first bit at which v and t->rn_key differ
432 */
433 {
434 const char *cp2 = t->rn_key + head_off;
435 const char *cplim = v + vlen;
436 int cmp_res;
437
438 while (cp < cplim)
439 if (*cp2++ != *cp++)
440 goto on1;
441 *dupentry = 1;
442 return t;
443 on1:
444 *dupentry = 0;
445 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
446 for (b = (cp - v) << 3; cmp_res; b--)
447 cmp_res >>= 1;
448 }
449 {
450 struct radix_node *p, *x = top;
451 cp = v;
452 do {
453 p = x;
454 if (cp[x->rn_off] & x->rn_bmask)
455 x = x->rn_r;
456 else x = x->rn_l;
457 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
458 #ifdef RN_DEBUG
459 if (rn_debug)
460 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
461 #endif
462 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
463 if ((cp[p->rn_off] & p->rn_bmask) == 0)
464 p->rn_l = t;
465 else
466 p->rn_r = t;
467 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
468 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
469 t->rn_r = x;
470 } else {
471 t->rn_r = tt; t->rn_l = x;
472 }
473 #ifdef RN_DEBUG
474 if (rn_debug) {
475 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
476 traverse(head, p);
477 }
478 #endif /* RN_DEBUG */
479 }
480 return (tt);
481 }
482
483 struct radix_node *
484 rn_addmask(
485 const void *n_arg,
486 int search,
487 int skip)
488 {
489 const char *netmask = n_arg;
490 const char *cp;
491 const char *cplim;
492 struct radix_node *x;
493 struct radix_node *saved_x;
494 int b = 0, mlen, j;
495 int maskduplicated, m0, isnormal;
496 static int last_zeroed = 0;
497
498 if ((mlen = *(const u_char *)netmask) > max_keylen)
499 mlen = max_keylen;
500 if (skip == 0)
501 skip = 1;
502 if (mlen <= skip)
503 return (mask_rnhead->rnh_nodes);
504 if (skip > 1)
505 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
506 if ((m0 = mlen) > skip)
507 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
508 /*
509 * Trim trailing zeroes.
510 */
511 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
512 cp--;
513 mlen = cp - addmask_key;
514 if (mlen <= skip) {
515 if (m0 >= last_zeroed)
516 last_zeroed = mlen;
517 return (mask_rnhead->rnh_nodes);
518 }
519 if (m0 < last_zeroed)
520 Bzero(addmask_key + m0, last_zeroed - m0);
521 *addmask_key = last_zeroed = mlen;
522 x = rn_search(addmask_key, rn_masktop);
523 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
524 x = 0;
525 if (x || search)
526 return (x);
527 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
528 if ((saved_x = x) == 0)
529 return (0);
530 Bzero(x, max_keylen + 2 * sizeof (*x));
531 cp = netmask = (caddr_t)(x + 2);
532 Bcopy(addmask_key, (caddr_t)(x + 2), mlen);
533 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
534 if (maskduplicated) {
535 log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
536 Free(saved_x);
537 return (x);
538 }
539 /*
540 * Calculate index of mask, and check for normalcy.
541 */
542 cplim = netmask + mlen; isnormal = 1;
543 for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
544 cp++;
545 if (cp != cplim) {
546 for (j = 0x80; (j & *cp) != 0; j >>= 1)
547 b++;
548 if (*cp != normal_chars[b] || cp != (cplim - 1))
549 isnormal = 0;
550 }
551 b += (cp - netmask) << 3;
552 x->rn_b = -1 - b;
553 if (isnormal)
554 x->rn_flags |= RNF_NORMAL;
555 return (x);
556 }
557
558 static int /* XXX: arbitrary ordering for non-contiguous masks */
559 rn_lexobetter(
560 const void *m_arg,
561 const void *n_arg)
562 {
563 const u_char *mp = m_arg;
564 const u_char *np = n_arg;
565 const u_char *lim;
566
567 if (*mp > *np)
568 return 1; /* not really, but need to check longer one first */
569 if (*mp == *np)
570 for (lim = mp + *mp; mp < lim;)
571 if (*mp++ > *np++)
572 return 1;
573 return 0;
574 }
575
576 static struct radix_mask *
577 rn_new_radix_mask(
578 struct radix_node *tt,
579 struct radix_mask *next)
580 {
581 struct radix_mask *m;
582
583 MKGet(m);
584 if (m == 0) {
585 log(LOG_ERR, "Mask for route not entered\n");
586 return (0);
587 }
588 Bzero(m, sizeof *m);
589 m->rm_b = tt->rn_b;
590 m->rm_flags = tt->rn_flags;
591 if (tt->rn_flags & RNF_NORMAL)
592 m->rm_leaf = tt;
593 else
594 m->rm_mask = tt->rn_mask;
595 m->rm_mklist = next;
596 tt->rn_mklist = m;
597 return m;
598 }
599
600 struct radix_node *
601 rn_addroute(
602 const void *v_arg,
603 const void *n_arg,
604 struct radix_node_head *head,
605 struct radix_node treenodes[2])
606 {
607 const char *v = v_arg;
608 const char *netmask = n_arg;
609 struct radix_node *t;
610 struct radix_node *x = 0;
611 struct radix_node *tt;
612 struct radix_node *saved_tt;
613 struct radix_node *top = head->rnh_treetop;
614 short b = 0, b_leaf = 0;
615 int keyduplicated;
616 const char *mmask;
617 struct radix_mask *m, **mp;
618
619 /*
620 * In dealing with non-contiguous masks, there may be
621 * many different routes which have the same mask.
622 * We will find it useful to have a unique pointer to
623 * the mask to speed avoiding duplicate references at
624 * nodes and possibly save time in calculating indices.
625 */
626 if (netmask) {
627 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
628 return (0);
629 b_leaf = x->rn_b;
630 b = -1 - x->rn_b;
631 netmask = x->rn_key;
632 }
633 /*
634 * Deal with duplicated keys: attach node to previous instance
635 */
636 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
637 if (keyduplicated) {
638 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
639 if (tt->rn_mask == netmask)
640 return (0);
641 if (netmask == 0 ||
642 (tt->rn_mask &&
643 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
644 rn_refines(netmask, tt->rn_mask) ||
645 rn_lexobetter(netmask, tt->rn_mask))))
646 break;
647 }
648 /*
649 * If the mask is not duplicated, we wouldn't
650 * find it among possible duplicate key entries
651 * anyway, so the above test doesn't hurt.
652 *
653 * We sort the masks for a duplicated key the same way as
654 * in a masklist -- most specific to least specific.
655 * This may require the unfortunate nuisance of relocating
656 * the head of the list.
657 *
658 * We also reverse, or doubly link the list through the
659 * parent pointer.
660 */
661 if (tt == saved_tt) {
662 struct radix_node *xx = x;
663 /* link in at head of list */
664 (tt = treenodes)->rn_dupedkey = t;
665 tt->rn_flags = t->rn_flags;
666 tt->rn_p = x = t->rn_p;
667 t->rn_p = tt;
668 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
669 saved_tt = tt; x = xx;
670 } else {
671 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
672 t->rn_dupedkey = tt;
673 tt->rn_p = t;
674 if (tt->rn_dupedkey)
675 tt->rn_dupedkey->rn_p = tt;
676 }
677 #ifdef RN_DEBUG
678 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
679 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
680 #endif
681 tt->rn_key = __UNCONST(v); /*XXXUNCONST*/
682 tt->rn_b = -1;
683 tt->rn_flags = RNF_ACTIVE;
684 }
685 /*
686 * Put mask in tree.
687 */
688 if (netmask) {
689 tt->rn_mask = netmask;
690 tt->rn_b = x->rn_b;
691 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
692 }
693 t = saved_tt->rn_p;
694 if (keyduplicated)
695 goto on2;
696 b_leaf = -1 - t->rn_b;
697 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
698 /* Promote general routes from below */
699 if (x->rn_b < 0) {
700 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
701 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
702 *mp = m = rn_new_radix_mask(x, 0);
703 if (m)
704 mp = &m->rm_mklist;
705 }
706 } else if (x->rn_mklist) {
707 /*
708 * Skip over masks whose index is > that of new node
709 */
710 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
711 if (m->rm_b >= b_leaf)
712 break;
713 t->rn_mklist = m; *mp = 0;
714 }
715 on2:
716 /* Add new route to highest possible ancestor's list */
717 if ((netmask == 0) || (b > t->rn_b ))
718 return tt; /* can't lift at all */
719 b_leaf = tt->rn_b;
720 do {
721 x = t;
722 t = t->rn_p;
723 } while (b <= t->rn_b && x != top);
724 /*
725 * Search through routes associated with node to
726 * insert new route according to index.
727 * Need same criteria as when sorting dupedkeys to avoid
728 * double loop on deletion.
729 */
730 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
731 if (m->rm_b < b_leaf)
732 continue;
733 if (m->rm_b > b_leaf)
734 break;
735 if (m->rm_flags & RNF_NORMAL) {
736 mmask = m->rm_leaf->rn_mask;
737 if (tt->rn_flags & RNF_NORMAL) {
738 log(LOG_ERR, "Non-unique normal route,"
739 " mask not entered\n");
740 return tt;
741 }
742 } else
743 mmask = m->rm_mask;
744 if (mmask == netmask) {
745 m->rm_refs++;
746 tt->rn_mklist = m;
747 return tt;
748 }
749 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
750 break;
751 }
752 *mp = rn_new_radix_mask(tt, *mp);
753 return tt;
754 }
755
756 struct radix_node *
757 rn_delete(
758 const void *v_arg,
759 const void *netmask_arg,
760 struct radix_node_head *head)
761 {
762 struct radix_node *t;
763 struct radix_node *p;
764 struct radix_node *x;
765 struct radix_node *tt;
766 struct radix_node *dupedkey;
767 struct radix_node *saved_tt;
768 struct radix_node *top;
769 struct radix_mask *m;
770 struct radix_mask *saved_m;
771 struct radix_mask **mp;
772 const char *v = v_arg;
773 const char *netmask = netmask_arg;
774 int b, head_off, vlen;
775
776 x = head->rnh_treetop;
777 tt = rn_search(v, x);
778 head_off = x->rn_off;
779 vlen = *(const u_char *)v;
780 saved_tt = tt;
781 top = x;
782 if (tt == 0 ||
783 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
784 return (0);
785 /*
786 * Delete our route from mask lists.
787 */
788 if (netmask) {
789 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
790 return (0);
791 netmask = x->rn_key;
792 while (tt->rn_mask != netmask)
793 if ((tt = tt->rn_dupedkey) == 0)
794 return (0);
795 }
796 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
797 goto on1;
798 if (tt->rn_flags & RNF_NORMAL) {
799 if (m->rm_leaf != tt || m->rm_refs > 0) {
800 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
801 return 0; /* dangling ref could cause disaster */
802 }
803 } else {
804 if (m->rm_mask != tt->rn_mask) {
805 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
806 goto on1;
807 }
808 if (--m->rm_refs >= 0)
809 goto on1;
810 }
811 b = -1 - tt->rn_b;
812 t = saved_tt->rn_p;
813 if (b > t->rn_b)
814 goto on1; /* Wasn't lifted at all */
815 do {
816 x = t;
817 t = t->rn_p;
818 } while (b <= t->rn_b && x != top);
819 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
820 if (m == saved_m) {
821 *mp = m->rm_mklist;
822 MKFree(m);
823 break;
824 }
825 if (m == 0) {
826 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
827 if (tt->rn_flags & RNF_NORMAL)
828 return (0); /* Dangling ref to us */
829 }
830 on1:
831 /*
832 * Eliminate us from tree
833 */
834 if (tt->rn_flags & RNF_ROOT)
835 return (0);
836 #ifdef RN_DEBUG
837 /* Get us out of the creation list */
838 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
839 if (t) t->rn_ybro = tt->rn_ybro;
840 if (rn_debug)
841 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
842 #endif
843 t = tt->rn_p;
844 dupedkey = saved_tt->rn_dupedkey;
845 if (dupedkey) {
846 /*
847 * Here, tt is the deletion target, and
848 * saved_tt is the head of the dupedkey chain.
849 */
850 if (tt == saved_tt) {
851 x = dupedkey; x->rn_p = t;
852 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
853 } else {
854 /* find node in front of tt on the chain */
855 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
856 p = p->rn_dupedkey;
857 if (p) {
858 p->rn_dupedkey = tt->rn_dupedkey;
859 if (tt->rn_dupedkey)
860 tt->rn_dupedkey->rn_p = p;
861 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
862 }
863 t = tt + 1;
864 if (t->rn_flags & RNF_ACTIVE) {
865 #ifndef RN_DEBUG
866 *++x = *t; p = t->rn_p;
867 #else
868 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
869 #endif
870 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
871 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
872 }
873 goto out;
874 }
875 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
876 p = t->rn_p;
877 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
878 x->rn_p = p;
879 /*
880 * Demote routes attached to us.
881 */
882 if (t->rn_mklist) {
883 if (x->rn_b >= 0) {
884 for (mp = &x->rn_mklist; (m = *mp);)
885 mp = &m->rm_mklist;
886 *mp = t->rn_mklist;
887 } else {
888 /* If there are any key,mask pairs in a sibling
889 duped-key chain, some subset will appear sorted
890 in the same order attached to our mklist */
891 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
892 if (m == x->rn_mklist) {
893 struct radix_mask *mm = m->rm_mklist;
894 x->rn_mklist = 0;
895 if (--(m->rm_refs) < 0)
896 MKFree(m);
897 m = mm;
898 }
899 if (m)
900 log(LOG_ERR, "%s %p at %p\n",
901 "rn_delete: Orphaned Mask", m, x);
902 }
903 }
904 /*
905 * We may be holding an active internal node in the tree.
906 */
907 x = tt + 1;
908 if (t != x) {
909 #ifndef RN_DEBUG
910 *t = *x;
911 #else
912 b = t->rn_info; *t = *x; t->rn_info = b;
913 #endif
914 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
915 p = x->rn_p;
916 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
917 }
918 out:
919 #ifdef RN_DEBUG
920 if (rn_debug) {
921 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
922 traverse(head, tt);
923 }
924 #endif /* RN_DEBUG */
925 tt->rn_flags &= ~RNF_ACTIVE;
926 tt[1].rn_flags &= ~RNF_ACTIVE;
927 return (tt);
928 }
929
930 static struct radix_node *
931 rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
932 {
933 /* If at right child go back up, otherwise, go right */
934 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
935 if (printer != NULL)
936 (*printer)(arg, SUBTREE_CLOSE);
937 rn = rn->rn_p;
938 }
939 if (printer)
940 rn_nodeprint(rn->rn_p, printer, arg, "");
941 /* Find the next *leaf* since next node might vanish, too */
942 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
943 if (printer != NULL)
944 (*printer)(arg, SUBTREE_OPEN);
945 rn = rn->rn_l;
946 }
947 return rn;
948 }
949
950 static struct radix_node *
951 rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
952 {
953 /* First time through node, go left */
954 while (rn->rn_b >= 0) {
955 if (printer != NULL)
956 (*printer)(arg, SUBTREE_OPEN);
957 rn = rn->rn_l;
958 }
959 return rn;
960 }
961
962 int
963 rn_walktree(
964 struct radix_node_head *h,
965 int (*f)(struct radix_node *, void *),
966 void *w)
967 {
968 int error;
969 struct radix_node *base, *next, *rn;
970 /*
971 * This gets complicated because we may delete the node
972 * while applying the function f to it, so we need to calculate
973 * the successor node in advance.
974 */
975 rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
976 for (;;) {
977 base = rn;
978 next = rn_walknext(rn, NULL, NULL);
979 /* Process leaves */
980 while ((rn = base) != NULL) {
981 base = rn->rn_dupedkey;
982 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
983 return (error);
984 }
985 rn = next;
986 if (rn->rn_flags & RNF_ROOT)
987 return (0);
988 }
989 /* NOTREACHED */
990 }
991
992 int
993 rn_inithead(head, off)
994 void **head;
995 int off;
996 {
997 struct radix_node_head *rnh;
998
999 if (*head)
1000 return (1);
1001 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1002 if (rnh == 0)
1003 return (0);
1004 *head = rnh;
1005 return rn_inithead0(rnh, off);
1006 }
1007
1008 int
1009 rn_inithead0(rnh, off)
1010 struct radix_node_head *rnh;
1011 int off;
1012 {
1013 struct radix_node *t;
1014 struct radix_node *tt;
1015 struct radix_node *ttt;
1016
1017 Bzero(rnh, sizeof (*rnh));
1018 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1019 ttt = rnh->rnh_nodes + 2;
1020 t->rn_r = ttt;
1021 t->rn_p = t;
1022 tt = t->rn_l;
1023 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1024 tt->rn_b = -1 - off;
1025 *ttt = *tt;
1026 ttt->rn_key = rn_ones;
1027 rnh->rnh_addaddr = rn_addroute;
1028 rnh->rnh_deladdr = rn_delete;
1029 rnh->rnh_matchaddr = rn_match;
1030 rnh->rnh_lookup = rn_lookup;
1031 rnh->rnh_walktree = rn_walktree;
1032 rnh->rnh_treetop = t;
1033 return (1);
1034 }
1035
1036 void
1037 rn_init()
1038 {
1039 char *cp, *cplim;
1040 #ifdef _KERNEL
1041 static int initialized;
1042 __link_set_decl(domains, struct domain);
1043 struct domain *const *dpp;
1044
1045 if (initialized)
1046 return;
1047 initialized = 1;
1048
1049 __link_set_foreach(dpp, domains) {
1050 if ((*dpp)->dom_maxrtkey > max_keylen)
1051 max_keylen = (*dpp)->dom_maxrtkey;
1052 }
1053 #ifdef INET
1054 encap_setkeylen();
1055 #endif
1056 #endif
1057 if (max_keylen == 0) {
1058 log(LOG_ERR,
1059 "rn_init: radix functions require max_keylen be set\n");
1060 return;
1061 }
1062 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1063 if (rn_zeros == NULL)
1064 panic("rn_init");
1065 Bzero(rn_zeros, 3 * max_keylen);
1066 rn_ones = cp = rn_zeros + max_keylen;
1067 addmask_key = cplim = rn_ones + max_keylen;
1068 while (cp < cplim)
1069 *cp++ = -1;
1070 if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1071 panic("rn_init 2");
1072 }
1073