radix.c revision 1.39.6.1 1 /* $NetBSD: radix.c,v 1.39.6.1 2009/01/19 13:20:12 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)radix.c 8.6 (Berkeley) 10/17/95
32 */
33
34 /*
35 * Routines to build and maintain radix trees for routing lookups.
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.39.6.1 2009/01/19 13:20:12 skrll Exp $");
40
41 #ifndef _NET_RADIX_H_
42 #include <sys/param.h>
43 #ifdef _KERNEL
44 #include "opt_inet.h"
45
46 #include <sys/systm.h>
47 #include <sys/malloc.h>
48 #define M_DONTWAIT M_NOWAIT
49 #include <sys/domain.h>
50 #else
51 #include <stdlib.h>
52 #endif
53 #include <machine/stdarg.h>
54 #include <sys/syslog.h>
55 #include <net/radix.h>
56 #endif
57
58 typedef void (*rn_printer_t)(void *, const char *fmt, ...);
59
60 int max_keylen;
61 struct radix_mask *rn_mkfreelist;
62 struct radix_node_head *mask_rnhead;
63 static char *addmask_key;
64 static const char normal_chars[] =
65 {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
66 static char *rn_zeros, *rn_ones;
67
68 #define rn_masktop (mask_rnhead->rnh_treetop)
69
70 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
71 static int rn_lexobetter(const void *, const void *);
72 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
73 struct radix_mask *);
74 static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
75 void *);
76 static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
77 void *);
78 static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
79 const char *);
80
81 #define SUBTREE_OPEN "[ "
82 #define SUBTREE_CLOSE " ]"
83
84 #ifdef RN_DEBUG
85 static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
86 #endif /* RN_DEBUG */
87
88 /*
89 * The data structure for the keys is a radix tree with one way
90 * branching removed. The index rn_b at an internal node n represents a bit
91 * position to be tested. The tree is arranged so that all descendants
92 * of a node n have keys whose bits all agree up to position rn_b - 1.
93 * (We say the index of n is rn_b.)
94 *
95 * There is at least one descendant which has a one bit at position rn_b,
96 * and at least one with a zero there.
97 *
98 * A route is determined by a pair of key and mask. We require that the
99 * bit-wise logical and of the key and mask to be the key.
100 * We define the index of a route to associated with the mask to be
101 * the first bit number in the mask where 0 occurs (with bit number 0
102 * representing the highest order bit).
103 *
104 * We say a mask is normal if every bit is 0, past the index of the mask.
105 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
106 * and m is a normal mask, then the route applies to every descendant of n.
107 * If the index(m) < rn_b, this implies the trailing last few bits of k
108 * before bit b are all 0, (and hence consequently true of every descendant
109 * of n), so the route applies to all descendants of the node as well.
110 *
111 * Similar logic shows that a non-normal mask m such that
112 * index(m) <= index(n) could potentially apply to many children of n.
113 * Thus, for each non-host route, we attach its mask to a list at an internal
114 * node as high in the tree as we can go.
115 *
116 * The present version of the code makes use of normal routes in short-
117 * circuiting an explicit mask and compare operation when testing whether
118 * a key satisfies a normal route, and also in remembering the unique leaf
119 * that governs a subtree.
120 */
121
122 struct radix_node *
123 rn_search(
124 const void *v_arg,
125 struct radix_node *head)
126 {
127 const u_char * const v = v_arg;
128 struct radix_node *x;
129
130 for (x = head; x->rn_b >= 0;) {
131 if (x->rn_bmask & v[x->rn_off])
132 x = x->rn_r;
133 else
134 x = x->rn_l;
135 }
136 return x;
137 }
138
139 struct radix_node *
140 rn_search_m(
141 const void *v_arg,
142 struct radix_node *head,
143 const void *m_arg)
144 {
145 struct radix_node *x;
146 const u_char * const v = v_arg;
147 const u_char * const m = m_arg;
148
149 for (x = head; x->rn_b >= 0;) {
150 if ((x->rn_bmask & m[x->rn_off]) &&
151 (x->rn_bmask & v[x->rn_off]))
152 x = x->rn_r;
153 else
154 x = x->rn_l;
155 }
156 return x;
157 }
158
159 int
160 rn_refines(
161 const void *m_arg,
162 const void *n_arg)
163 {
164 const char *m = m_arg;
165 const char *n = n_arg;
166 const char *lim = n + *(const u_char *)n;
167 const char *lim2 = lim;
168 int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
169 int masks_are_equal = 1;
170
171 if (longer > 0)
172 lim -= longer;
173 while (n < lim) {
174 if (*n & ~(*m))
175 return 0;
176 if (*n++ != *m++)
177 masks_are_equal = 0;
178 }
179 while (n < lim2)
180 if (*n++)
181 return 0;
182 if (masks_are_equal && (longer < 0))
183 for (lim2 = m - longer; m < lim2; )
184 if (*m++)
185 return 1;
186 return !masks_are_equal;
187 }
188
189 struct radix_node *
190 rn_lookup(
191 const void *v_arg,
192 const void *m_arg,
193 struct radix_node_head *head)
194 {
195 struct radix_node *x;
196 const char *netmask = NULL;
197
198 if (m_arg) {
199 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
200 return NULL;
201 netmask = x->rn_key;
202 }
203 x = rn_match(v_arg, head);
204 if (x != NULL && netmask != NULL) {
205 while (x != NULL && x->rn_mask != netmask)
206 x = x->rn_dupedkey;
207 }
208 return x;
209 }
210
211 static int
212 rn_satisfies_leaf(
213 const char *trial,
214 struct radix_node *leaf,
215 int skip)
216 {
217 const char *cp = trial;
218 const char *cp2 = leaf->rn_key;
219 const char *cp3 = leaf->rn_mask;
220 const char *cplim;
221 int length = min(*(const u_char *)cp, *(const u_char *)cp2);
222
223 if (cp3 == 0)
224 cp3 = rn_ones;
225 else
226 length = min(length, *(const u_char *)cp3);
227 cplim = cp + length; cp3 += skip; cp2 += skip;
228 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
229 if ((*cp ^ *cp2) & *cp3)
230 return 0;
231 return 1;
232 }
233
234 struct radix_node *
235 rn_match(
236 const void *v_arg,
237 struct radix_node_head *head)
238 {
239 const char * const v = v_arg;
240 struct radix_node *t = head->rnh_treetop;
241 struct radix_node *top = t;
242 struct radix_node *x;
243 struct radix_node *saved_t;
244 const char *cp = v;
245 const char *cp2;
246 const char *cplim;
247 int off = t->rn_off;
248 int vlen = *(const u_char *)cp;
249 int matched_off;
250 int test, b, rn_b;
251
252 /*
253 * Open code rn_search(v, top) to avoid overhead of extra
254 * subroutine call.
255 */
256 for (; t->rn_b >= 0; ) {
257 if (t->rn_bmask & cp[t->rn_off])
258 t = t->rn_r;
259 else
260 t = t->rn_l;
261 }
262 /*
263 * See if we match exactly as a host destination
264 * or at least learn how many bits match, for normal mask finesse.
265 *
266 * It doesn't hurt us to limit how many bytes to check
267 * to the length of the mask, since if it matches we had a genuine
268 * match and the leaf we have is the most specific one anyway;
269 * if it didn't match with a shorter length it would fail
270 * with a long one. This wins big for class B&C netmasks which
271 * are probably the most common case...
272 */
273 if (t->rn_mask)
274 vlen = *(const u_char *)t->rn_mask;
275 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
276 for (; cp < cplim; cp++, cp2++)
277 if (*cp != *cp2)
278 goto on1;
279 /*
280 * This extra grot is in case we are explicitly asked
281 * to look up the default. Ugh!
282 */
283 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
284 t = t->rn_dupedkey;
285 return t;
286 on1:
287 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
288 for (b = 7; (test >>= 1) > 0;)
289 b--;
290 matched_off = cp - v;
291 b += matched_off << 3;
292 rn_b = -1 - b;
293 /*
294 * If there is a host route in a duped-key chain, it will be first.
295 */
296 if ((saved_t = t)->rn_mask == 0)
297 t = t->rn_dupedkey;
298 for (; t; t = t->rn_dupedkey)
299 /*
300 * Even if we don't match exactly as a host,
301 * we may match if the leaf we wound up at is
302 * a route to a net.
303 */
304 if (t->rn_flags & RNF_NORMAL) {
305 if (rn_b <= t->rn_b)
306 return t;
307 } else if (rn_satisfies_leaf(v, t, matched_off))
308 return t;
309 t = saved_t;
310 /* start searching up the tree */
311 do {
312 struct radix_mask *m;
313 t = t->rn_p;
314 m = t->rn_mklist;
315 if (m) {
316 /*
317 * If non-contiguous masks ever become important
318 * we can restore the masking and open coding of
319 * the search and satisfaction test and put the
320 * calculation of "off" back before the "do".
321 */
322 do {
323 if (m->rm_flags & RNF_NORMAL) {
324 if (rn_b <= m->rm_b)
325 return m->rm_leaf;
326 } else {
327 off = min(t->rn_off, matched_off);
328 x = rn_search_m(v, t, m->rm_mask);
329 while (x && x->rn_mask != m->rm_mask)
330 x = x->rn_dupedkey;
331 if (x && rn_satisfies_leaf(v, x, off))
332 return x;
333 }
334 m = m->rm_mklist;
335 } while (m);
336 }
337 } while (t != top);
338 return NULL;
339 }
340
341 static void
342 rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
343 const char *delim)
344 {
345 (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
346 delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
347 rn->rn_l, rn->rn_r);
348 }
349
350 #ifdef RN_DEBUG
351 int rn_debug = 1;
352
353 static void
354 rn_dbg_print(void *arg, const char *fmt, ...)
355 {
356 va_list ap;
357
358 va_start(ap, fmt);
359 vlog(LOG_DEBUG, fmt, ap);
360 va_end(ap);
361 }
362
363 static void
364 rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
365 {
366 struct radix_node *dup, *rn;
367 const char *delim;
368
369 if (printer == NULL)
370 return;
371
372 rn = rn_walkfirst(h->rnh_treetop, printer, arg);
373 for (;;) {
374 /* Process leaves */
375 delim = "";
376 for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
377 if ((dup->rn_flags & RNF_ROOT) != 0)
378 continue;
379 rn_nodeprint(dup, printer, arg, delim);
380 delim = ", ";
381 }
382 rn = rn_walknext(rn, printer, arg);
383 if (rn->rn_flags & RNF_ROOT)
384 return;
385 }
386 /* NOTREACHED */
387 }
388
389 #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
390 #endif /* RN_DEBUG */
391
392 struct radix_node *
393 rn_newpair(
394 const void *v,
395 int b,
396 struct radix_node nodes[2])
397 {
398 struct radix_node *tt = nodes;
399 struct radix_node *t = tt + 1;
400 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
401 t->rn_l = tt; t->rn_off = b >> 3;
402 tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
403 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
404 return t;
405 }
406
407 struct radix_node *
408 rn_insert(
409 const void *v_arg,
410 struct radix_node_head *head,
411 int *dupentry,
412 struct radix_node nodes[2])
413 {
414 struct radix_node *top = head->rnh_treetop;
415 struct radix_node *t = rn_search(v_arg, top);
416 struct radix_node *tt;
417 const char *v = v_arg;
418 int head_off = top->rn_off;
419 int vlen = *((const u_char *)v);
420 const char *cp = v + head_off;
421 int b;
422 /*
423 * Find first bit at which v and t->rn_key differ
424 */
425 {
426 const char *cp2 = t->rn_key + head_off;
427 const char *cplim = v + vlen;
428 int cmp_res;
429
430 while (cp < cplim)
431 if (*cp2++ != *cp++)
432 goto on1;
433 *dupentry = 1;
434 return t;
435 on1:
436 *dupentry = 0;
437 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
438 for (b = (cp - v) << 3; cmp_res; b--)
439 cmp_res >>= 1;
440 }
441 {
442 struct radix_node *p, *x = top;
443 cp = v;
444 do {
445 p = x;
446 if (cp[x->rn_off] & x->rn_bmask)
447 x = x->rn_r;
448 else x = x->rn_l;
449 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
450 #ifdef RN_DEBUG
451 if (rn_debug)
452 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
453 #endif
454 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
455 if ((cp[p->rn_off] & p->rn_bmask) == 0)
456 p->rn_l = t;
457 else
458 p->rn_r = t;
459 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
460 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
461 t->rn_r = x;
462 } else {
463 t->rn_r = tt; t->rn_l = x;
464 }
465 #ifdef RN_DEBUG
466 if (rn_debug) {
467 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
468 traverse(head, p);
469 }
470 #endif /* RN_DEBUG */
471 }
472 return tt;
473 }
474
475 struct radix_node *
476 rn_addmask(
477 const void *n_arg,
478 int search,
479 int skip)
480 {
481 const char *netmask = n_arg;
482 const char *cp;
483 const char *cplim;
484 struct radix_node *x;
485 struct radix_node *saved_x;
486 int b = 0, mlen, j;
487 int maskduplicated, m0, isnormal;
488 static int last_zeroed = 0;
489
490 if ((mlen = *(const u_char *)netmask) > max_keylen)
491 mlen = max_keylen;
492 if (skip == 0)
493 skip = 1;
494 if (mlen <= skip)
495 return mask_rnhead->rnh_nodes;
496 if (skip > 1)
497 memmove(addmask_key + 1, rn_ones + 1, skip - 1);
498 if ((m0 = mlen) > skip)
499 memmove(addmask_key + skip, netmask + skip, mlen - skip);
500 /*
501 * Trim trailing zeroes.
502 */
503 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
504 cp--;
505 mlen = cp - addmask_key;
506 if (mlen <= skip) {
507 if (m0 >= last_zeroed)
508 last_zeroed = mlen;
509 return mask_rnhead->rnh_nodes;
510 }
511 if (m0 < last_zeroed)
512 memset(addmask_key + m0, 0, last_zeroed - m0);
513 *addmask_key = last_zeroed = mlen;
514 x = rn_search(addmask_key, rn_masktop);
515 if (memcmp(addmask_key, x->rn_key, mlen) != 0)
516 x = 0;
517 if (x || search)
518 return x;
519 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
520 if ((saved_x = x) == NULL)
521 return NULL;
522 memset(x, 0, max_keylen + 2 * sizeof (*x));
523 cp = netmask = (void *)(x + 2);
524 memmove(x + 2, addmask_key, mlen);
525 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
526 if (maskduplicated) {
527 log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
528 Free(saved_x);
529 return x;
530 }
531 /*
532 * Calculate index of mask, and check for normalcy.
533 */
534 cplim = netmask + mlen; isnormal = 1;
535 for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
536 cp++;
537 if (cp != cplim) {
538 for (j = 0x80; (j & *cp) != 0; j >>= 1)
539 b++;
540 if (*cp != normal_chars[b] || cp != (cplim - 1))
541 isnormal = 0;
542 }
543 b += (cp - netmask) << 3;
544 x->rn_b = -1 - b;
545 if (isnormal)
546 x->rn_flags |= RNF_NORMAL;
547 return x;
548 }
549
550 static int /* XXX: arbitrary ordering for non-contiguous masks */
551 rn_lexobetter(
552 const void *m_arg,
553 const void *n_arg)
554 {
555 const u_char *mp = m_arg;
556 const u_char *np = n_arg;
557 const u_char *lim;
558
559 if (*mp > *np)
560 return 1; /* not really, but need to check longer one first */
561 if (*mp == *np)
562 for (lim = mp + *mp; mp < lim;)
563 if (*mp++ > *np++)
564 return 1;
565 return 0;
566 }
567
568 static struct radix_mask *
569 rn_new_radix_mask(
570 struct radix_node *tt,
571 struct radix_mask *next)
572 {
573 struct radix_mask *m;
574
575 MKGet(m);
576 if (m == NULL) {
577 log(LOG_ERR, "Mask for route not entered\n");
578 return NULL;
579 }
580 memset(m, 0, sizeof(*m));
581 m->rm_b = tt->rn_b;
582 m->rm_flags = tt->rn_flags;
583 if (tt->rn_flags & RNF_NORMAL)
584 m->rm_leaf = tt;
585 else
586 m->rm_mask = tt->rn_mask;
587 m->rm_mklist = next;
588 tt->rn_mklist = m;
589 return m;
590 }
591
592 struct radix_node *
593 rn_addroute(
594 const void *v_arg,
595 const void *n_arg,
596 struct radix_node_head *head,
597 struct radix_node treenodes[2])
598 {
599 const char *v = v_arg, *netmask = n_arg;
600 struct radix_node *t, *x = NULL, *tt;
601 struct radix_node *saved_tt, *top = head->rnh_treetop;
602 short b = 0, b_leaf = 0;
603 int keyduplicated;
604 const char *mmask;
605 struct radix_mask *m, **mp;
606
607 /*
608 * In dealing with non-contiguous masks, there may be
609 * many different routes which have the same mask.
610 * We will find it useful to have a unique pointer to
611 * the mask to speed avoiding duplicate references at
612 * nodes and possibly save time in calculating indices.
613 */
614 if (netmask != NULL) {
615 if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
616 return NULL;
617 b_leaf = x->rn_b;
618 b = -1 - x->rn_b;
619 netmask = x->rn_key;
620 }
621 /*
622 * Deal with duplicated keys: attach node to previous instance
623 */
624 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
625 if (keyduplicated) {
626 for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
627 if (tt->rn_mask == netmask)
628 return NULL;
629 if (netmask == NULL ||
630 (tt->rn_mask != NULL &&
631 (b_leaf < tt->rn_b || /* index(netmask) > node */
632 rn_refines(netmask, tt->rn_mask) ||
633 rn_lexobetter(netmask, tt->rn_mask))))
634 break;
635 }
636 /*
637 * If the mask is not duplicated, we wouldn't
638 * find it among possible duplicate key entries
639 * anyway, so the above test doesn't hurt.
640 *
641 * We sort the masks for a duplicated key the same way as
642 * in a masklist -- most specific to least specific.
643 * This may require the unfortunate nuisance of relocating
644 * the head of the list.
645 *
646 * We also reverse, or doubly link the list through the
647 * parent pointer.
648 */
649 if (tt == saved_tt) {
650 struct radix_node *xx = x;
651 /* link in at head of list */
652 (tt = treenodes)->rn_dupedkey = t;
653 tt->rn_flags = t->rn_flags;
654 tt->rn_p = x = t->rn_p;
655 t->rn_p = tt;
656 if (x->rn_l == t)
657 x->rn_l = tt;
658 else
659 x->rn_r = tt;
660 saved_tt = tt;
661 x = xx;
662 } else {
663 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
664 t->rn_dupedkey = tt;
665 tt->rn_p = t;
666 if (tt->rn_dupedkey)
667 tt->rn_dupedkey->rn_p = tt;
668 }
669 tt->rn_key = v;
670 tt->rn_b = -1;
671 tt->rn_flags = RNF_ACTIVE;
672 }
673 /*
674 * Put mask in tree.
675 */
676 if (netmask != NULL) {
677 tt->rn_mask = netmask;
678 tt->rn_b = x->rn_b;
679 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
680 }
681 t = saved_tt->rn_p;
682 if (keyduplicated)
683 goto on2;
684 b_leaf = -1 - t->rn_b;
685 if (t->rn_r == saved_tt)
686 x = t->rn_l;
687 else
688 x = t->rn_r;
689 /* Promote general routes from below */
690 if (x->rn_b < 0) {
691 for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
692 if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
693 x->rn_mklist == NULL) {
694 *mp = m = rn_new_radix_mask(x, NULL);
695 if (m != NULL)
696 mp = &m->rm_mklist;
697 }
698 }
699 } else if (x->rn_mklist != NULL) {
700 /*
701 * Skip over masks whose index is > that of new node
702 */
703 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
704 if (m->rm_b >= b_leaf)
705 break;
706 t->rn_mklist = m;
707 *mp = NULL;
708 }
709 on2:
710 /* Add new route to highest possible ancestor's list */
711 if (netmask == NULL || b > t->rn_b)
712 return tt; /* can't lift at all */
713 b_leaf = tt->rn_b;
714 do {
715 x = t;
716 t = t->rn_p;
717 } while (b <= t->rn_b && x != top);
718 /*
719 * Search through routes associated with node to
720 * insert new route according to index.
721 * Need same criteria as when sorting dupedkeys to avoid
722 * double loop on deletion.
723 */
724 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
725 if (m->rm_b < b_leaf)
726 continue;
727 if (m->rm_b > b_leaf)
728 break;
729 if (m->rm_flags & RNF_NORMAL) {
730 mmask = m->rm_leaf->rn_mask;
731 if (tt->rn_flags & RNF_NORMAL) {
732 log(LOG_ERR, "Non-unique normal route,"
733 " mask not entered\n");
734 return tt;
735 }
736 } else
737 mmask = m->rm_mask;
738 if (mmask == netmask) {
739 m->rm_refs++;
740 tt->rn_mklist = m;
741 return tt;
742 }
743 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
744 break;
745 }
746 *mp = rn_new_radix_mask(tt, *mp);
747 return tt;
748 }
749
750 struct radix_node *
751 rn_delete1(
752 const void *v_arg,
753 const void *netmask_arg,
754 struct radix_node_head *head,
755 struct radix_node *rn)
756 {
757 struct radix_node *t, *p, *x, *tt;
758 struct radix_mask *m, *saved_m, **mp;
759 struct radix_node *dupedkey, *saved_tt, *top;
760 const char *v, *netmask;
761 int b, head_off, vlen;
762
763 v = v_arg;
764 netmask = netmask_arg;
765 x = head->rnh_treetop;
766 tt = rn_search(v, x);
767 head_off = x->rn_off;
768 vlen = *(const u_char *)v;
769 saved_tt = tt;
770 top = x;
771 if (tt == NULL ||
772 memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
773 return NULL;
774 /*
775 * Delete our route from mask lists.
776 */
777 if (netmask != NULL) {
778 if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
779 return NULL;
780 netmask = x->rn_key;
781 while (tt->rn_mask != netmask)
782 if ((tt = tt->rn_dupedkey) == NULL)
783 return NULL;
784 }
785 if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
786 goto on1;
787 if (tt->rn_flags & RNF_NORMAL) {
788 if (m->rm_leaf != tt || m->rm_refs > 0) {
789 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
790 return NULL; /* dangling ref could cause disaster */
791 }
792 } else {
793 if (m->rm_mask != tt->rn_mask) {
794 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
795 goto on1;
796 }
797 if (--m->rm_refs >= 0)
798 goto on1;
799 }
800 b = -1 - tt->rn_b;
801 t = saved_tt->rn_p;
802 if (b > t->rn_b)
803 goto on1; /* Wasn't lifted at all */
804 do {
805 x = t;
806 t = t->rn_p;
807 } while (b <= t->rn_b && x != top);
808 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
809 if (m == saved_m) {
810 *mp = m->rm_mklist;
811 MKFree(m);
812 break;
813 }
814 }
815 if (m == NULL) {
816 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
817 if (tt->rn_flags & RNF_NORMAL)
818 return NULL; /* Dangling ref to us */
819 }
820 on1:
821 /*
822 * Eliminate us from tree
823 */
824 if (tt->rn_flags & RNF_ROOT)
825 return NULL;
826 #ifdef RN_DEBUG
827 if (rn_debug)
828 log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
829 #endif
830 t = tt->rn_p;
831 dupedkey = saved_tt->rn_dupedkey;
832 if (dupedkey != NULL) {
833 /*
834 * Here, tt is the deletion target, and
835 * saved_tt is the head of the dupedkey chain.
836 */
837 if (tt == saved_tt) {
838 x = dupedkey;
839 x->rn_p = t;
840 if (t->rn_l == tt)
841 t->rn_l = x;
842 else
843 t->rn_r = x;
844 } else {
845 /* find node in front of tt on the chain */
846 for (x = p = saved_tt;
847 p != NULL && p->rn_dupedkey != tt;)
848 p = p->rn_dupedkey;
849 if (p != NULL) {
850 p->rn_dupedkey = tt->rn_dupedkey;
851 if (tt->rn_dupedkey != NULL)
852 tt->rn_dupedkey->rn_p = p;
853 } else
854 log(LOG_ERR, "rn_delete: couldn't find us\n");
855 }
856 t = tt + 1;
857 if (t->rn_flags & RNF_ACTIVE) {
858 *++x = *t;
859 p = t->rn_p;
860 if (p->rn_l == t)
861 p->rn_l = x;
862 else
863 p->rn_r = x;
864 x->rn_l->rn_p = x;
865 x->rn_r->rn_p = x;
866 }
867 goto out;
868 }
869 if (t->rn_l == tt)
870 x = t->rn_r;
871 else
872 x = t->rn_l;
873 p = t->rn_p;
874 if (p->rn_r == t)
875 p->rn_r = x;
876 else
877 p->rn_l = x;
878 x->rn_p = p;
879 /*
880 * Demote routes attached to us.
881 */
882 if (t->rn_mklist == NULL)
883 ;
884 else if (x->rn_b >= 0) {
885 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
886 ;
887 *mp = t->rn_mklist;
888 } else {
889 /* If there are any key,mask pairs in a sibling
890 duped-key chain, some subset will appear sorted
891 in the same order attached to our mklist */
892 for (m = t->rn_mklist;
893 m != NULL && x != NULL;
894 x = x->rn_dupedkey) {
895 if (m == x->rn_mklist) {
896 struct radix_mask *mm = m->rm_mklist;
897 x->rn_mklist = NULL;
898 if (--(m->rm_refs) < 0)
899 MKFree(m);
900 m = mm;
901 }
902 }
903 if (m != NULL) {
904 log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
905 m, x);
906 }
907 }
908 /*
909 * We may be holding an active internal node in the tree.
910 */
911 x = tt + 1;
912 if (t != x) {
913 *t = *x;
914 t->rn_l->rn_p = t;
915 t->rn_r->rn_p = t;
916 p = x->rn_p;
917 if (p->rn_l == x)
918 p->rn_l = t;
919 else
920 p->rn_r = t;
921 }
922 out:
923 #ifdef RN_DEBUG
924 if (rn_debug) {
925 log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
926 traverse(head, tt);
927 }
928 #endif /* RN_DEBUG */
929 tt->rn_flags &= ~RNF_ACTIVE;
930 tt[1].rn_flags &= ~RNF_ACTIVE;
931 return tt;
932 }
933
934 struct radix_node *
935 rn_delete(
936 const void *v_arg,
937 const void *netmask_arg,
938 struct radix_node_head *head)
939 {
940 return rn_delete1(v_arg, netmask_arg, head, NULL);
941 }
942
943 static struct radix_node *
944 rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
945 {
946 /* If at right child go back up, otherwise, go right */
947 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
948 if (printer != NULL)
949 (*printer)(arg, SUBTREE_CLOSE);
950 rn = rn->rn_p;
951 }
952 if (printer)
953 rn_nodeprint(rn->rn_p, printer, arg, "");
954 /* Find the next *leaf* since next node might vanish, too */
955 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
956 if (printer != NULL)
957 (*printer)(arg, SUBTREE_OPEN);
958 rn = rn->rn_l;
959 }
960 return rn;
961 }
962
963 static struct radix_node *
964 rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
965 {
966 /* First time through node, go left */
967 while (rn->rn_b >= 0) {
968 if (printer != NULL)
969 (*printer)(arg, SUBTREE_OPEN);
970 rn = rn->rn_l;
971 }
972 return rn;
973 }
974
975 int
976 rn_walktree(
977 struct radix_node_head *h,
978 int (*f)(struct radix_node *, void *),
979 void *w)
980 {
981 int error;
982 struct radix_node *base, *next, *rn;
983 /*
984 * This gets complicated because we may delete the node
985 * while applying the function f to it, so we need to calculate
986 * the successor node in advance.
987 */
988 rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
989 for (;;) {
990 base = rn;
991 next = rn_walknext(rn, NULL, NULL);
992 /* Process leaves */
993 while ((rn = base) != NULL) {
994 base = rn->rn_dupedkey;
995 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
996 return error;
997 }
998 rn = next;
999 if (rn->rn_flags & RNF_ROOT)
1000 return 0;
1001 }
1002 /* NOTREACHED */
1003 }
1004
1005 int
1006 rn_inithead(head, off)
1007 void **head;
1008 int off;
1009 {
1010 struct radix_node_head *rnh;
1011
1012 if (*head != NULL)
1013 return 1;
1014 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1015 if (rnh == NULL)
1016 return 0;
1017 *head = rnh;
1018 return rn_inithead0(rnh, off);
1019 }
1020
1021 int
1022 rn_inithead0(rnh, off)
1023 struct radix_node_head *rnh;
1024 int off;
1025 {
1026 struct radix_node *t;
1027 struct radix_node *tt;
1028 struct radix_node *ttt;
1029
1030 memset(rnh, 0, sizeof(*rnh));
1031 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1032 ttt = rnh->rnh_nodes + 2;
1033 t->rn_r = ttt;
1034 t->rn_p = t;
1035 tt = t->rn_l;
1036 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1037 tt->rn_b = -1 - off;
1038 *ttt = *tt;
1039 ttt->rn_key = rn_ones;
1040 rnh->rnh_addaddr = rn_addroute;
1041 rnh->rnh_deladdr = rn_delete;
1042 rnh->rnh_matchaddr = rn_match;
1043 rnh->rnh_lookup = rn_lookup;
1044 rnh->rnh_treetop = t;
1045 return 1;
1046 }
1047
1048 void
1049 rn_init()
1050 {
1051 char *cp, *cplim;
1052 #ifdef _KERNEL
1053 static int initialized;
1054 __link_set_decl(domains, struct domain);
1055 struct domain *const *dpp;
1056
1057 if (initialized)
1058 return;
1059 initialized = 1;
1060
1061 __link_set_foreach(dpp, domains) {
1062 if ((*dpp)->dom_maxrtkey > max_keylen)
1063 max_keylen = (*dpp)->dom_maxrtkey;
1064 }
1065 #endif
1066 if (max_keylen == 0) {
1067 log(LOG_ERR,
1068 "rn_init: radix functions require max_keylen be set\n");
1069 return;
1070 }
1071 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1072 if (rn_zeros == NULL)
1073 panic("rn_init");
1074 memset(rn_zeros, 0, 3 * max_keylen);
1075 rn_ones = cp = rn_zeros + max_keylen;
1076 addmask_key = cplim = rn_ones + max_keylen;
1077 while (cp < cplim)
1078 *cp++ = -1;
1079 if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1080 panic("rn_init 2");
1081 }
1082