radix.c revision 1.34 1 /* $NetBSD: radix.c,v 1.34 2007/03/04 06:03:18 christos Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 */
33
34 /*
35 * Routines to build and maintain radix trees for routing lookups.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.34 2007/03/04 06:03:18 christos Exp $");
40
41 #ifndef _NET_RADIX_H_
42 #include <sys/param.h>
43 #ifdef _KERNEL
44 #include "opt_inet.h"
45
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #define M_DONTWAIT M_NOWAIT
49 #include <sys/domain.h>
50 #include <netinet/ip_encap.h>
51 #else
52 #include <stdlib.h>
53 #endif
54 #include <machine/stdarg.h>
55 #include <sys/syslog.h>
56 #include <net/radix.h>
57 #endif
58
59 typedef void (*rn_printer_t)(void *, const char *fmt, ...);
60
61 int max_keylen;
62 struct radix_mask *rn_mkfreelist;
63 struct radix_node_head *mask_rnhead;
64 static char *addmask_key;
65 static const char normal_chars[] =
66 {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
67 static char *rn_zeros, *rn_ones;
68
69 #define rn_masktop (mask_rnhead->rnh_treetop)
70
71 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
72 static int rn_lexobetter(const void *, const void *);
73 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
74 struct radix_mask *);
75 static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
76 void *);
77 static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
78 void *);
79 static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
80 const char *);
81
82 #define SUBTREE_OPEN "[ "
83 #define SUBTREE_CLOSE " ]"
84
85 #ifdef RN_DEBUG
86 static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
87 #endif /* RN_DEBUG */
88
89 /*
90 * The data structure for the keys is a radix tree with one way
91 * branching removed. The index rn_b at an internal node n represents a bit
92 * position to be tested. The tree is arranged so that all descendants
93 * of a node n have keys whose bits all agree up to position rn_b - 1.
94 * (We say the index of n is rn_b.)
95 *
96 * There is at least one descendant which has a one bit at position rn_b,
97 * and at least one with a zero there.
98 *
99 * A route is determined by a pair of key and mask. We require that the
100 * bit-wise logical and of the key and mask to be the key.
101 * We define the index of a route to associated with the mask to be
102 * the first bit number in the mask where 0 occurs (with bit number 0
103 * representing the highest order bit).
104 *
105 * We say a mask is normal if every bit is 0, past the index of the mask.
106 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
107 * and m is a normal mask, then the route applies to every descendant of n.
108 * If the index(m) < rn_b, this implies the trailing last few bits of k
109 * before bit b are all 0, (and hence consequently true of every descendant
110 * of n), so the route applies to all descendants of the node as well.
111 *
112 * Similar logic shows that a non-normal mask m such that
113 * index(m) <= index(n) could potentially apply to many children of n.
114 * Thus, for each non-host route, we attach its mask to a list at an internal
115 * node as high in the tree as we can go.
116 *
117 * The present version of the code makes use of normal routes in short-
118 * circuiting an explicit mask and compare operation when testing whether
119 * a key satisfies a normal route, and also in remembering the unique leaf
120 * that governs a subtree.
121 */
122
123 struct radix_node *
124 rn_search(
125 const void *v_arg,
126 struct radix_node *head)
127 {
128 const u_char * const v = v_arg;
129 struct radix_node *x;
130
131 for (x = head; x->rn_b >= 0;) {
132 if (x->rn_bmask & v[x->rn_off])
133 x = x->rn_r;
134 else
135 x = x->rn_l;
136 }
137 return (x);
138 }
139
140 struct radix_node *
141 rn_search_m(
142 const void *v_arg,
143 struct radix_node *head,
144 const void *m_arg)
145 {
146 struct radix_node *x;
147 const u_char * const v = v_arg;
148 const u_char * const m = m_arg;
149
150 for (x = head; x->rn_b >= 0;) {
151 if ((x->rn_bmask & m[x->rn_off]) &&
152 (x->rn_bmask & v[x->rn_off]))
153 x = x->rn_r;
154 else
155 x = x->rn_l;
156 }
157 return x;
158 }
159
160 int
161 rn_refines(
162 const void *m_arg,
163 const void *n_arg)
164 {
165 const char *m = m_arg;
166 const char *n = n_arg;
167 const char *lim = n + *(const u_char *)n;
168 const char *lim2 = lim;
169 int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
170 int masks_are_equal = 1;
171
172 if (longer > 0)
173 lim -= longer;
174 while (n < lim) {
175 if (*n & ~(*m))
176 return 0;
177 if (*n++ != *m++)
178 masks_are_equal = 0;
179 }
180 while (n < lim2)
181 if (*n++)
182 return 0;
183 if (masks_are_equal && (longer < 0))
184 for (lim2 = m - longer; m < lim2; )
185 if (*m++)
186 return 1;
187 return (!masks_are_equal);
188 }
189
190 struct radix_node *
191 rn_lookup(
192 const void *v_arg,
193 const void *m_arg,
194 struct radix_node_head *head)
195 {
196 struct radix_node *x;
197 const char *netmask = NULL;
198
199 if (m_arg) {
200 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
201 return (0);
202 netmask = x->rn_key;
203 }
204 x = rn_match(v_arg, head);
205 if (x && netmask) {
206 while (x && x->rn_mask != netmask)
207 x = x->rn_dupedkey;
208 }
209 return x;
210 }
211
212 static int
213 rn_satisfies_leaf(
214 const char *trial,
215 struct radix_node *leaf,
216 int skip)
217 {
218 const char *cp = trial;
219 const char *cp2 = leaf->rn_key;
220 const char *cp3 = leaf->rn_mask;
221 const char *cplim;
222 int length = min(*(const u_char *)cp, *(const u_char *)cp2);
223
224 if (cp3 == 0)
225 cp3 = rn_ones;
226 else
227 length = min(length, *(const u_char *)cp3);
228 cplim = cp + length; cp3 += skip; cp2 += skip;
229 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
230 if ((*cp ^ *cp2) & *cp3)
231 return 0;
232 return 1;
233 }
234
235 struct radix_node *
236 rn_match(
237 const void *v_arg,
238 struct radix_node_head *head)
239 {
240 const char * const v = v_arg;
241 struct radix_node *t = head->rnh_treetop;
242 struct radix_node *top = t;
243 struct radix_node *x;
244 struct radix_node *saved_t;
245 const char *cp = v;
246 const char *cp2;
247 const char *cplim;
248 int off = t->rn_off;
249 int vlen = *(const u_char *)cp;
250 int matched_off;
251 int test, b, rn_b;
252
253 /*
254 * Open code rn_search(v, top) to avoid overhead of extra
255 * subroutine call.
256 */
257 for (; t->rn_b >= 0; ) {
258 if (t->rn_bmask & cp[t->rn_off])
259 t = t->rn_r;
260 else
261 t = t->rn_l;
262 }
263 /*
264 * See if we match exactly as a host destination
265 * or at least learn how many bits match, for normal mask finesse.
266 *
267 * It doesn't hurt us to limit how many bytes to check
268 * to the length of the mask, since if it matches we had a genuine
269 * match and the leaf we have is the most specific one anyway;
270 * if it didn't match with a shorter length it would fail
271 * with a long one. This wins big for class B&C netmasks which
272 * are probably the most common case...
273 */
274 if (t->rn_mask)
275 vlen = *(const u_char *)t->rn_mask;
276 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
277 for (; cp < cplim; cp++, cp2++)
278 if (*cp != *cp2)
279 goto on1;
280 /*
281 * This extra grot is in case we are explicitly asked
282 * to look up the default. Ugh!
283 */
284 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
285 t = t->rn_dupedkey;
286 return t;
287 on1:
288 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
289 for (b = 7; (test >>= 1) > 0;)
290 b--;
291 matched_off = cp - v;
292 b += matched_off << 3;
293 rn_b = -1 - b;
294 /*
295 * If there is a host route in a duped-key chain, it will be first.
296 */
297 if ((saved_t = t)->rn_mask == 0)
298 t = t->rn_dupedkey;
299 for (; t; t = t->rn_dupedkey)
300 /*
301 * Even if we don't match exactly as a host,
302 * we may match if the leaf we wound up at is
303 * a route to a net.
304 */
305 if (t->rn_flags & RNF_NORMAL) {
306 if (rn_b <= t->rn_b)
307 return t;
308 } else if (rn_satisfies_leaf(v, t, matched_off))
309 return t;
310 t = saved_t;
311 /* start searching up the tree */
312 do {
313 struct radix_mask *m;
314 t = t->rn_p;
315 m = t->rn_mklist;
316 if (m) {
317 /*
318 * If non-contiguous masks ever become important
319 * we can restore the masking and open coding of
320 * the search and satisfaction test and put the
321 * calculation of "off" back before the "do".
322 */
323 do {
324 if (m->rm_flags & RNF_NORMAL) {
325 if (rn_b <= m->rm_b)
326 return (m->rm_leaf);
327 } else {
328 off = min(t->rn_off, matched_off);
329 x = rn_search_m(v, t, m->rm_mask);
330 while (x && x->rn_mask != m->rm_mask)
331 x = x->rn_dupedkey;
332 if (x && rn_satisfies_leaf(v, x, off))
333 return x;
334 }
335 m = m->rm_mklist;
336 } while (m);
337 }
338 } while (t != top);
339 return 0;
340 }
341
342 static void
343 rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
344 const char *delim)
345 {
346 (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
347 delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
348 rn->rn_l, rn->rn_r);
349 }
350
351 #ifdef RN_DEBUG
352 int rn_debug = 1;
353
354 static void
355 rn_dbg_print(void *arg, const char *fmt, ...)
356 {
357 va_list ap;
358
359 va_start(ap, fmt);
360 vlog(LOG_DEBUG, fmt, ap);
361 va_end(ap);
362 }
363
364 static void
365 rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
366 {
367 struct radix_node *dup, *rn;
368 const char *delim;
369
370 if (printer == NULL)
371 return;
372
373 rn = rn_walkfirst(h->rnh_treetop, printer, arg);
374 for (;;) {
375 /* Process leaves */
376 delim = "";
377 for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
378 if ((dup->rn_flags & RNF_ROOT) != 0)
379 continue;
380 rn_nodeprint(dup, printer, arg, delim);
381 delim = ", ";
382 }
383 rn = rn_walknext(rn, printer, arg);
384 if (rn->rn_flags & RNF_ROOT)
385 return;
386 }
387 /* NOTREACHED */
388 }
389
390 #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
391 #endif /* RN_DEBUG */
392
393 struct radix_node *
394 rn_newpair(
395 const void *v,
396 int b,
397 struct radix_node nodes[2])
398 {
399 struct radix_node *tt = nodes;
400 struct radix_node *t = tt + 1;
401 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
402 t->rn_l = tt; t->rn_off = b >> 3;
403 tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
404 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
405 return t;
406 }
407
408 struct radix_node *
409 rn_insert(
410 const void *v_arg,
411 struct radix_node_head *head,
412 int *dupentry,
413 struct radix_node nodes[2])
414 {
415 struct radix_node *top = head->rnh_treetop;
416 struct radix_node *t = rn_search(v_arg, top);
417 struct radix_node *tt;
418 const char *v = v_arg;
419 int head_off = top->rn_off;
420 int vlen = *((const u_char *)v);
421 const char *cp = v + head_off;
422 int b;
423 /*
424 * Find first bit at which v and t->rn_key differ
425 */
426 {
427 const char *cp2 = t->rn_key + head_off;
428 const char *cplim = v + vlen;
429 int cmp_res;
430
431 while (cp < cplim)
432 if (*cp2++ != *cp++)
433 goto on1;
434 *dupentry = 1;
435 return t;
436 on1:
437 *dupentry = 0;
438 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
439 for (b = (cp - v) << 3; cmp_res; b--)
440 cmp_res >>= 1;
441 }
442 {
443 struct radix_node *p, *x = top;
444 cp = v;
445 do {
446 p = x;
447 if (cp[x->rn_off] & x->rn_bmask)
448 x = x->rn_r;
449 else x = x->rn_l;
450 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
451 #ifdef RN_DEBUG
452 if (rn_debug)
453 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
454 #endif
455 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
456 if ((cp[p->rn_off] & p->rn_bmask) == 0)
457 p->rn_l = t;
458 else
459 p->rn_r = t;
460 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
461 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
462 t->rn_r = x;
463 } else {
464 t->rn_r = tt; t->rn_l = x;
465 }
466 #ifdef RN_DEBUG
467 if (rn_debug) {
468 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
469 traverse(head, p);
470 }
471 #endif /* RN_DEBUG */
472 }
473 return (tt);
474 }
475
476 struct radix_node *
477 rn_addmask(
478 const void *n_arg,
479 int search,
480 int skip)
481 {
482 const char *netmask = n_arg;
483 const char *cp;
484 const char *cplim;
485 struct radix_node *x;
486 struct radix_node *saved_x;
487 int b = 0, mlen, j;
488 int maskduplicated, m0, isnormal;
489 static int last_zeroed = 0;
490
491 if ((mlen = *(const u_char *)netmask) > max_keylen)
492 mlen = max_keylen;
493 if (skip == 0)
494 skip = 1;
495 if (mlen <= skip)
496 return (mask_rnhead->rnh_nodes);
497 if (skip > 1)
498 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
499 if ((m0 = mlen) > skip)
500 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
501 /*
502 * Trim trailing zeroes.
503 */
504 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
505 cp--;
506 mlen = cp - addmask_key;
507 if (mlen <= skip) {
508 if (m0 >= last_zeroed)
509 last_zeroed = mlen;
510 return (mask_rnhead->rnh_nodes);
511 }
512 if (m0 < last_zeroed)
513 Bzero(addmask_key + m0, last_zeroed - m0);
514 *addmask_key = last_zeroed = mlen;
515 x = rn_search(addmask_key, rn_masktop);
516 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
517 x = 0;
518 if (x || search)
519 return (x);
520 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
521 if ((saved_x = x) == 0)
522 return (0);
523 Bzero(x, max_keylen + 2 * sizeof (*x));
524 cp = netmask = (void *)(x + 2);
525 Bcopy(addmask_key, (void *)(x + 2), mlen);
526 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
527 if (maskduplicated) {
528 log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
529 Free(saved_x);
530 return (x);
531 }
532 /*
533 * Calculate index of mask, and check for normalcy.
534 */
535 cplim = netmask + mlen; isnormal = 1;
536 for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
537 cp++;
538 if (cp != cplim) {
539 for (j = 0x80; (j & *cp) != 0; j >>= 1)
540 b++;
541 if (*cp != normal_chars[b] || cp != (cplim - 1))
542 isnormal = 0;
543 }
544 b += (cp - netmask) << 3;
545 x->rn_b = -1 - b;
546 if (isnormal)
547 x->rn_flags |= RNF_NORMAL;
548 return (x);
549 }
550
551 static int /* XXX: arbitrary ordering for non-contiguous masks */
552 rn_lexobetter(
553 const void *m_arg,
554 const void *n_arg)
555 {
556 const u_char *mp = m_arg;
557 const u_char *np = n_arg;
558 const u_char *lim;
559
560 if (*mp > *np)
561 return 1; /* not really, but need to check longer one first */
562 if (*mp == *np)
563 for (lim = mp + *mp; mp < lim;)
564 if (*mp++ > *np++)
565 return 1;
566 return 0;
567 }
568
569 static struct radix_mask *
570 rn_new_radix_mask(
571 struct radix_node *tt,
572 struct radix_mask *next)
573 {
574 struct radix_mask *m;
575
576 MKGet(m);
577 if (m == 0) {
578 log(LOG_ERR, "Mask for route not entered\n");
579 return (0);
580 }
581 Bzero(m, sizeof *m);
582 m->rm_b = tt->rn_b;
583 m->rm_flags = tt->rn_flags;
584 if (tt->rn_flags & RNF_NORMAL)
585 m->rm_leaf = tt;
586 else
587 m->rm_mask = tt->rn_mask;
588 m->rm_mklist = next;
589 tt->rn_mklist = m;
590 return m;
591 }
592
593 struct radix_node *
594 rn_addroute(
595 const void *v_arg,
596 const void *n_arg,
597 struct radix_node_head *head,
598 struct radix_node treenodes[2])
599 {
600 const char *v = v_arg, *netmask = n_arg;
601 struct radix_node *t, *x = NULL, *tt;
602 struct radix_node *saved_tt, *top = head->rnh_treetop;
603 short b = 0, b_leaf = 0;
604 int keyduplicated;
605 const char *mmask;
606 struct radix_mask *m, **mp;
607
608 /*
609 * In dealing with non-contiguous masks, there may be
610 * many different routes which have the same mask.
611 * We will find it useful to have a unique pointer to
612 * the mask to speed avoiding duplicate references at
613 * nodes and possibly save time in calculating indices.
614 */
615 if (netmask) {
616 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
617 return (0);
618 b_leaf = x->rn_b;
619 b = -1 - x->rn_b;
620 netmask = x->rn_key;
621 }
622 /*
623 * Deal with duplicated keys: attach node to previous instance
624 */
625 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
626 if (keyduplicated) {
627 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
628 if (tt->rn_mask == netmask)
629 return (0);
630 if (netmask == 0 ||
631 (tt->rn_mask &&
632 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
633 rn_refines(netmask, tt->rn_mask) ||
634 rn_lexobetter(netmask, tt->rn_mask))))
635 break;
636 }
637 /*
638 * If the mask is not duplicated, we wouldn't
639 * find it among possible duplicate key entries
640 * anyway, so the above test doesn't hurt.
641 *
642 * We sort the masks for a duplicated key the same way as
643 * in a masklist -- most specific to least specific.
644 * This may require the unfortunate nuisance of relocating
645 * the head of the list.
646 *
647 * We also reverse, or doubly link the list through the
648 * parent pointer.
649 */
650 if (tt == saved_tt) {
651 struct radix_node *xx = x;
652 /* link in at head of list */
653 (tt = treenodes)->rn_dupedkey = t;
654 tt->rn_flags = t->rn_flags;
655 tt->rn_p = x = t->rn_p;
656 t->rn_p = tt;
657 if (x->rn_l == t)
658 x->rn_l = tt;
659 else
660 x->rn_r = tt;
661 saved_tt = tt;
662 x = xx;
663 } else {
664 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
665 t->rn_dupedkey = tt;
666 tt->rn_p = t;
667 if (tt->rn_dupedkey)
668 tt->rn_dupedkey->rn_p = tt;
669 }
670 tt->rn_key = __UNCONST(v); /*XXXUNCONST*/
671 tt->rn_b = -1;
672 tt->rn_flags = RNF_ACTIVE;
673 }
674 /*
675 * Put mask in tree.
676 */
677 if (netmask) {
678 tt->rn_mask = netmask;
679 tt->rn_b = x->rn_b;
680 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
681 }
682 t = saved_tt->rn_p;
683 if (keyduplicated)
684 goto on2;
685 b_leaf = -1 - t->rn_b;
686 if (t->rn_r == saved_tt)
687 x = t->rn_l;
688 else
689 x = t->rn_r;
690 /* Promote general routes from below */
691 if (x->rn_b < 0) {
692 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
693 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
694 *mp = m = rn_new_radix_mask(x, 0);
695 if (m)
696 mp = &m->rm_mklist;
697 }
698 } else if (x->rn_mklist) {
699 /*
700 * Skip over masks whose index is > that of new node
701 */
702 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
703 if (m->rm_b >= b_leaf)
704 break;
705 t->rn_mklist = m;
706 *mp = 0;
707 }
708 on2:
709 /* Add new route to highest possible ancestor's list */
710 if ((netmask == 0) || (b > t->rn_b ))
711 return tt; /* can't lift at all */
712 b_leaf = tt->rn_b;
713 do {
714 x = t;
715 t = t->rn_p;
716 } while (b <= t->rn_b && x != top);
717 /*
718 * Search through routes associated with node to
719 * insert new route according to index.
720 * Need same criteria as when sorting dupedkeys to avoid
721 * double loop on deletion.
722 */
723 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
724 if (m->rm_b < b_leaf)
725 continue;
726 if (m->rm_b > b_leaf)
727 break;
728 if (m->rm_flags & RNF_NORMAL) {
729 mmask = m->rm_leaf->rn_mask;
730 if (tt->rn_flags & RNF_NORMAL) {
731 log(LOG_ERR, "Non-unique normal route,"
732 " mask not entered\n");
733 return tt;
734 }
735 } else
736 mmask = m->rm_mask;
737 if (mmask == netmask) {
738 m->rm_refs++;
739 tt->rn_mklist = m;
740 return tt;
741 }
742 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
743 break;
744 }
745 *mp = rn_new_radix_mask(tt, *mp);
746 return tt;
747 }
748
749 struct radix_node *
750 rn_delete1(
751 const void *v_arg,
752 const void *netmask_arg,
753 struct radix_node_head *head,
754 struct radix_node *rn)
755 {
756 struct radix_node *t, *p, *x, *tt;
757 struct radix_mask *m, *saved_m, **mp;
758 struct radix_node *dupedkey, *saved_tt, *top;
759 const char *v, *netmask;
760 int b, head_off, vlen;
761
762 v = v_arg;
763 netmask = netmask_arg;
764 x = head->rnh_treetop;
765 tt = rn_search(v, x);
766 head_off = x->rn_off;
767 vlen = *(const u_char *)v;
768 saved_tt = tt;
769 top = x;
770 if (tt == 0 ||
771 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
772 return (0);
773 /*
774 * Delete our route from mask lists.
775 */
776 if (netmask) {
777 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
778 return (0);
779 netmask = x->rn_key;
780 while (tt->rn_mask != netmask)
781 if ((tt = tt->rn_dupedkey) == 0)
782 return (0);
783 }
784 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
785 goto on1;
786 if (tt->rn_flags & RNF_NORMAL) {
787 if (m->rm_leaf != tt || m->rm_refs > 0) {
788 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
789 return 0; /* dangling ref could cause disaster */
790 }
791 } else {
792 if (m->rm_mask != tt->rn_mask) {
793 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
794 goto on1;
795 }
796 if (--m->rm_refs >= 0)
797 goto on1;
798 }
799 b = -1 - tt->rn_b;
800 t = saved_tt->rn_p;
801 if (b > t->rn_b)
802 goto on1; /* Wasn't lifted at all */
803 do {
804 x = t;
805 t = t->rn_p;
806 } while (b <= t->rn_b && x != top);
807 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
808 if (m == saved_m) {
809 *mp = m->rm_mklist;
810 MKFree(m);
811 break;
812 }
813 if (m == 0) {
814 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
815 if (tt->rn_flags & RNF_NORMAL)
816 return (0); /* Dangling ref to us */
817 }
818 on1:
819 /*
820 * Eliminate us from tree
821 */
822 if (tt->rn_flags & RNF_ROOT)
823 return (0);
824 #ifdef RN_DEBUG
825 if (rn_debug)
826 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
827 #endif
828 t = tt->rn_p;
829 dupedkey = saved_tt->rn_dupedkey;
830 if (dupedkey) {
831 /*
832 * Here, tt is the deletion target, and
833 * saved_tt is the head of the dupedkey chain.
834 */
835 if (tt == saved_tt) {
836 x = dupedkey;
837 x->rn_p = t;
838 if (t->rn_l == tt)
839 t->rn_l = x;
840 else
841 t->rn_r = x;
842 } else {
843 /* find node in front of tt on the chain */
844 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
845 p = p->rn_dupedkey;
846 if (p) {
847 p->rn_dupedkey = tt->rn_dupedkey;
848 if (tt->rn_dupedkey)
849 tt->rn_dupedkey->rn_p = p;
850 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
851 }
852 t = tt + 1;
853 if (t->rn_flags & RNF_ACTIVE) {
854 *++x = *t;
855 p = t->rn_p;
856 if (p->rn_l == t)
857 p->rn_l = x;
858 else
859 p->rn_r = x;
860 x->rn_l->rn_p = x;
861 x->rn_r->rn_p = x;
862 }
863 goto out;
864 }
865 if (t->rn_l == tt)
866 x = t->rn_r;
867 else
868 x = t->rn_l;
869 p = t->rn_p;
870 if (p->rn_r == t)
871 p->rn_r = x;
872 else
873 p->rn_l = x;
874 x->rn_p = p;
875 /*
876 * Demote routes attached to us.
877 */
878 if (t->rn_mklist) {
879 if (x->rn_b >= 0) {
880 for (mp = &x->rn_mklist; (m = *mp);)
881 mp = &m->rm_mklist;
882 *mp = t->rn_mklist;
883 } else {
884 /* If there are any key,mask pairs in a sibling
885 duped-key chain, some subset will appear sorted
886 in the same order attached to our mklist */
887 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
888 if (m == x->rn_mklist) {
889 struct radix_mask *mm = m->rm_mklist;
890 x->rn_mklist = 0;
891 if (--(m->rm_refs) < 0)
892 MKFree(m);
893 m = mm;
894 }
895 if (m)
896 log(LOG_ERR, "%s %p at %p\n",
897 "rn_delete: Orphaned Mask", m, x);
898 }
899 }
900 /*
901 * We may be holding an active internal node in the tree.
902 */
903 x = tt + 1;
904 if (t != x) {
905 *t = *x;
906 t->rn_l->rn_p = t;
907 t->rn_r->rn_p = t;
908 p = x->rn_p;
909 if (p->rn_l == x)
910 p->rn_l = t;
911 else
912 p->rn_r = t;
913 }
914 out:
915 #ifdef RN_DEBUG
916 if (rn_debug) {
917 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
918 traverse(head, tt);
919 }
920 #endif /* RN_DEBUG */
921 tt->rn_flags &= ~RNF_ACTIVE;
922 tt[1].rn_flags &= ~RNF_ACTIVE;
923 return (tt);
924 }
925
926 struct radix_node *
927 rn_delete(
928 const void *v_arg,
929 const void *netmask_arg,
930 struct radix_node_head *head)
931 {
932 return rn_delete1(v_arg, netmask_arg, head, NULL);
933 }
934
935 static struct radix_node *
936 rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
937 {
938 /* If at right child go back up, otherwise, go right */
939 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
940 if (printer != NULL)
941 (*printer)(arg, SUBTREE_CLOSE);
942 rn = rn->rn_p;
943 }
944 if (printer)
945 rn_nodeprint(rn->rn_p, printer, arg, "");
946 /* Find the next *leaf* since next node might vanish, too */
947 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
948 if (printer != NULL)
949 (*printer)(arg, SUBTREE_OPEN);
950 rn = rn->rn_l;
951 }
952 return rn;
953 }
954
955 static struct radix_node *
956 rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
957 {
958 /* First time through node, go left */
959 while (rn->rn_b >= 0) {
960 if (printer != NULL)
961 (*printer)(arg, SUBTREE_OPEN);
962 rn = rn->rn_l;
963 }
964 return rn;
965 }
966
967 int
968 rn_walktree(
969 struct radix_node_head *h,
970 int (*f)(struct radix_node *, void *),
971 void *w)
972 {
973 int error;
974 struct radix_node *base, *next, *rn;
975 /*
976 * This gets complicated because we may delete the node
977 * while applying the function f to it, so we need to calculate
978 * the successor node in advance.
979 */
980 rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
981 for (;;) {
982 base = rn;
983 next = rn_walknext(rn, NULL, NULL);
984 /* Process leaves */
985 while ((rn = base) != NULL) {
986 base = rn->rn_dupedkey;
987 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
988 return (error);
989 }
990 rn = next;
991 if (rn->rn_flags & RNF_ROOT)
992 return (0);
993 }
994 /* NOTREACHED */
995 }
996
997 int
998 rn_inithead(head, off)
999 void **head;
1000 int off;
1001 {
1002 struct radix_node_head *rnh;
1003
1004 if (*head)
1005 return (1);
1006 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1007 if (rnh == 0)
1008 return (0);
1009 *head = rnh;
1010 return rn_inithead0(rnh, off);
1011 }
1012
1013 int
1014 rn_inithead0(rnh, off)
1015 struct radix_node_head *rnh;
1016 int off;
1017 {
1018 struct radix_node *t;
1019 struct radix_node *tt;
1020 struct radix_node *ttt;
1021
1022 Bzero(rnh, sizeof (*rnh));
1023 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1024 ttt = rnh->rnh_nodes + 2;
1025 t->rn_r = ttt;
1026 t->rn_p = t;
1027 tt = t->rn_l;
1028 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1029 tt->rn_b = -1 - off;
1030 *ttt = *tt;
1031 ttt->rn_key = rn_ones;
1032 rnh->rnh_addaddr = rn_addroute;
1033 rnh->rnh_deladdr = rn_delete;
1034 rnh->rnh_matchaddr = rn_match;
1035 rnh->rnh_lookup = rn_lookup;
1036 rnh->rnh_walktree = rn_walktree;
1037 rnh->rnh_treetop = t;
1038 return (1);
1039 }
1040
1041 void
1042 rn_init()
1043 {
1044 char *cp, *cplim;
1045 #ifdef _KERNEL
1046 static int initialized;
1047 __link_set_decl(domains, struct domain);
1048 struct domain *const *dpp;
1049
1050 if (initialized)
1051 return;
1052 initialized = 1;
1053
1054 __link_set_foreach(dpp, domains) {
1055 if ((*dpp)->dom_maxrtkey > max_keylen)
1056 max_keylen = (*dpp)->dom_maxrtkey;
1057 }
1058 #ifdef INET
1059 encap_setkeylen();
1060 #endif
1061 #endif
1062 if (max_keylen == 0) {
1063 log(LOG_ERR,
1064 "rn_init: radix functions require max_keylen be set\n");
1065 return;
1066 }
1067 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1068 if (rn_zeros == NULL)
1069 panic("rn_init");
1070 Bzero(rn_zeros, 3 * max_keylen);
1071 rn_ones = cp = rn_zeros + max_keylen;
1072 addmask_key = cplim = rn_ones + max_keylen;
1073 while (cp < cplim)
1074 *cp++ = -1;
1075 if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1076 panic("rn_init 2");
1077 }
1078