radix.c revision 1.9 1 /* $NetBSD: radix.c,v 1.9 1995/05/17 15:50:06 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)radix.c 8.4 (Berkeley) 11/2/94
36 */
37
38 /*
39 * Routines to build and maintain radix trees for routing lookups.
40 */
41 #include <sys/param.h>
42 #ifdef _KERNEL
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #define M_DONTWAIT M_NOWAIT
46 #include <sys/domain.h>
47 #else
48 #include <stdlib.h>
49 #endif
50 #include <sys/syslog.h>
51 #include <net/radix.h>
52
53 int max_keylen;
54 struct radix_mask *rn_mkfreelist;
55 struct radix_node_head *mask_rnhead;
56 static char *addmask_key;
57 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
58 static char *rn_zeros, *rn_ones;
59
60 #define rn_masktop (mask_rnhead->rnh_treetop)
61 #undef Bcmp
62 #define Bcmp(a, b, l) (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
63 /*
64 * The data structure for the keys is a radix tree with one way
65 * branching removed. The index rn_b at an internal node n represents a bit
66 * position to be tested. The tree is arranged so that all descendants
67 * of a node n have keys whose bits all agree up to position rn_b - 1.
68 * (We say the index of n is rn_b.)
69 *
70 * There is at least one descendant which has a one bit at position rn_b,
71 * and at least one with a zero there.
72 *
73 * A route is determined by a pair of key and mask. We require that the
74 * bit-wise logical and of the key and mask to be the key.
75 * We define the index of a route to associated with the mask to be
76 * the first bit number in the mask where 0 occurs (with bit number 0
77 * representing the highest order bit).
78 *
79 * We say a mask is normal if every bit is 0, past the index of the mask.
80 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
81 * and m is a normal mask, then the route applies to every descendant of n.
82 * If the index(m) < rn_b, this implies the trailing last few bits of k
83 * before bit b are all 0, (and hence consequently true of every descendant
84 * of n), so the route applies to all descendants of the node as well.
85 *
86 * Similar logic shows that a non-normal mask m such that
87 * index(m) <= index(n) could potentially apply to many children of n.
88 * Thus, for each non-host route, we attach its mask to a list at an internal
89 * node as high in the tree as we can go.
90 *
91 * The present version of the code makes use of normal routes in short-
92 * circuiting an explict mask and compare operation when testing whether
93 * a key satisfies a normal route, and also in remembering the unique leaf
94 * that governs a subtree.
95 */
96
97 struct radix_node *
98 rn_search(v_arg, head)
99 void *v_arg;
100 struct radix_node *head;
101 {
102 register struct radix_node *x;
103 register caddr_t v;
104
105 for (x = head, v = v_arg; x->rn_b >= 0;) {
106 if (x->rn_bmask & v[x->rn_off])
107 x = x->rn_r;
108 else
109 x = x->rn_l;
110 }
111 return (x);
112 };
113
114 struct radix_node *
115 rn_search_m(v_arg, head, m_arg)
116 struct radix_node *head;
117 void *v_arg, *m_arg;
118 {
119 register struct radix_node *x;
120 register caddr_t v = v_arg, m = m_arg;
121
122 for (x = head; x->rn_b >= 0;) {
123 if ((x->rn_bmask & m[x->rn_off]) &&
124 (x->rn_bmask & v[x->rn_off]))
125 x = x->rn_r;
126 else
127 x = x->rn_l;
128 }
129 return x;
130 };
131
132 int
133 rn_refines(m_arg, n_arg)
134 void *m_arg, *n_arg;
135 {
136 register caddr_t m = m_arg, n = n_arg;
137 register caddr_t lim, lim2 = lim = n + *(u_char *)n;
138 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
139 int masks_are_equal = 1;
140
141 if (longer > 0)
142 lim -= longer;
143 while (n < lim) {
144 if (*n & ~(*m))
145 return 0;
146 if (*n++ != *m++)
147 masks_are_equal = 0;
148 }
149 while (n < lim2)
150 if (*n++)
151 return 0;
152 if (masks_are_equal && (longer < 0))
153 for (lim2 = m - longer; m < lim2; )
154 if (*m++)
155 return 1;
156 return (!masks_are_equal);
157 }
158
159 struct radix_node *
160 rn_lookup(v_arg, m_arg, head)
161 void *v_arg, *m_arg;
162 struct radix_node_head *head;
163 {
164 register struct radix_node *x;
165 caddr_t netmask = 0;
166
167 if (m_arg) {
168 if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
169 return (0);
170 netmask = x->rn_key;
171 }
172 x = rn_match(v_arg, head);
173 if (x && netmask) {
174 while (x && x->rn_mask != netmask)
175 x = x->rn_dupedkey;
176 }
177 return x;
178 }
179
180 static
181 rn_satsifies_leaf(trial, leaf, skip)
182 char *trial;
183 register struct radix_node *leaf;
184 int skip;
185 {
186 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
187 char *cplim;
188 int length = min(*(u_char *)cp, *(u_char *)cp2);
189
190 if (cp3 == 0)
191 cp3 = rn_ones;
192 else
193 length = min(length, *(u_char *)cp3);
194 cplim = cp + length; cp3 += skip; cp2 += skip;
195 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
196 if ((*cp ^ *cp2) & *cp3)
197 return 0;
198 return 1;
199 }
200
201 struct radix_node *
202 rn_match(v_arg, head)
203 void *v_arg;
204 struct radix_node_head *head;
205 {
206 caddr_t v = v_arg;
207 register struct radix_node *t = head->rnh_treetop, *x;
208 register caddr_t cp = v, cp2;
209 caddr_t cplim;
210 struct radix_node *saved_t, *top = t;
211 int off = t->rn_off, vlen = *(u_char *)cp, matched_off;
212 register int test, b, rn_b;
213
214 /*
215 * Open code rn_search(v, top) to avoid overhead of extra
216 * subroutine call.
217 */
218 for (; t->rn_b >= 0; ) {
219 if (t->rn_bmask & cp[t->rn_off])
220 t = t->rn_r;
221 else
222 t = t->rn_l;
223 }
224 /*
225 * See if we match exactly as a host destination
226 * or at least learn how many bits match, for normal mask finesse.
227 *
228 * It doesn't hurt us to limit how many bytes to check
229 * to the length of the mask, since if it matches we had a genuine
230 * match and the leaf we have is the most specific one anyway;
231 * if it didn't match with a shorter length it would fail
232 * with a long one. This wins big for class B&C netmasks which
233 * are probably the most common case...
234 */
235 if (t->rn_mask)
236 vlen = *(u_char *)t->rn_mask;
237 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
238 for (; cp < cplim; cp++, cp2++)
239 if (*cp != *cp2)
240 goto on1;
241 /*
242 * This extra grot is in case we are explicitly asked
243 * to look up the default. Ugh!
244 */
245 if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
246 t = t->rn_dupedkey;
247 return t;
248 on1:
249 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
250 for (b = 7; (test >>= 1) > 0;)
251 b--;
252 matched_off = cp - v;
253 b += matched_off << 3;
254 rn_b = -1 - b;
255 /*
256 * If there is a host route in a duped-key chain, it will be first.
257 */
258 if ((saved_t = t)->rn_mask == 0)
259 t = t->rn_dupedkey;
260 for (; t; t = t->rn_dupedkey)
261 /*
262 * Even if we don't match exactly as a host,
263 * we may match if the leaf we wound up at is
264 * a route to a net.
265 */
266 if (t->rn_flags & RNF_NORMAL) {
267 if (rn_b <= t->rn_b)
268 return t;
269 } else if (rn_satsifies_leaf(v, t, matched_off))
270 return t;
271 t = saved_t;
272 /* start searching up the tree */
273 do {
274 register struct radix_mask *m;
275 t = t->rn_p;
276 if (m = t->rn_mklist) {
277 /*
278 * If non-contiguous masks ever become important
279 * we can restore the masking and open coding of
280 * the search and satisfaction test and put the
281 * calculation of "off" back before the "do".
282 */
283 do {
284 if (m->rm_flags & RNF_NORMAL) {
285 if (rn_b <= m->rm_b)
286 return (m->rm_leaf);
287 } else {
288 off = min(t->rn_off, matched_off);
289 x = rn_search_m(v, t, m->rm_mask);
290 while (x && x->rn_mask != m->rm_mask)
291 x = x->rn_dupedkey;
292 if (x && rn_satsifies_leaf(v, x, off))
293 return x;
294 }
295 } while (m = m->rm_mklist);
296 }
297 } while (t != top);
298 return 0;
299 };
300
301 #ifdef RN_DEBUG
302 int rn_nodenum;
303 struct radix_node *rn_clist;
304 int rn_saveinfo;
305 int rn_debug = 1;
306 #endif
307
308 struct radix_node *
309 rn_newpair(v, b, nodes)
310 void *v;
311 int b;
312 struct radix_node nodes[2];
313 {
314 register struct radix_node *tt = nodes, *t = tt + 1;
315 t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
316 t->rn_l = tt; t->rn_off = b >> 3;
317 tt->rn_b = -1; tt->rn_key = (caddr_t)v; tt->rn_p = t;
318 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
319 #ifdef RN_DEBUG
320 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
321 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
322 #endif
323 return t;
324 }
325
326 struct radix_node *
327 rn_insert(v_arg, head, dupentry, nodes)
328 void *v_arg;
329 struct radix_node_head *head;
330 int *dupentry;
331 struct radix_node nodes[2];
332 {
333 caddr_t v = v_arg;
334 struct radix_node *top = head->rnh_treetop;
335 int head_off = top->rn_off, vlen = (int)*((u_char *)v);
336 register struct radix_node *t = rn_search(v_arg, top);
337 register caddr_t cp = v + head_off;
338 register int b;
339 struct radix_node *tt;
340 /*
341 * Find first bit at which v and t->rn_key differ
342 */
343 {
344 register caddr_t cp2 = t->rn_key + head_off;
345 register int cmp_res;
346 caddr_t cplim = v + vlen;
347
348 while (cp < cplim)
349 if (*cp2++ != *cp++)
350 goto on1;
351 *dupentry = 1;
352 return t;
353 on1:
354 *dupentry = 0;
355 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
356 for (b = (cp - v) << 3; cmp_res; b--)
357 cmp_res >>= 1;
358 }
359 {
360 register struct radix_node *p, *x = top;
361 cp = v;
362 do {
363 p = x;
364 if (cp[x->rn_off] & x->rn_bmask)
365 x = x->rn_r;
366 else x = x->rn_l;
367 } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
368 #ifdef RN_DEBUG
369 if (rn_debug)
370 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
371 #endif
372 t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
373 if ((cp[p->rn_off] & p->rn_bmask) == 0)
374 p->rn_l = t;
375 else
376 p->rn_r = t;
377 x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
378 if ((cp[t->rn_off] & t->rn_bmask) == 0) {
379 t->rn_r = x;
380 } else {
381 t->rn_r = tt; t->rn_l = x;
382 }
383 #ifdef RN_DEBUG
384 if (rn_debug)
385 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
386 #endif
387 }
388 return (tt);
389 }
390
391 struct radix_node *
392 rn_addmask(n_arg, search, skip)
393 int search, skip;
394 void *n_arg;
395 {
396 caddr_t netmask = (caddr_t)n_arg;
397 register struct radix_node *x;
398 register caddr_t cp, cplim;
399 register int b = 0, mlen, j;
400 int maskduplicated, m0, isnormal;
401 struct radix_node *saved_x;
402 static int last_zeroed = 0;
403
404 if ((mlen = *(u_char *)netmask) > max_keylen)
405 mlen = max_keylen;
406 if (skip == 0)
407 skip = 1;
408 if (mlen <= skip)
409 return (mask_rnhead->rnh_nodes);
410 if (skip > 1)
411 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
412 if ((m0 = mlen) > skip)
413 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
414 /*
415 * Trim trailing zeroes.
416 */
417 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
418 cp--;
419 mlen = cp - addmask_key;
420 if (mlen <= skip) {
421 if (m0 >= last_zeroed)
422 last_zeroed = mlen;
423 return (mask_rnhead->rnh_nodes);
424 }
425 if (m0 < last_zeroed)
426 Bzero(addmask_key + m0, last_zeroed - m0);
427 *addmask_key = last_zeroed = mlen;
428 x = rn_search(addmask_key, rn_masktop);
429 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
430 x = 0;
431 if (x || search)
432 return (x);
433 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
434 if ((saved_x = x) == 0)
435 return (0);
436 Bzero(x, max_keylen + 2 * sizeof (*x));
437 netmask = cp = (caddr_t)(x + 2);
438 Bcopy(addmask_key, cp, mlen);
439 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
440 if (maskduplicated) {
441 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
442 Free(saved_x);
443 return (x);
444 }
445 /*
446 * Calculate index of mask, and check for normalcy.
447 */
448 cplim = netmask + mlen; isnormal = 1;
449 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
450 cp++;
451 if (cp != cplim) {
452 for (j = 0x80; (j & *cp) != 0; j >>= 1)
453 b++;
454 if (*cp != normal_chars[b] || cp != (cplim - 1))
455 isnormal = 0;
456 }
457 b += (cp - netmask) << 3;
458 x->rn_b = -1 - b;
459 if (isnormal)
460 x->rn_flags |= RNF_NORMAL;
461 return (x);
462 }
463
464 static int /* XXX: arbitrary ordering for non-contiguous masks */
465 rn_lexobetter(m_arg, n_arg)
466 void *m_arg, *n_arg;
467 {
468 register u_char *mp = m_arg, *np = n_arg, *lim;
469
470 if (*mp > *np)
471 return 1; /* not really, but need to check longer one first */
472 if (*mp == *np)
473 for (lim = mp + *mp; mp < lim;)
474 if (*mp++ > *np++)
475 return 1;
476 return 0;
477 }
478
479 static struct radix_mask *
480 rn_new_radix_mask(tt, next)
481 register struct radix_node *tt;
482 register struct radix_mask *next;
483 {
484 register struct radix_mask *m;
485
486 MKGet(m);
487 if (m == 0) {
488 log(LOG_ERR, "Mask for route not entered\n");
489 return (0);
490 }
491 Bzero(m, sizeof *m);
492 m->rm_b = tt->rn_b;
493 m->rm_flags = tt->rn_flags;
494 if (tt->rn_flags & RNF_NORMAL)
495 m->rm_leaf = tt;
496 else
497 m->rm_mask = tt->rn_mask;
498 m->rm_mklist = next;
499 tt->rn_mklist = m;
500 return m;
501 }
502
503 struct radix_node *
504 rn_addroute(v_arg, n_arg, head, treenodes)
505 void *v_arg, *n_arg;
506 struct radix_node_head *head;
507 struct radix_node treenodes[2];
508 {
509 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
510 register struct radix_node *t, *x, *tt;
511 struct radix_node *saved_tt, *top = head->rnh_treetop;
512 short b = 0, b_leaf;
513 int keyduplicated;
514 caddr_t mmask;
515 struct radix_mask *m, **mp;
516
517 /*
518 * In dealing with non-contiguous masks, there may be
519 * many different routes which have the same mask.
520 * We will find it useful to have a unique pointer to
521 * the mask to speed avoiding duplicate references at
522 * nodes and possibly save time in calculating indices.
523 */
524 if (netmask) {
525 if ((x = rn_addmask(netmask, 0, top->rn_off)) == 0)
526 return (0);
527 b_leaf = x->rn_b;
528 b = -1 - x->rn_b;
529 netmask = x->rn_key;
530 }
531 /*
532 * Deal with duplicated keys: attach node to previous instance
533 */
534 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
535 if (keyduplicated) {
536 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
537 if (tt->rn_mask == netmask)
538 return (0);
539 if (netmask == 0 ||
540 (tt->rn_mask &&
541 ((b_leaf < tt->rn_b) || /* index(netmask) > node */
542 rn_refines(netmask, tt->rn_mask) ||
543 rn_lexobetter(netmask, tt->rn_mask))))
544 break;
545 }
546 /*
547 * If the mask is not duplicated, we wouldn't
548 * find it among possible duplicate key entries
549 * anyway, so the above test doesn't hurt.
550 *
551 * We sort the masks for a duplicated key the same way as
552 * in a masklist -- most specific to least specific.
553 * This may require the unfortunate nuisance of relocating
554 * the head of the list.
555 */
556 if (tt == saved_tt) {
557 struct radix_node *xx = x;
558 /* link in at head of list */
559 (tt = treenodes)->rn_dupedkey = t;
560 tt->rn_flags = t->rn_flags;
561 tt->rn_p = x = t->rn_p;
562 if (x->rn_l == t) x->rn_l = tt; else x->rn_r = tt;
563 saved_tt = tt; x = xx;
564 } else {
565 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
566 t->rn_dupedkey = tt;
567 }
568 #ifdef RN_DEBUG
569 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
570 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
571 #endif
572 tt->rn_key = (caddr_t) v;
573 tt->rn_b = -1;
574 tt->rn_flags = RNF_ACTIVE;
575 }
576 /*
577 * Put mask in tree.
578 */
579 if (netmask) {
580 tt->rn_mask = netmask;
581 tt->rn_b = x->rn_b;
582 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
583 }
584 t = saved_tt->rn_p;
585 if (keyduplicated)
586 goto on2;
587 b_leaf = -1 - t->rn_b;
588 if (t->rn_r == saved_tt) x = t->rn_l; else x = t->rn_r;
589 /* Promote general routes from below */
590 if (x->rn_b < 0) {
591 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
592 if (x->rn_mask && (x->rn_b >= b_leaf) && x->rn_mklist == 0) {
593 if (*mp = m = rn_new_radix_mask(x, 0))
594 mp = &m->rm_mklist;
595 }
596 } else if (x->rn_mklist) {
597 /*
598 * Skip over masks whose index is > that of new node
599 */
600 for (mp = &x->rn_mklist; m = *mp; mp = &m->rm_mklist)
601 if (m->rm_b >= b_leaf)
602 break;
603 t->rn_mklist = m; *mp = 0;
604 }
605 on2:
606 /* Add new route to highest possible ancestor's list */
607 if ((netmask == 0) || (b > t->rn_b ))
608 return tt; /* can't lift at all */
609 b_leaf = tt->rn_b;
610 do {
611 x = t;
612 t = t->rn_p;
613 } while (b <= t->rn_b && x != top);
614 /*
615 * Search through routes associated with node to
616 * insert new route according to index.
617 * Need same criteria as when sorting dupedkeys to avoid
618 * double loop on deletion.
619 */
620 for (mp = &x->rn_mklist; m = *mp; mp = &m->rm_mklist) {
621 if (m->rm_b < b_leaf)
622 continue;
623 if (m->rm_b > b_leaf)
624 break;
625 if (m->rm_flags & RNF_NORMAL) {
626 mmask = m->rm_leaf->rn_mask;
627 if (tt->rn_flags & RNF_NORMAL) {
628 log(LOG_ERR,
629 "Non-unique normal route, mask not entered");
630 return tt;
631 }
632 } else
633 mmask = m->rm_mask;
634 if (mmask == netmask) {
635 m->rm_refs++;
636 tt->rn_mklist = m;
637 return tt;
638 }
639 if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
640 break;
641 }
642 *mp = rn_new_radix_mask(tt, *mp);
643 return tt;
644 }
645
646 struct radix_node *
647 rn_delete(v_arg, netmask_arg, head)
648 void *v_arg, *netmask_arg;
649 struct radix_node_head *head;
650 {
651 register struct radix_node *t, *p, *x, *tt;
652 struct radix_mask *m, *saved_m, **mp;
653 struct radix_node *dupedkey, *saved_tt, *top;
654 caddr_t v, netmask;
655 int b, head_off, vlen;
656
657 v = v_arg;
658 netmask = netmask_arg;
659 x = head->rnh_treetop;
660 tt = rn_search(v, x);
661 head_off = x->rn_off;
662 vlen = *(u_char *)v;
663 saved_tt = tt;
664 top = x;
665 if (tt == 0 ||
666 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
667 return (0);
668 /*
669 * Delete our route from mask lists.
670 */
671 if (netmask) {
672 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
673 return (0);
674 netmask = x->rn_key;
675 while (tt->rn_mask != netmask)
676 if ((tt = tt->rn_dupedkey) == 0)
677 return (0);
678 }
679 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
680 goto on1;
681 if (tt->rn_flags & RNF_NORMAL) {
682 if (m->rm_leaf != tt || m->rm_refs > 0) {
683 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
684 return 0; /* dangling ref could cause disaster */
685 }
686 } else {
687 if (m->rm_mask != tt->rn_mask) {
688 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
689 goto on1;
690 }
691 if (--m->rm_refs >= 0)
692 goto on1;
693 }
694 b = -1 - tt->rn_b;
695 t = saved_tt->rn_p;
696 if (b > t->rn_b)
697 goto on1; /* Wasn't lifted at all */
698 do {
699 x = t;
700 t = t->rn_p;
701 } while (b <= t->rn_b && x != top);
702 for (mp = &x->rn_mklist; m = *mp; mp = &m->rm_mklist)
703 if (m == saved_m) {
704 *mp = m->rm_mklist;
705 MKFree(m);
706 break;
707 }
708 if (m == 0) {
709 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
710 if (tt->rn_flags & RNF_NORMAL)
711 return (0); /* Dangling ref to us */
712 }
713 on1:
714 /*
715 * Eliminate us from tree
716 */
717 if (tt->rn_flags & RNF_ROOT)
718 return (0);
719 #ifdef RN_DEBUG
720 /* Get us out of the creation list */
721 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
722 if (t) t->rn_ybro = tt->rn_ybro;
723 #endif
724 t = tt->rn_p;
725 if (dupedkey = saved_tt->rn_dupedkey) {
726 if (tt == saved_tt) {
727 x = dupedkey; x->rn_p = t;
728 if (t->rn_l == tt) t->rn_l = x; else t->rn_r = x;
729 } else {
730 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
731 p = p->rn_dupedkey;
732 if (p) p->rn_dupedkey = tt->rn_dupedkey;
733 else log(LOG_ERR, "rn_delete: couldn't find us\n");
734 }
735 t = tt + 1;
736 if (t->rn_flags & RNF_ACTIVE) {
737 #ifndef RN_DEBUG
738 *++x = *t; p = t->rn_p;
739 #else
740 b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_p;
741 #endif
742 if (p->rn_l == t) p->rn_l = x; else p->rn_r = x;
743 x->rn_l->rn_p = x; x->rn_r->rn_p = x;
744 }
745 goto out;
746 }
747 if (t->rn_l == tt) x = t->rn_r; else x = t->rn_l;
748 p = t->rn_p;
749 if (p->rn_r == t) p->rn_r = x; else p->rn_l = x;
750 x->rn_p = p;
751 /*
752 * Demote routes attached to us.
753 */
754 if (t->rn_mklist) {
755 if (x->rn_b >= 0) {
756 for (mp = &x->rn_mklist; m = *mp;)
757 mp = &m->rm_mklist;
758 *mp = t->rn_mklist;
759 } else {
760 /* If there are any key,mask pairs in a sibling
761 duped-key chain, some subset will appear sorted
762 in the same order attached to our mklist */
763 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
764 if (m == x->rn_mklist) {
765 struct radix_mask *mm = m->rm_mklist;
766 x->rn_mklist = 0;
767 if (--(m->rm_refs) < 0)
768 MKFree(m);
769 m = mm;
770 }
771 if (m)
772 log(LOG_ERR, "%s %x at %x\n",
773 "rn_delete: Orphaned Mask", m, x);
774 }
775 }
776 /*
777 * We may be holding an active internal node in the tree.
778 */
779 x = tt + 1;
780 if (t != x) {
781 #ifndef RN_DEBUG
782 *t = *x;
783 #else
784 b = t->rn_info; *t = *x; t->rn_info = b;
785 #endif
786 t->rn_l->rn_p = t; t->rn_r->rn_p = t;
787 p = x->rn_p;
788 if (p->rn_l == x) p->rn_l = t; else p->rn_r = t;
789 }
790 out:
791 tt->rn_flags &= ~RNF_ACTIVE;
792 tt[1].rn_flags &= ~RNF_ACTIVE;
793 return (tt);
794 }
795
796 int
797 rn_walktree(h, f, w)
798 struct radix_node_head *h;
799 register int (*f)();
800 void *w;
801 {
802 int error;
803 struct radix_node *base, *next;
804 register struct radix_node *rn = h->rnh_treetop;
805 /*
806 * This gets complicated because we may delete the node
807 * while applying the function f to it, so we need to calculate
808 * the successor node in advance.
809 */
810 /* First time through node, go left */
811 while (rn->rn_b >= 0)
812 rn = rn->rn_l;
813 for (;;) {
814 base = rn;
815 /* If at right child go back up, otherwise, go right */
816 while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0)
817 rn = rn->rn_p;
818 /* Find the next *leaf* since next node might vanish, too */
819 for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;)
820 rn = rn->rn_l;
821 next = rn;
822 /* Process leaves */
823 while (rn = base) {
824 base = rn->rn_dupedkey;
825 if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
826 return (error);
827 }
828 rn = next;
829 if (rn->rn_flags & RNF_ROOT)
830 return (0);
831 }
832 /* NOTREACHED */
833 }
834
835 int
836 rn_inithead(head, off)
837 void **head;
838 int off;
839 {
840 register struct radix_node_head *rnh;
841 register struct radix_node *t, *tt, *ttt;
842 if (*head)
843 return (1);
844 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
845 if (rnh == 0)
846 return (0);
847 Bzero(rnh, sizeof (*rnh));
848 *head = rnh;
849 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
850 ttt = rnh->rnh_nodes + 2;
851 t->rn_r = ttt;
852 t->rn_p = t;
853 tt = t->rn_l;
854 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
855 tt->rn_b = -1 - off;
856 *ttt = *tt;
857 ttt->rn_key = rn_ones;
858 rnh->rnh_addaddr = rn_addroute;
859 rnh->rnh_deladdr = rn_delete;
860 rnh->rnh_matchaddr = rn_match;
861 rnh->rnh_lookup = rn_lookup;
862 rnh->rnh_walktree = rn_walktree;
863 rnh->rnh_treetop = t;
864 return (1);
865 }
866
867 void
868 rn_init()
869 {
870 char *cp, *cplim;
871 #ifdef _KERNEL
872 struct domain *dom;
873
874 for (dom = domains; dom; dom = dom->dom_next)
875 if (dom->dom_maxrtkey > max_keylen)
876 max_keylen = dom->dom_maxrtkey;
877 #endif
878 if (max_keylen == 0) {
879 log(LOG_ERR,
880 "rn_init: radix functions require max_keylen be set\n");
881 return;
882 }
883 R_Malloc(rn_zeros, char *, 3 * max_keylen);
884 if (rn_zeros == NULL)
885 panic("rn_init");
886 Bzero(rn_zeros, 3 * max_keylen);
887 rn_ones = cp = rn_zeros + max_keylen;
888 addmask_key = cplim = rn_ones + max_keylen;
889 while (cp < cplim)
890 *cp++ = -1;
891 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
892 panic("rn_init 2");
893 }
894