route.c revision 1.210 1 /* $NetBSD: route.c,v 1.210 2018/06/01 07:13:35 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Kevin M. Lahey of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
35 * All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the project nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1980, 1986, 1991, 1993
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)route.c 8.3 (Berkeley) 1/9/95
91 */
92
93 #ifdef _KERNEL_OPT
94 #include "opt_inet.h"
95 #include "opt_route.h"
96 #include "opt_net_mpsafe.h"
97 #endif
98
99 #include <sys/cdefs.h>
100 __KERNEL_RCSID(0, "$NetBSD: route.c,v 1.210 2018/06/01 07:13:35 ozaki-r Exp $");
101
102 #include <sys/param.h>
103 #ifdef RTFLUSH_DEBUG
104 #include <sys/sysctl.h>
105 #endif
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/mbuf.h>
110 #include <sys/socket.h>
111 #include <sys/socketvar.h>
112 #include <sys/domain.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/pool.h>
116 #include <sys/kauth.h>
117 #include <sys/workqueue.h>
118 #include <sys/syslog.h>
119 #include <sys/rwlock.h>
120 #include <sys/mutex.h>
121 #include <sys/cpu.h>
122
123 #include <net/if.h>
124 #include <net/if_dl.h>
125 #include <net/route.h>
126 #if defined(INET) || defined(INET6)
127 #include <net/if_llatbl.h>
128 #endif
129
130 #include <netinet/in.h>
131 #include <netinet/in_var.h>
132
133 #define PRESERVED_RTF (RTF_UP | RTF_GATEWAY | RTF_HOST | RTF_DONE | RTF_MASK)
134
135 #ifdef RTFLUSH_DEBUG
136 #define rtcache_debug() __predict_false(_rtcache_debug)
137 #else /* RTFLUSH_DEBUG */
138 #define rtcache_debug() 0
139 #endif /* RTFLUSH_DEBUG */
140
141 #ifdef RT_DEBUG
142 #define RT_REFCNT_TRACE(rt) printf("%s:%d: rt=%p refcnt=%d\n", \
143 __func__, __LINE__, (rt), (rt)->rt_refcnt)
144 #else
145 #define RT_REFCNT_TRACE(rt) do {} while (0)
146 #endif
147
148 #ifdef RT_DEBUG
149 #define dlog(level, fmt, args...) log(level, fmt, ##args)
150 #else
151 #define dlog(level, fmt, args...) do {} while (0)
152 #endif
153
154 struct rtstat rtstat;
155
156 static int rttrash; /* routes not in table but not freed */
157
158 static struct pool rtentry_pool;
159 static struct pool rttimer_pool;
160
161 static struct callout rt_timer_ch; /* callout for rt_timer_timer() */
162 static struct workqueue *rt_timer_wq;
163 static struct work rt_timer_wk;
164
165 static void rt_timer_init(void);
166 static void rt_timer_queue_remove_all(struct rttimer_queue *);
167 static void rt_timer_remove_all(struct rtentry *);
168 static void rt_timer_timer(void *);
169
170 /*
171 * Locking notes:
172 * - The routing table is protected by a global rwlock
173 * - API: RT_RLOCK and friends
174 * - rtcaches are NOT protected by the framework
175 * - Callers must guarantee a rtcache isn't accessed simultaneously
176 * - How the constraint is guranteed in the wild
177 * - Protect a rtcache by a mutex (e.g., inp_route)
178 * - Make rtcache per-CPU and allow only accesses from softint
179 * (e.g., ipforward_rt_percpu)
180 * - References to a rtentry is managed by reference counting and psref
181 * - Reference couting is used for temporal reference when a rtentry
182 * is fetched from the routing table
183 * - psref is used for temporal reference when a rtentry is fetched
184 * from a rtcache
185 * - struct route (rtcache) has struct psref, so we cannot obtain
186 * a reference twice on the same struct route
187 * - Befere destroying or updating a rtentry, we have to wait for
188 * all references left (see below for details)
189 * - APIs
190 * - An obtained rtentry via rtalloc1 or rtrequest* must be
191 * unreferenced by rt_unref
192 * - An obtained rtentry via rtcache_* must be unreferenced by
193 * rtcache_unref
194 * - TODO: once we get a lockless routing table, we should use only
195 * psref for rtentries
196 * - rtentry destruction
197 * - A rtentry is destroyed (freed) only when we call rtrequest(RTM_DELETE)
198 * - If a caller of rtrequest grabs a reference of a rtentry, the caller
199 * has a responsibility to destroy the rtentry by itself by calling
200 * rt_free
201 * - If not, rtrequest itself does that
202 * - If rt_free is called in softint, the actual destruction routine is
203 * deferred to a workqueue
204 * - rtentry update
205 * - When updating a rtentry, RTF_UPDATING flag is set
206 * - If a rtentry is set RTF_UPDATING, fetching the rtentry from
207 * the routing table or a rtcache results in either of the following
208 * cases:
209 * - if the caller runs in softint, the caller fails to fetch
210 * - otherwise, the caller waits for the update completed and retries
211 * to fetch (probably succeed to fetch for the second time)
212 * - rtcache invalidation
213 * - There is a global generation counter that is incremented when
214 * any routes have been added or deleted
215 * - When a rtcache caches a rtentry into itself, it also stores
216 * a snapshot of the generation counter
217 * - If the snapshot equals to the global counter, the cache is valid,
218 * otherwise the cache is invalidated
219 */
220
221 /*
222 * Global lock for the routing table.
223 */
224 static krwlock_t rt_lock __cacheline_aligned;
225 #ifdef NET_MPSAFE
226 #define RT_RLOCK() rw_enter(&rt_lock, RW_READER)
227 #define RT_WLOCK() rw_enter(&rt_lock, RW_WRITER)
228 #define RT_UNLOCK() rw_exit(&rt_lock)
229 #define RT_WLOCKED() rw_write_held(&rt_lock)
230 #define RT_ASSERT_WLOCK() KASSERT(rw_write_held(&rt_lock))
231 #else
232 #define RT_RLOCK() do {} while (0)
233 #define RT_WLOCK() do {} while (0)
234 #define RT_UNLOCK() do {} while (0)
235 #define RT_WLOCKED() true
236 #define RT_ASSERT_WLOCK() do {} while (0)
237 #endif
238
239 static uint64_t rtcache_generation;
240
241 /*
242 * mutex and cv that are used to wait for references to a rtentry left
243 * before updating the rtentry.
244 */
245 static struct {
246 kmutex_t lock;
247 kcondvar_t cv;
248 bool ongoing;
249 const struct lwp *lwp;
250 } rt_update_global __cacheline_aligned;
251
252 /*
253 * A workqueue and stuff that are used to defer the destruction routine
254 * of rtentries.
255 */
256 static struct {
257 struct workqueue *wq;
258 struct work wk;
259 kmutex_t lock;
260 SLIST_HEAD(, rtentry) queue;
261 bool enqueued;
262 } rt_free_global __cacheline_aligned;
263
264 /* psref for rtentry */
265 static struct psref_class *rt_psref_class __read_mostly;
266
267 #ifdef RTFLUSH_DEBUG
268 static int _rtcache_debug = 0;
269 #endif /* RTFLUSH_DEBUG */
270
271 static kauth_listener_t route_listener;
272
273 static int rtdeletemsg(struct rtentry *);
274
275 static void rt_maskedcopy(const struct sockaddr *,
276 struct sockaddr *, const struct sockaddr *);
277
278 static void rtcache_invalidate(void);
279
280 static void rt_ref(struct rtentry *);
281
282 static struct rtentry *
283 rtalloc1_locked(const struct sockaddr *, int, bool, bool);
284
285 static struct ifaddr *rt_getifa(struct rt_addrinfo *, struct psref *);
286 static struct ifnet *rt_getifp(struct rt_addrinfo *, struct psref *);
287 static struct ifaddr *ifa_ifwithroute_psref(int, const struct sockaddr *,
288 const struct sockaddr *, struct psref *);
289
290 static void rtcache_ref(struct rtentry *, struct route *);
291
292 #ifdef NET_MPSAFE
293 static void rt_update_wait(void);
294 #endif
295
296 static bool rt_wait_ok(void);
297 static void rt_wait_refcnt(const char *, struct rtentry *, int);
298 static void rt_wait_psref(struct rtentry *);
299
300 #ifdef DDB
301 static void db_print_sa(const struct sockaddr *);
302 static void db_print_ifa(struct ifaddr *);
303 static int db_show_rtentry(struct rtentry *, void *);
304 #endif
305
306 #ifdef RTFLUSH_DEBUG
307 static void sysctl_net_rtcache_setup(struct sysctllog **);
308 static void
309 sysctl_net_rtcache_setup(struct sysctllog **clog)
310 {
311 const struct sysctlnode *rnode;
312
313 if (sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT,
314 CTLTYPE_NODE,
315 "rtcache", SYSCTL_DESCR("Route cache related settings"),
316 NULL, 0, NULL, 0, CTL_NET, CTL_CREATE, CTL_EOL) != 0)
317 return;
318 if (sysctl_createv(clog, 0, &rnode, &rnode,
319 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
320 "debug", SYSCTL_DESCR("Debug route caches"),
321 NULL, 0, &_rtcache_debug, 0, CTL_CREATE, CTL_EOL) != 0)
322 return;
323 }
324 #endif /* RTFLUSH_DEBUG */
325
326 static inline void
327 rt_destroy(struct rtentry *rt)
328 {
329 if (rt->_rt_key != NULL)
330 sockaddr_free(rt->_rt_key);
331 if (rt->rt_gateway != NULL)
332 sockaddr_free(rt->rt_gateway);
333 if (rt_gettag(rt) != NULL)
334 sockaddr_free(rt_gettag(rt));
335 rt->_rt_key = rt->rt_gateway = rt->rt_tag = NULL;
336 }
337
338 static inline const struct sockaddr *
339 rt_setkey(struct rtentry *rt, const struct sockaddr *key, int flags)
340 {
341 if (rt->_rt_key == key)
342 goto out;
343
344 if (rt->_rt_key != NULL)
345 sockaddr_free(rt->_rt_key);
346 rt->_rt_key = sockaddr_dup(key, flags);
347 out:
348 rt->rt_nodes->rn_key = (const char *)rt->_rt_key;
349 return rt->_rt_key;
350 }
351
352 struct ifaddr *
353 rt_get_ifa(struct rtentry *rt)
354 {
355 struct ifaddr *ifa;
356
357 if ((ifa = rt->rt_ifa) == NULL)
358 return ifa;
359 else if (ifa->ifa_getifa == NULL)
360 return ifa;
361 #if 0
362 else if (ifa->ifa_seqno != NULL && *ifa->ifa_seqno == rt->rt_ifa_seqno)
363 return ifa;
364 #endif
365 else {
366 ifa = (*ifa->ifa_getifa)(ifa, rt_getkey(rt));
367 if (ifa == NULL)
368 return NULL;
369 rt_replace_ifa(rt, ifa);
370 return ifa;
371 }
372 }
373
374 static void
375 rt_set_ifa1(struct rtentry *rt, struct ifaddr *ifa)
376 {
377 rt->rt_ifa = ifa;
378 if (ifa->ifa_seqno != NULL)
379 rt->rt_ifa_seqno = *ifa->ifa_seqno;
380 }
381
382 /*
383 * Is this route the connected route for the ifa?
384 */
385 static int
386 rt_ifa_connected(const struct rtentry *rt, const struct ifaddr *ifa)
387 {
388 const struct sockaddr *key, *dst, *odst;
389 struct sockaddr_storage maskeddst;
390
391 key = rt_getkey(rt);
392 dst = rt->rt_flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;
393 if (dst == NULL ||
394 dst->sa_family != key->sa_family ||
395 dst->sa_len != key->sa_len)
396 return 0;
397 if ((rt->rt_flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
398 odst = dst;
399 dst = (struct sockaddr *)&maskeddst;
400 rt_maskedcopy(odst, (struct sockaddr *)&maskeddst,
401 ifa->ifa_netmask);
402 }
403 return (memcmp(dst, key, dst->sa_len) == 0);
404 }
405
406 void
407 rt_replace_ifa(struct rtentry *rt, struct ifaddr *ifa)
408 {
409 if (rt->rt_ifa &&
410 rt->rt_ifa != ifa &&
411 rt->rt_ifa->ifa_flags & IFA_ROUTE &&
412 rt_ifa_connected(rt, rt->rt_ifa))
413 {
414 RT_DPRINTF("rt->_rt_key = %p, ifa = %p, "
415 "replace deleted IFA_ROUTE\n",
416 (void *)rt->_rt_key, (void *)rt->rt_ifa);
417 rt->rt_ifa->ifa_flags &= ~IFA_ROUTE;
418 if (rt_ifa_connected(rt, ifa)) {
419 RT_DPRINTF("rt->_rt_key = %p, ifa = %p, "
420 "replace added IFA_ROUTE\n",
421 (void *)rt->_rt_key, (void *)ifa);
422 ifa->ifa_flags |= IFA_ROUTE;
423 }
424 }
425
426 ifaref(ifa);
427 ifafree(rt->rt_ifa);
428 rt_set_ifa1(rt, ifa);
429 }
430
431 static void
432 rt_set_ifa(struct rtentry *rt, struct ifaddr *ifa)
433 {
434 ifaref(ifa);
435 rt_set_ifa1(rt, ifa);
436 }
437
438 static int
439 route_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
440 void *arg0, void *arg1, void *arg2, void *arg3)
441 {
442 struct rt_msghdr *rtm;
443 int result;
444
445 result = KAUTH_RESULT_DEFER;
446 rtm = arg1;
447
448 if (action != KAUTH_NETWORK_ROUTE)
449 return result;
450
451 if (rtm->rtm_type == RTM_GET)
452 result = KAUTH_RESULT_ALLOW;
453
454 return result;
455 }
456
457 static void rt_free_work(struct work *, void *);
458
459 void
460 rt_init(void)
461 {
462 int error;
463
464 #ifdef RTFLUSH_DEBUG
465 sysctl_net_rtcache_setup(NULL);
466 #endif
467
468 mutex_init(&rt_free_global.lock, MUTEX_DEFAULT, IPL_SOFTNET);
469 SLIST_INIT(&rt_free_global.queue);
470 rt_free_global.enqueued = false;
471
472 rt_psref_class = psref_class_create("rtentry", IPL_SOFTNET);
473
474 error = workqueue_create(&rt_free_global.wq, "rt_free",
475 rt_free_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
476 if (error)
477 panic("%s: workqueue_create failed (%d)\n", __func__, error);
478
479 mutex_init(&rt_update_global.lock, MUTEX_DEFAULT, IPL_SOFTNET);
480 cv_init(&rt_update_global.cv, "rt_update");
481
482 pool_init(&rtentry_pool, sizeof(struct rtentry), 0, 0, 0, "rtentpl",
483 NULL, IPL_SOFTNET);
484 pool_init(&rttimer_pool, sizeof(struct rttimer), 0, 0, 0, "rttmrpl",
485 NULL, IPL_SOFTNET);
486
487 rn_init(); /* initialize all zeroes, all ones, mask table */
488 rtbl_init();
489
490 route_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
491 route_listener_cb, NULL);
492 }
493
494 static void
495 rtcache_invalidate(void)
496 {
497
498 RT_ASSERT_WLOCK();
499
500 if (rtcache_debug())
501 printf("%s: enter\n", __func__);
502
503 rtcache_generation++;
504 }
505
506 #ifdef RT_DEBUG
507 static void
508 dump_rt(const struct rtentry *rt)
509 {
510 char buf[512];
511
512 aprint_normal("rt: ");
513 aprint_normal("p=%p ", rt);
514 if (rt->_rt_key == NULL) {
515 aprint_normal("dst=(NULL) ");
516 } else {
517 sockaddr_format(rt->_rt_key, buf, sizeof(buf));
518 aprint_normal("dst=%s ", buf);
519 }
520 if (rt->rt_gateway == NULL) {
521 aprint_normal("gw=(NULL) ");
522 } else {
523 sockaddr_format(rt->_rt_key, buf, sizeof(buf));
524 aprint_normal("gw=%s ", buf);
525 }
526 aprint_normal("flags=%x ", rt->rt_flags);
527 if (rt->rt_ifp == NULL) {
528 aprint_normal("if=(NULL) ");
529 } else {
530 aprint_normal("if=%s ", rt->rt_ifp->if_xname);
531 }
532 aprint_normal("\n");
533 }
534 #endif /* RT_DEBUG */
535
536 /*
537 * Packet routing routines. If success, refcnt of a returned rtentry
538 * will be incremented. The caller has to rtfree it by itself.
539 */
540 struct rtentry *
541 rtalloc1_locked(const struct sockaddr *dst, int report, bool wait_ok,
542 bool wlock)
543 {
544 rtbl_t *rtbl;
545 struct rtentry *rt;
546 int s;
547
548 #ifdef NET_MPSAFE
549 retry:
550 #endif
551 s = splsoftnet();
552 rtbl = rt_gettable(dst->sa_family);
553 if (rtbl == NULL)
554 goto miss;
555
556 rt = rt_matchaddr(rtbl, dst);
557 if (rt == NULL)
558 goto miss;
559
560 if (!ISSET(rt->rt_flags, RTF_UP))
561 goto miss;
562
563 #ifdef NET_MPSAFE
564 if (ISSET(rt->rt_flags, RTF_UPDATING) &&
565 /* XXX updater should be always able to acquire */
566 curlwp != rt_update_global.lwp) {
567 if (!wait_ok || !rt_wait_ok())
568 goto miss;
569 RT_UNLOCK();
570 splx(s);
571
572 /* We can wait until the update is complete */
573 rt_update_wait();
574
575 if (wlock)
576 RT_WLOCK();
577 else
578 RT_RLOCK();
579 goto retry;
580 }
581 #endif /* NET_MPSAFE */
582
583 rt_ref(rt);
584 RT_REFCNT_TRACE(rt);
585
586 splx(s);
587 return rt;
588 miss:
589 rtstat.rts_unreach++;
590 if (report) {
591 struct rt_addrinfo info;
592
593 memset(&info, 0, sizeof(info));
594 info.rti_info[RTAX_DST] = dst;
595 rt_missmsg(RTM_MISS, &info, 0, 0);
596 }
597 splx(s);
598 return NULL;
599 }
600
601 struct rtentry *
602 rtalloc1(const struct sockaddr *dst, int report)
603 {
604 struct rtentry *rt;
605
606 RT_RLOCK();
607 rt = rtalloc1_locked(dst, report, true, false);
608 RT_UNLOCK();
609
610 return rt;
611 }
612
613 static void
614 rt_ref(struct rtentry *rt)
615 {
616
617 KASSERT(rt->rt_refcnt >= 0);
618 atomic_inc_uint(&rt->rt_refcnt);
619 }
620
621 void
622 rt_unref(struct rtentry *rt)
623 {
624
625 KASSERT(rt != NULL);
626 KASSERTMSG(rt->rt_refcnt > 0, "refcnt=%d", rt->rt_refcnt);
627
628 atomic_dec_uint(&rt->rt_refcnt);
629 if (!ISSET(rt->rt_flags, RTF_UP) || ISSET(rt->rt_flags, RTF_UPDATING)) {
630 mutex_enter(&rt_free_global.lock);
631 cv_broadcast(&rt->rt_cv);
632 mutex_exit(&rt_free_global.lock);
633 }
634 }
635
636 static bool
637 rt_wait_ok(void)
638 {
639
640 KASSERT(!cpu_intr_p());
641 return !cpu_softintr_p();
642 }
643
644 void
645 rt_wait_refcnt(const char *title, struct rtentry *rt, int cnt)
646 {
647 mutex_enter(&rt_free_global.lock);
648 while (rt->rt_refcnt > cnt) {
649 dlog(LOG_DEBUG, "%s: %s waiting (refcnt=%d)\n",
650 __func__, title, rt->rt_refcnt);
651 cv_wait(&rt->rt_cv, &rt_free_global.lock);
652 dlog(LOG_DEBUG, "%s: %s waited (refcnt=%d)\n",
653 __func__, title, rt->rt_refcnt);
654 }
655 mutex_exit(&rt_free_global.lock);
656 }
657
658 void
659 rt_wait_psref(struct rtentry *rt)
660 {
661
662 psref_target_destroy(&rt->rt_psref, rt_psref_class);
663 psref_target_init(&rt->rt_psref, rt_psref_class);
664 }
665
666 static void
667 _rt_free(struct rtentry *rt)
668 {
669 struct ifaddr *ifa;
670
671 /*
672 * Need to avoid a deadlock on rt_wait_refcnt of update
673 * and a conflict on psref_target_destroy of update.
674 */
675 #ifdef NET_MPSAFE
676 rt_update_wait();
677 #endif
678
679 RT_REFCNT_TRACE(rt);
680 KASSERTMSG(rt->rt_refcnt >= 0, "refcnt=%d", rt->rt_refcnt);
681 rt_wait_refcnt("free", rt, 0);
682 #ifdef NET_MPSAFE
683 psref_target_destroy(&rt->rt_psref, rt_psref_class);
684 #endif
685
686 rt_assert_inactive(rt);
687 rttrash--;
688 ifa = rt->rt_ifa;
689 rt->rt_ifa = NULL;
690 ifafree(ifa);
691 rt->rt_ifp = NULL;
692 cv_destroy(&rt->rt_cv);
693 rt_destroy(rt);
694 pool_put(&rtentry_pool, rt);
695 }
696
697 static void
698 rt_free_work(struct work *wk, void *arg)
699 {
700
701 for (;;) {
702 struct rtentry *rt;
703
704 mutex_enter(&rt_free_global.lock);
705 rt_free_global.enqueued = false;
706 if ((rt = SLIST_FIRST(&rt_free_global.queue)) == NULL) {
707 mutex_exit(&rt_free_global.lock);
708 return;
709 }
710 SLIST_REMOVE_HEAD(&rt_free_global.queue, rt_free);
711 mutex_exit(&rt_free_global.lock);
712 atomic_dec_uint(&rt->rt_refcnt);
713 _rt_free(rt);
714 }
715 }
716
717 void
718 rt_free(struct rtentry *rt)
719 {
720
721 KASSERT(rt->rt_refcnt > 0);
722 if (rt_wait_ok()) {
723 atomic_dec_uint(&rt->rt_refcnt);
724 _rt_free(rt);
725 return;
726 }
727
728 mutex_enter(&rt_free_global.lock);
729 rt_ref(rt);
730 SLIST_INSERT_HEAD(&rt_free_global.queue, rt, rt_free);
731 if (!rt_free_global.enqueued) {
732 workqueue_enqueue(rt_free_global.wq, &rt_free_global.wk, NULL);
733 rt_free_global.enqueued = true;
734 }
735 mutex_exit(&rt_free_global.lock);
736 }
737
738 #ifdef NET_MPSAFE
739 static void
740 rt_update_wait(void)
741 {
742
743 mutex_enter(&rt_update_global.lock);
744 while (rt_update_global.ongoing) {
745 dlog(LOG_DEBUG, "%s: waiting lwp=%p\n", __func__, curlwp);
746 cv_wait(&rt_update_global.cv, &rt_update_global.lock);
747 dlog(LOG_DEBUG, "%s: waited lwp=%p\n", __func__, curlwp);
748 }
749 mutex_exit(&rt_update_global.lock);
750 }
751 #endif
752
753 int
754 rt_update_prepare(struct rtentry *rt)
755 {
756
757 dlog(LOG_DEBUG, "%s: updating rt=%p lwp=%p\n", __func__, rt, curlwp);
758
759 RT_WLOCK();
760 /* If the entry is being destroyed, don't proceed the update. */
761 if (!ISSET(rt->rt_flags, RTF_UP)) {
762 RT_UNLOCK();
763 return ESRCH;
764 }
765 rt->rt_flags |= RTF_UPDATING;
766 RT_UNLOCK();
767
768 mutex_enter(&rt_update_global.lock);
769 while (rt_update_global.ongoing) {
770 dlog(LOG_DEBUG, "%s: waiting ongoing updating rt=%p lwp=%p\n",
771 __func__, rt, curlwp);
772 cv_wait(&rt_update_global.cv, &rt_update_global.lock);
773 dlog(LOG_DEBUG, "%s: waited ongoing updating rt=%p lwp=%p\n",
774 __func__, rt, curlwp);
775 }
776 rt_update_global.ongoing = true;
777 /* XXX need it to avoid rt_update_wait by updater itself. */
778 rt_update_global.lwp = curlwp;
779 mutex_exit(&rt_update_global.lock);
780
781 rt_wait_refcnt("update", rt, 1);
782 rt_wait_psref(rt);
783
784 return 0;
785 }
786
787 void
788 rt_update_finish(struct rtentry *rt)
789 {
790
791 RT_WLOCK();
792 rt->rt_flags &= ~RTF_UPDATING;
793 RT_UNLOCK();
794
795 mutex_enter(&rt_update_global.lock);
796 rt_update_global.ongoing = false;
797 rt_update_global.lwp = NULL;
798 cv_broadcast(&rt_update_global.cv);
799 mutex_exit(&rt_update_global.lock);
800
801 dlog(LOG_DEBUG, "%s: updated rt=%p lwp=%p\n", __func__, rt, curlwp);
802 }
803
804 /*
805 * Force a routing table entry to the specified
806 * destination to go through the given gateway.
807 * Normally called as a result of a routing redirect
808 * message from the network layer.
809 *
810 * N.B.: must be called at splsoftnet
811 */
812 void
813 rtredirect(const struct sockaddr *dst, const struct sockaddr *gateway,
814 const struct sockaddr *netmask, int flags, const struct sockaddr *src,
815 struct rtentry **rtp)
816 {
817 struct rtentry *rt;
818 int error = 0;
819 uint64_t *stat = NULL;
820 struct rt_addrinfo info;
821 struct ifaddr *ifa;
822 struct psref psref;
823
824 /* verify the gateway is directly reachable */
825 if ((ifa = ifa_ifwithnet_psref(gateway, &psref)) == NULL) {
826 error = ENETUNREACH;
827 goto out;
828 }
829 rt = rtalloc1(dst, 0);
830 /*
831 * If the redirect isn't from our current router for this dst,
832 * it's either old or wrong. If it redirects us to ourselves,
833 * we have a routing loop, perhaps as a result of an interface
834 * going down recently.
835 */
836 if (!(flags & RTF_DONE) && rt &&
837 (sockaddr_cmp(src, rt->rt_gateway) != 0 || rt->rt_ifa != ifa))
838 error = EINVAL;
839 else {
840 int s = pserialize_read_enter();
841 struct ifaddr *_ifa;
842
843 _ifa = ifa_ifwithaddr(gateway);
844 if (_ifa != NULL)
845 error = EHOSTUNREACH;
846 pserialize_read_exit(s);
847 }
848 if (error)
849 goto done;
850 /*
851 * Create a new entry if we just got back a wildcard entry
852 * or the lookup failed. This is necessary for hosts
853 * which use routing redirects generated by smart gateways
854 * to dynamically build the routing tables.
855 */
856 if (rt == NULL || (rt_mask(rt) && rt_mask(rt)->sa_len < 2))
857 goto create;
858 /*
859 * Don't listen to the redirect if it's
860 * for a route to an interface.
861 */
862 if (rt->rt_flags & RTF_GATEWAY) {
863 if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
864 /*
865 * Changing from route to net => route to host.
866 * Create new route, rather than smashing route to net.
867 */
868 create:
869 if (rt != NULL)
870 rt_unref(rt);
871 flags |= RTF_GATEWAY | RTF_DYNAMIC;
872 memset(&info, 0, sizeof(info));
873 info.rti_info[RTAX_DST] = dst;
874 info.rti_info[RTAX_GATEWAY] = gateway;
875 info.rti_info[RTAX_NETMASK] = netmask;
876 info.rti_ifa = ifa;
877 info.rti_flags = flags;
878 rt = NULL;
879 error = rtrequest1(RTM_ADD, &info, &rt);
880 if (rt != NULL)
881 flags = rt->rt_flags;
882 stat = &rtstat.rts_dynamic;
883 } else {
884 /*
885 * Smash the current notion of the gateway to
886 * this destination. Should check about netmask!!!
887 */
888 #ifdef NET_MPSAFE
889 KASSERT(!cpu_softintr_p());
890
891 error = rt_update_prepare(rt);
892 if (error == 0) {
893 #endif
894 RT_WLOCK();
895 error = rt_setgate(rt, gateway);
896 if (error == 0) {
897 rt->rt_flags |= RTF_MODIFIED;
898 flags |= RTF_MODIFIED;
899 }
900 RT_UNLOCK();
901 #ifdef NET_MPSAFE
902 rt_update_finish(rt);
903 } else {
904 /*
905 * If error != 0, the rtentry is being
906 * destroyed, so doing nothing doesn't
907 * matter.
908 */
909 }
910 #endif
911 stat = &rtstat.rts_newgateway;
912 }
913 } else
914 error = EHOSTUNREACH;
915 done:
916 if (rt) {
917 if (rtp != NULL && !error)
918 *rtp = rt;
919 else
920 rt_unref(rt);
921 }
922 out:
923 if (error)
924 rtstat.rts_badredirect++;
925 else if (stat != NULL)
926 (*stat)++;
927 memset(&info, 0, sizeof(info));
928 info.rti_info[RTAX_DST] = dst;
929 info.rti_info[RTAX_GATEWAY] = gateway;
930 info.rti_info[RTAX_NETMASK] = netmask;
931 info.rti_info[RTAX_AUTHOR] = src;
932 rt_missmsg(RTM_REDIRECT, &info, flags, error);
933 ifa_release(ifa, &psref);
934 }
935
936 /*
937 * Delete a route and generate a message.
938 * It doesn't free a passed rt.
939 */
940 static int
941 rtdeletemsg(struct rtentry *rt)
942 {
943 int error;
944 struct rt_addrinfo info;
945 struct rtentry *retrt;
946
947 /*
948 * Request the new route so that the entry is not actually
949 * deleted. That will allow the information being reported to
950 * be accurate (and consistent with route_output()).
951 */
952 memset(&info, 0, sizeof(info));
953 info.rti_info[RTAX_DST] = rt_getkey(rt);
954 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
955 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
956 info.rti_flags = rt->rt_flags;
957 error = rtrequest1(RTM_DELETE, &info, &retrt);
958
959 rt_missmsg(RTM_DELETE, &info, info.rti_flags, error);
960
961 return error;
962 }
963
964 static struct ifaddr *
965 ifa_ifwithroute_psref(int flags, const struct sockaddr *dst,
966 const struct sockaddr *gateway, struct psref *psref)
967 {
968 struct ifaddr *ifa = NULL;
969
970 if ((flags & RTF_GATEWAY) == 0) {
971 /*
972 * If we are adding a route to an interface,
973 * and the interface is a pt to pt link
974 * we should search for the destination
975 * as our clue to the interface. Otherwise
976 * we can use the local address.
977 */
978 if ((flags & RTF_HOST) && gateway->sa_family != AF_LINK)
979 ifa = ifa_ifwithdstaddr_psref(dst, psref);
980 if (ifa == NULL)
981 ifa = ifa_ifwithaddr_psref(gateway, psref);
982 } else {
983 /*
984 * If we are adding a route to a remote net
985 * or host, the gateway may still be on the
986 * other end of a pt to pt link.
987 */
988 ifa = ifa_ifwithdstaddr_psref(gateway, psref);
989 }
990 if (ifa == NULL)
991 ifa = ifa_ifwithnet_psref(gateway, psref);
992 if (ifa == NULL) {
993 int s;
994 struct rtentry *rt;
995
996 rt = rtalloc1_locked(gateway, 0, true, true);
997 if (rt == NULL)
998 return NULL;
999 if (rt->rt_flags & RTF_GATEWAY) {
1000 rt_unref(rt);
1001 return NULL;
1002 }
1003 /*
1004 * Just in case. May not need to do this workaround.
1005 * Revisit when working on rtentry MP-ification.
1006 */
1007 s = pserialize_read_enter();
1008 IFADDR_READER_FOREACH(ifa, rt->rt_ifp) {
1009 if (ifa == rt->rt_ifa)
1010 break;
1011 }
1012 if (ifa != NULL)
1013 ifa_acquire(ifa, psref);
1014 pserialize_read_exit(s);
1015 rt_unref(rt);
1016 if (ifa == NULL)
1017 return NULL;
1018 }
1019 if (ifa->ifa_addr->sa_family != dst->sa_family) {
1020 struct ifaddr *nifa;
1021 int s;
1022
1023 s = pserialize_read_enter();
1024 nifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
1025 if (nifa != NULL) {
1026 ifa_release(ifa, psref);
1027 ifa_acquire(nifa, psref);
1028 ifa = nifa;
1029 }
1030 pserialize_read_exit(s);
1031 }
1032 return ifa;
1033 }
1034
1035 /*
1036 * If it suceeds and ret_nrt isn't NULL, refcnt of ret_nrt is incremented.
1037 * The caller has to rtfree it by itself.
1038 */
1039 int
1040 rtrequest(int req, const struct sockaddr *dst, const struct sockaddr *gateway,
1041 const struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
1042 {
1043 struct rt_addrinfo info;
1044
1045 memset(&info, 0, sizeof(info));
1046 info.rti_flags = flags;
1047 info.rti_info[RTAX_DST] = dst;
1048 info.rti_info[RTAX_GATEWAY] = gateway;
1049 info.rti_info[RTAX_NETMASK] = netmask;
1050 return rtrequest1(req, &info, ret_nrt);
1051 }
1052
1053 /*
1054 * It's a utility function to add/remove a route to/from the routing table
1055 * and tell user processes the addition/removal on success.
1056 */
1057 int
1058 rtrequest_newmsg(const int req, const struct sockaddr *dst,
1059 const struct sockaddr *gateway, const struct sockaddr *netmask,
1060 const int flags)
1061 {
1062 int error;
1063 struct rtentry *ret_nrt = NULL;
1064
1065 KASSERT(req == RTM_ADD || req == RTM_DELETE);
1066
1067 error = rtrequest(req, dst, gateway, netmask, flags, &ret_nrt);
1068 if (error != 0)
1069 return error;
1070
1071 KASSERT(ret_nrt != NULL);
1072
1073 rt_newmsg(req, ret_nrt); /* tell user process */
1074 if (req == RTM_DELETE)
1075 rt_free(ret_nrt);
1076 else
1077 rt_unref(ret_nrt);
1078
1079 return 0;
1080 }
1081
1082 static struct ifnet *
1083 rt_getifp(struct rt_addrinfo *info, struct psref *psref)
1084 {
1085 const struct sockaddr *ifpaddr = info->rti_info[RTAX_IFP];
1086
1087 if (info->rti_ifp != NULL)
1088 return NULL;
1089 /*
1090 * ifp may be specified by sockaddr_dl when protocol address
1091 * is ambiguous
1092 */
1093 if (ifpaddr != NULL && ifpaddr->sa_family == AF_LINK) {
1094 struct ifaddr *ifa;
1095 int s = pserialize_read_enter();
1096
1097 ifa = ifa_ifwithnet(ifpaddr);
1098 if (ifa != NULL)
1099 info->rti_ifp = if_get_byindex(ifa->ifa_ifp->if_index,
1100 psref);
1101 pserialize_read_exit(s);
1102 }
1103
1104 return info->rti_ifp;
1105 }
1106
1107 static struct ifaddr *
1108 rt_getifa(struct rt_addrinfo *info, struct psref *psref)
1109 {
1110 struct ifaddr *ifa = NULL;
1111 const struct sockaddr *dst = info->rti_info[RTAX_DST];
1112 const struct sockaddr *gateway = info->rti_info[RTAX_GATEWAY];
1113 const struct sockaddr *ifaaddr = info->rti_info[RTAX_IFA];
1114 int flags = info->rti_flags;
1115 const struct sockaddr *sa;
1116
1117 if (info->rti_ifa == NULL && ifaaddr != NULL) {
1118 ifa = ifa_ifwithaddr_psref(ifaaddr, psref);
1119 if (ifa != NULL)
1120 goto got;
1121 }
1122
1123 sa = ifaaddr != NULL ? ifaaddr :
1124 (gateway != NULL ? gateway : dst);
1125 if (sa != NULL && info->rti_ifp != NULL)
1126 ifa = ifaof_ifpforaddr_psref(sa, info->rti_ifp, psref);
1127 else if (dst != NULL && gateway != NULL)
1128 ifa = ifa_ifwithroute_psref(flags, dst, gateway, psref);
1129 else if (sa != NULL)
1130 ifa = ifa_ifwithroute_psref(flags, sa, sa, psref);
1131 if (ifa == NULL)
1132 return NULL;
1133 got:
1134 if (ifa->ifa_getifa != NULL) {
1135 /* FIXME ifa_getifa is NOMPSAFE */
1136 ifa = (*ifa->ifa_getifa)(ifa, dst);
1137 if (ifa == NULL)
1138 return NULL;
1139 ifa_acquire(ifa, psref);
1140 }
1141 info->rti_ifa = ifa;
1142 if (info->rti_ifp == NULL)
1143 info->rti_ifp = ifa->ifa_ifp;
1144 return ifa;
1145 }
1146
1147 /*
1148 * If it suceeds and ret_nrt isn't NULL, refcnt of ret_nrt is incremented.
1149 * The caller has to rtfree it by itself.
1150 */
1151 int
1152 rtrequest1(int req, struct rt_addrinfo *info, struct rtentry **ret_nrt)
1153 {
1154 int s = splsoftnet(), ss;
1155 int error = 0, rc;
1156 struct rtentry *rt;
1157 rtbl_t *rtbl;
1158 struct ifaddr *ifa = NULL;
1159 struct sockaddr_storage maskeddst;
1160 const struct sockaddr *dst = info->rti_info[RTAX_DST];
1161 const struct sockaddr *gateway = info->rti_info[RTAX_GATEWAY];
1162 const struct sockaddr *netmask = info->rti_info[RTAX_NETMASK];
1163 int flags = info->rti_flags;
1164 struct psref psref_ifp, psref_ifa;
1165 int bound = 0;
1166 struct ifnet *ifp = NULL;
1167 bool need_to_release_ifa = true;
1168 bool need_unlock = true;
1169 #define senderr(x) { error = x ; goto bad; }
1170
1171 RT_WLOCK();
1172
1173 bound = curlwp_bind();
1174 if ((rtbl = rt_gettable(dst->sa_family)) == NULL)
1175 senderr(ESRCH);
1176 if (flags & RTF_HOST)
1177 netmask = NULL;
1178 switch (req) {
1179 case RTM_DELETE:
1180 if (netmask) {
1181 rt_maskedcopy(dst, (struct sockaddr *)&maskeddst,
1182 netmask);
1183 dst = (struct sockaddr *)&maskeddst;
1184 }
1185 if ((rt = rt_lookup(rtbl, dst, netmask)) == NULL)
1186 senderr(ESRCH);
1187 if ((rt = rt_deladdr(rtbl, dst, netmask)) == NULL)
1188 senderr(ESRCH);
1189 rt->rt_flags &= ~RTF_UP;
1190 if ((ifa = rt->rt_ifa)) {
1191 if (ifa->ifa_flags & IFA_ROUTE &&
1192 rt_ifa_connected(rt, ifa)) {
1193 RT_DPRINTF("rt->_rt_key = %p, ifa = %p, "
1194 "deleted IFA_ROUTE\n",
1195 (void *)rt->_rt_key, (void *)ifa);
1196 ifa->ifa_flags &= ~IFA_ROUTE;
1197 }
1198 if (ifa->ifa_rtrequest)
1199 ifa->ifa_rtrequest(RTM_DELETE, rt, info);
1200 ifa = NULL;
1201 }
1202 rttrash++;
1203 if (ret_nrt) {
1204 *ret_nrt = rt;
1205 rt_ref(rt);
1206 RT_REFCNT_TRACE(rt);
1207 }
1208 rtcache_invalidate();
1209 RT_UNLOCK();
1210 need_unlock = false;
1211 rt_timer_remove_all(rt);
1212 #if defined(INET) || defined(INET6)
1213 if (netmask != NULL)
1214 lltable_prefix_free(dst->sa_family, dst, netmask, 0);
1215 #endif
1216 if (ret_nrt == NULL) {
1217 /* Adjust the refcount */
1218 rt_ref(rt);
1219 RT_REFCNT_TRACE(rt);
1220 rt_free(rt);
1221 }
1222 break;
1223
1224 case RTM_ADD:
1225 if (info->rti_ifa == NULL) {
1226 ifp = rt_getifp(info, &psref_ifp);
1227 ifa = rt_getifa(info, &psref_ifa);
1228 if (ifa == NULL)
1229 senderr(ENETUNREACH);
1230 } else {
1231 /* Caller should have a reference of ifa */
1232 ifa = info->rti_ifa;
1233 need_to_release_ifa = false;
1234 }
1235 rt = pool_get(&rtentry_pool, PR_NOWAIT);
1236 if (rt == NULL)
1237 senderr(ENOBUFS);
1238 memset(rt, 0, sizeof(*rt));
1239 rt->rt_flags = RTF_UP | flags;
1240 LIST_INIT(&rt->rt_timer);
1241
1242 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1243 if (netmask) {
1244 rt_maskedcopy(dst, (struct sockaddr *)&maskeddst,
1245 netmask);
1246 rt_setkey(rt, (struct sockaddr *)&maskeddst, M_NOWAIT);
1247 } else {
1248 rt_setkey(rt, dst, M_NOWAIT);
1249 }
1250 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1251 if (rt_getkey(rt) == NULL ||
1252 rt_setgate(rt, gateway) != 0) {
1253 pool_put(&rtentry_pool, rt);
1254 senderr(ENOBUFS);
1255 }
1256
1257 rt_set_ifa(rt, ifa);
1258 if (info->rti_info[RTAX_TAG] != NULL) {
1259 const struct sockaddr *tag;
1260 tag = rt_settag(rt, info->rti_info[RTAX_TAG]);
1261 if (tag == NULL)
1262 senderr(ENOBUFS);
1263 }
1264 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1265
1266 ss = pserialize_read_enter();
1267 if (info->rti_info[RTAX_IFP] != NULL) {
1268 struct ifaddr *ifa2;
1269 ifa2 = ifa_ifwithnet(info->rti_info[RTAX_IFP]);
1270 if (ifa2 != NULL)
1271 rt->rt_ifp = ifa2->ifa_ifp;
1272 else
1273 rt->rt_ifp = ifa->ifa_ifp;
1274 } else
1275 rt->rt_ifp = ifa->ifa_ifp;
1276 pserialize_read_exit(ss);
1277 cv_init(&rt->rt_cv, "rtentry");
1278 psref_target_init(&rt->rt_psref, rt_psref_class);
1279
1280 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1281 rc = rt_addaddr(rtbl, rt, netmask);
1282 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1283 if (rc != 0) {
1284 ifafree(ifa); /* for rt_set_ifa above */
1285 cv_destroy(&rt->rt_cv);
1286 rt_destroy(rt);
1287 pool_put(&rtentry_pool, rt);
1288 senderr(rc);
1289 }
1290 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1291 if (ifa->ifa_rtrequest)
1292 ifa->ifa_rtrequest(req, rt, info);
1293 if (need_to_release_ifa)
1294 ifa_release(ifa, &psref_ifa);
1295 ifa = NULL;
1296 if_put(ifp, &psref_ifp);
1297 ifp = NULL;
1298 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1299 if (ret_nrt) {
1300 *ret_nrt = rt;
1301 rt_ref(rt);
1302 RT_REFCNT_TRACE(rt);
1303 }
1304 rtcache_invalidate();
1305 RT_UNLOCK();
1306 need_unlock = false;
1307 break;
1308 case RTM_GET:
1309 if (netmask != NULL) {
1310 rt_maskedcopy(dst, (struct sockaddr *)&maskeddst,
1311 netmask);
1312 dst = (struct sockaddr *)&maskeddst;
1313 }
1314 if ((rt = rt_lookup(rtbl, dst, netmask)) == NULL)
1315 senderr(ESRCH);
1316 if (ret_nrt != NULL) {
1317 *ret_nrt = rt;
1318 rt_ref(rt);
1319 RT_REFCNT_TRACE(rt);
1320 }
1321 break;
1322 }
1323 bad:
1324 if (need_to_release_ifa)
1325 ifa_release(ifa, &psref_ifa);
1326 if_put(ifp, &psref_ifp);
1327 curlwp_bindx(bound);
1328 if (need_unlock)
1329 RT_UNLOCK();
1330 splx(s);
1331 return error;
1332 }
1333
1334 int
1335 rt_setgate(struct rtentry *rt, const struct sockaddr *gate)
1336 {
1337 struct sockaddr *new, *old;
1338
1339 KASSERT(RT_WLOCKED());
1340 KASSERT(rt->_rt_key != NULL);
1341 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1342
1343 new = sockaddr_dup(gate, M_ZERO | M_NOWAIT);
1344 if (new == NULL)
1345 return ENOMEM;
1346
1347 old = rt->rt_gateway;
1348 rt->rt_gateway = new;
1349 if (old != NULL)
1350 sockaddr_free(old);
1351
1352 KASSERT(rt->_rt_key != NULL);
1353 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1354
1355 if (rt->rt_flags & RTF_GATEWAY) {
1356 struct rtentry *gwrt;
1357
1358 gwrt = rtalloc1_locked(gate, 1, false, true);
1359 /*
1360 * If we switched gateways, grab the MTU from the new
1361 * gateway route if the current MTU, if the current MTU is
1362 * greater than the MTU of gateway.
1363 * Note that, if the MTU of gateway is 0, we will reset the
1364 * MTU of the route to run PMTUD again from scratch. XXX
1365 */
1366 if (gwrt != NULL) {
1367 KASSERT(gwrt->_rt_key != NULL);
1368 RT_DPRINTF("gwrt->_rt_key = %p\n", gwrt->_rt_key);
1369 if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
1370 rt->rt_rmx.rmx_mtu &&
1371 rt->rt_rmx.rmx_mtu > gwrt->rt_rmx.rmx_mtu) {
1372 rt->rt_rmx.rmx_mtu = gwrt->rt_rmx.rmx_mtu;
1373 }
1374 rt_unref(gwrt);
1375 }
1376 }
1377 KASSERT(rt->_rt_key != NULL);
1378 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1379 return 0;
1380 }
1381
1382 static struct ifaddr *
1383 rt_update_get_ifa(const struct rt_addrinfo info, const struct rtentry *rt,
1384 struct ifnet **ifp, struct psref *psref_ifp, struct psref *psref)
1385 {
1386 struct ifaddr *ifa = NULL;
1387
1388 *ifp = NULL;
1389 if (info.rti_info[RTAX_IFP] != NULL) {
1390 ifa = ifa_ifwithnet_psref(info.rti_info[RTAX_IFP], psref);
1391 if (ifa == NULL)
1392 goto next;
1393 *ifp = ifa->ifa_ifp;
1394 if_acquire(*ifp, psref_ifp);
1395 if (info.rti_info[RTAX_IFA] == NULL &&
1396 info.rti_info[RTAX_GATEWAY] == NULL)
1397 goto next;
1398 ifa_release(ifa, psref);
1399 if (info.rti_info[RTAX_IFA] == NULL) {
1400 /* route change <dst> <gw> -ifp <if> */
1401 ifa = ifaof_ifpforaddr_psref(info.rti_info[RTAX_GATEWAY],
1402 *ifp, psref);
1403 } else {
1404 /* route change <dst> -ifp <if> -ifa <addr> */
1405 ifa = ifa_ifwithaddr_psref(info.rti_info[RTAX_IFA], psref);
1406 if (ifa != NULL)
1407 goto out;
1408 ifa = ifaof_ifpforaddr_psref(info.rti_info[RTAX_IFA],
1409 *ifp, psref);
1410 }
1411 goto out;
1412 }
1413 next:
1414 if (info.rti_info[RTAX_IFA] != NULL) {
1415 /* route change <dst> <gw> -ifa <addr> */
1416 ifa = ifa_ifwithaddr_psref(info.rti_info[RTAX_IFA], psref);
1417 if (ifa != NULL)
1418 goto out;
1419 }
1420 if (info.rti_info[RTAX_GATEWAY] != NULL) {
1421 /* route change <dst> <gw> */
1422 ifa = ifa_ifwithroute_psref(rt->rt_flags, rt_getkey(rt),
1423 info.rti_info[RTAX_GATEWAY], psref);
1424 }
1425 out:
1426 if (ifa != NULL && *ifp == NULL) {
1427 *ifp = ifa->ifa_ifp;
1428 if_acquire(*ifp, psref_ifp);
1429 }
1430 if (ifa == NULL && *ifp != NULL) {
1431 if_put(*ifp, psref_ifp);
1432 *ifp = NULL;
1433 }
1434 return ifa;
1435 }
1436
1437 int
1438 rt_update(struct rtentry *rt, struct rt_addrinfo *info, void *rtm)
1439 {
1440 int error = 0;
1441 struct ifnet *ifp = NULL, *new_ifp = NULL;
1442 struct ifaddr *ifa = NULL, *new_ifa;
1443 struct psref psref_ifa, psref_new_ifa, psref_ifp, psref_new_ifp;
1444 bool newgw, ifp_changed = false;
1445
1446 RT_WLOCK();
1447 /*
1448 * New gateway could require new ifaddr, ifp;
1449 * flags may also be different; ifp may be specified
1450 * by ll sockaddr when protocol address is ambiguous
1451 */
1452 newgw = info->rti_info[RTAX_GATEWAY] != NULL &&
1453 sockaddr_cmp(info->rti_info[RTAX_GATEWAY], rt->rt_gateway) != 0;
1454
1455 if (newgw || info->rti_info[RTAX_IFP] != NULL ||
1456 info->rti_info[RTAX_IFA] != NULL) {
1457 ifp = rt_getifp(info, &psref_ifp);
1458 /* info refers ifp so we need to keep a reference */
1459 ifa = rt_getifa(info, &psref_ifa);
1460 if (ifa == NULL) {
1461 error = ENETUNREACH;
1462 goto out;
1463 }
1464 }
1465 if (newgw) {
1466 error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY]);
1467 if (error != 0)
1468 goto out;
1469 }
1470 if (info->rti_info[RTAX_TAG]) {
1471 const struct sockaddr *tag;
1472 tag = rt_settag(rt, info->rti_info[RTAX_TAG]);
1473 if (tag == NULL) {
1474 error = ENOBUFS;
1475 goto out;
1476 }
1477 }
1478 /*
1479 * New gateway could require new ifaddr, ifp;
1480 * flags may also be different; ifp may be specified
1481 * by ll sockaddr when protocol address is ambiguous
1482 */
1483 new_ifa = rt_update_get_ifa(*info, rt, &new_ifp, &psref_new_ifp,
1484 &psref_new_ifa);
1485 if (new_ifa != NULL) {
1486 ifa_release(ifa, &psref_ifa);
1487 ifa = new_ifa;
1488 }
1489 if (ifa) {
1490 struct ifaddr *oifa = rt->rt_ifa;
1491 if (oifa != ifa && !ifa_is_destroying(ifa) &&
1492 new_ifp != NULL && !if_is_deactivated(new_ifp)) {
1493 if (oifa && oifa->ifa_rtrequest)
1494 oifa->ifa_rtrequest(RTM_DELETE, rt, info);
1495 rt_replace_ifa(rt, ifa);
1496 rt->rt_ifp = new_ifp;
1497 ifp_changed = true;
1498 }
1499 if (new_ifa == NULL)
1500 ifa_release(ifa, &psref_ifa);
1501 }
1502 ifa_release(new_ifa, &psref_new_ifa);
1503 if (new_ifp && rt->rt_ifp != new_ifp && !if_is_deactivated(new_ifp)) {
1504 rt->rt_ifp = new_ifp;
1505 ifp_changed = true;
1506 }
1507 rt_setmetrics(rtm, rt);
1508 if (rt->rt_flags != info->rti_flags) {
1509 rt->rt_flags = (info->rti_flags & ~PRESERVED_RTF) |
1510 (rt->rt_flags & PRESERVED_RTF);
1511 }
1512 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
1513 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, info);
1514 #if defined(INET) || defined(INET6)
1515 if (ifp_changed && rt_mask(rt) != NULL)
1516 lltable_prefix_free(rt_getkey(rt)->sa_family, rt_getkey(rt),
1517 rt_mask(rt), 0);
1518 #else
1519 (void)ifp_changed; /* XXX gcc */
1520 #endif
1521 out:
1522 if_put(new_ifp, &psref_new_ifp);
1523 if_put(ifp, &psref_ifp);
1524
1525 RT_UNLOCK();
1526
1527 return error;
1528 }
1529
1530 static void
1531 rt_maskedcopy(const struct sockaddr *src, struct sockaddr *dst,
1532 const struct sockaddr *netmask)
1533 {
1534 const char *netmaskp = &netmask->sa_data[0],
1535 *srcp = &src->sa_data[0];
1536 char *dstp = &dst->sa_data[0];
1537 const char *maskend = (char *)dst + MIN(netmask->sa_len, src->sa_len);
1538 const char *srcend = (char *)dst + src->sa_len;
1539
1540 dst->sa_len = src->sa_len;
1541 dst->sa_family = src->sa_family;
1542
1543 while (dstp < maskend)
1544 *dstp++ = *srcp++ & *netmaskp++;
1545 if (dstp < srcend)
1546 memset(dstp, 0, (size_t)(srcend - dstp));
1547 }
1548
1549 /*
1550 * Inform the routing socket of a route change.
1551 */
1552 void
1553 rt_newmsg(const int cmd, const struct rtentry *rt)
1554 {
1555 struct rt_addrinfo info;
1556
1557 memset((void *)&info, 0, sizeof(info));
1558 info.rti_info[RTAX_DST] = rt_getkey(rt);
1559 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
1560 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1561 if (rt->rt_ifp) {
1562 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
1563 info.rti_info[RTAX_IFA] = rt->rt_ifa->ifa_addr;
1564 }
1565
1566 rt_missmsg(cmd, &info, rt->rt_flags, 0);
1567 }
1568
1569 /*
1570 * Set up or tear down a routing table entry, normally
1571 * for an interface.
1572 */
1573 int
1574 rtinit(struct ifaddr *ifa, int cmd, int flags)
1575 {
1576 struct rtentry *rt;
1577 struct sockaddr *dst, *odst;
1578 struct sockaddr_storage maskeddst;
1579 struct rtentry *nrt = NULL;
1580 int error;
1581 struct rt_addrinfo info;
1582
1583 dst = flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;
1584 if (cmd == RTM_DELETE) {
1585 if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
1586 /* Delete subnet route for this interface */
1587 odst = dst;
1588 dst = (struct sockaddr *)&maskeddst;
1589 rt_maskedcopy(odst, dst, ifa->ifa_netmask);
1590 }
1591 if ((rt = rtalloc1(dst, 0)) != NULL) {
1592 if (rt->rt_ifa != ifa) {
1593 rt_unref(rt);
1594 return (flags & RTF_HOST) ? EHOSTUNREACH
1595 : ENETUNREACH;
1596 }
1597 rt_unref(rt);
1598 }
1599 }
1600 memset(&info, 0, sizeof(info));
1601 info.rti_ifa = ifa;
1602 info.rti_flags = flags | ifa->ifa_flags;
1603 info.rti_info[RTAX_DST] = dst;
1604 info.rti_info[RTAX_GATEWAY] = ifa->ifa_addr;
1605
1606 /*
1607 * XXX here, it seems that we are assuming that ifa_netmask is NULL
1608 * for RTF_HOST. bsdi4 passes NULL explicitly (via intermediate
1609 * variable) when RTF_HOST is 1. still not sure if i can safely
1610 * change it to meet bsdi4 behavior.
1611 */
1612 if (cmd != RTM_LLINFO_UPD)
1613 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1614 error = rtrequest1((cmd == RTM_LLINFO_UPD) ? RTM_GET : cmd, &info,
1615 &nrt);
1616 if (error != 0)
1617 return error;
1618
1619 rt = nrt;
1620 RT_REFCNT_TRACE(rt);
1621 switch (cmd) {
1622 case RTM_DELETE:
1623 rt_newmsg(cmd, rt);
1624 rt_free(rt);
1625 break;
1626 case RTM_LLINFO_UPD:
1627 if (cmd == RTM_LLINFO_UPD && ifa->ifa_rtrequest != NULL)
1628 ifa->ifa_rtrequest(RTM_LLINFO_UPD, rt, &info);
1629 rt_newmsg(RTM_CHANGE, rt);
1630 rt_unref(rt);
1631 break;
1632 case RTM_ADD:
1633 /*
1634 * XXX it looks just reverting rt_ifa replaced by ifa_rtrequest
1635 * called via rtrequest1. Can we just prevent the replacement
1636 * somehow and remove the following code? And also doesn't
1637 * calling ifa_rtrequest(RTM_ADD) replace rt_ifa again?
1638 */
1639 if (rt->rt_ifa != ifa) {
1640 printf("rtinit: wrong ifa (%p) was (%p)\n", ifa,
1641 rt->rt_ifa);
1642 #ifdef NET_MPSAFE
1643 KASSERT(!cpu_softintr_p());
1644
1645 error = rt_update_prepare(rt);
1646 if (error == 0) {
1647 #endif
1648 if (rt->rt_ifa->ifa_rtrequest != NULL) {
1649 rt->rt_ifa->ifa_rtrequest(RTM_DELETE,
1650 rt, &info);
1651 }
1652 rt_replace_ifa(rt, ifa);
1653 rt->rt_ifp = ifa->ifa_ifp;
1654 if (ifa->ifa_rtrequest != NULL)
1655 ifa->ifa_rtrequest(RTM_ADD, rt, &info);
1656 #ifdef NET_MPSAFE
1657 rt_update_finish(rt);
1658 } else {
1659 /*
1660 * If error != 0, the rtentry is being
1661 * destroyed, so doing nothing doesn't
1662 * matter.
1663 */
1664 }
1665 #endif
1666 }
1667 rt_newmsg(cmd, rt);
1668 rt_unref(rt);
1669 RT_REFCNT_TRACE(rt);
1670 break;
1671 }
1672 return error;
1673 }
1674
1675 /*
1676 * Create a local route entry for the address.
1677 * Announce the addition of the address and the route to the routing socket.
1678 */
1679 int
1680 rt_ifa_addlocal(struct ifaddr *ifa)
1681 {
1682 struct rtentry *rt;
1683 int e;
1684
1685 /* If there is no loopback entry, allocate one. */
1686 rt = rtalloc1(ifa->ifa_addr, 0);
1687 #ifdef RT_DEBUG
1688 if (rt != NULL)
1689 dump_rt(rt);
1690 #endif
1691 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
1692 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
1693 {
1694 struct rt_addrinfo info;
1695 struct rtentry *nrt;
1696
1697 memset(&info, 0, sizeof(info));
1698 info.rti_flags = RTF_HOST | RTF_LOCAL;
1699 info.rti_info[RTAX_DST] = ifa->ifa_addr;
1700 info.rti_info[RTAX_GATEWAY] =
1701 (const struct sockaddr *)ifa->ifa_ifp->if_sadl;
1702 info.rti_ifa = ifa;
1703 nrt = NULL;
1704 e = rtrequest1(RTM_ADD, &info, &nrt);
1705 if (nrt && ifa != nrt->rt_ifa)
1706 rt_replace_ifa(nrt, ifa);
1707 rt_newaddrmsg(RTM_ADD, ifa, e, nrt);
1708 if (nrt != NULL) {
1709 #ifdef RT_DEBUG
1710 dump_rt(nrt);
1711 #endif
1712 rt_unref(nrt);
1713 RT_REFCNT_TRACE(nrt);
1714 }
1715 } else {
1716 e = 0;
1717 rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
1718 }
1719 if (rt != NULL)
1720 rt_unref(rt);
1721 return e;
1722 }
1723
1724 /*
1725 * Remove the local route entry for the address.
1726 * Announce the removal of the address and the route to the routing socket.
1727 */
1728 int
1729 rt_ifa_remlocal(struct ifaddr *ifa, struct ifaddr *alt_ifa)
1730 {
1731 struct rtentry *rt;
1732 int e = 0;
1733
1734 rt = rtalloc1(ifa->ifa_addr, 0);
1735
1736 /*
1737 * Before deleting, check if a corresponding loopbacked
1738 * host route surely exists. With this check, we can avoid
1739 * deleting an interface direct route whose destination is
1740 * the same as the address being removed. This can happen
1741 * when removing a subnet-router anycast address on an
1742 * interface attached to a shared medium.
1743 */
1744 if (rt != NULL &&
1745 (rt->rt_flags & RTF_HOST) &&
1746 (rt->rt_ifp->if_flags & IFF_LOOPBACK))
1747 {
1748 /* If we cannot replace the route's ifaddr with the equivalent
1749 * ifaddr of another interface, I believe it is safest to
1750 * delete the route.
1751 */
1752 if (alt_ifa == NULL) {
1753 e = rtdeletemsg(rt);
1754 if (e == 0) {
1755 rt_unref(rt);
1756 rt_free(rt);
1757 rt = NULL;
1758 }
1759 rt_newaddrmsg(RTM_DELADDR, ifa, 0, NULL);
1760 } else {
1761 rt_replace_ifa(rt, alt_ifa);
1762 rt_newmsg(RTM_CHANGE, rt);
1763 }
1764 } else
1765 rt_newaddrmsg(RTM_DELADDR, ifa, 0, NULL);
1766 if (rt != NULL)
1767 rt_unref(rt);
1768 return e;
1769 }
1770
1771 /*
1772 * Route timer routines. These routes allow functions to be called
1773 * for various routes at any time. This is useful in supporting
1774 * path MTU discovery and redirect route deletion.
1775 *
1776 * This is similar to some BSDI internal functions, but it provides
1777 * for multiple queues for efficiency's sake...
1778 */
1779
1780 LIST_HEAD(, rttimer_queue) rttimer_queue_head;
1781 static int rt_init_done = 0;
1782
1783 /*
1784 * Some subtle order problems with domain initialization mean that
1785 * we cannot count on this being run from rt_init before various
1786 * protocol initializations are done. Therefore, we make sure
1787 * that this is run when the first queue is added...
1788 */
1789
1790 static void rt_timer_work(struct work *, void *);
1791
1792 static void
1793 rt_timer_init(void)
1794 {
1795 int error;
1796
1797 assert(rt_init_done == 0);
1798
1799 /* XXX should be in rt_init */
1800 rw_init(&rt_lock);
1801
1802 LIST_INIT(&rttimer_queue_head);
1803 callout_init(&rt_timer_ch, CALLOUT_MPSAFE);
1804 error = workqueue_create(&rt_timer_wq, "rt_timer",
1805 rt_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
1806 if (error)
1807 panic("%s: workqueue_create failed (%d)\n", __func__, error);
1808 callout_reset(&rt_timer_ch, hz, rt_timer_timer, NULL);
1809 rt_init_done = 1;
1810 }
1811
1812 struct rttimer_queue *
1813 rt_timer_queue_create(u_int timeout)
1814 {
1815 struct rttimer_queue *rtq;
1816
1817 if (rt_init_done == 0)
1818 rt_timer_init();
1819
1820 R_Malloc(rtq, struct rttimer_queue *, sizeof *rtq);
1821 if (rtq == NULL)
1822 return NULL;
1823 memset(rtq, 0, sizeof(*rtq));
1824
1825 rtq->rtq_timeout = timeout;
1826 TAILQ_INIT(&rtq->rtq_head);
1827 RT_WLOCK();
1828 LIST_INSERT_HEAD(&rttimer_queue_head, rtq, rtq_link);
1829 RT_UNLOCK();
1830
1831 return rtq;
1832 }
1833
1834 void
1835 rt_timer_queue_change(struct rttimer_queue *rtq, long timeout)
1836 {
1837
1838 rtq->rtq_timeout = timeout;
1839 }
1840
1841 static void
1842 rt_timer_queue_remove_all(struct rttimer_queue *rtq)
1843 {
1844 struct rttimer *r;
1845
1846 RT_ASSERT_WLOCK();
1847
1848 while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL) {
1849 LIST_REMOVE(r, rtt_link);
1850 TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1851 rt_ref(r->rtt_rt); /* XXX */
1852 RT_REFCNT_TRACE(r->rtt_rt);
1853 RT_UNLOCK();
1854 (*r->rtt_func)(r->rtt_rt, r);
1855 pool_put(&rttimer_pool, r);
1856 RT_WLOCK();
1857 if (rtq->rtq_count > 0)
1858 rtq->rtq_count--;
1859 else
1860 printf("rt_timer_queue_remove_all: "
1861 "rtq_count reached 0\n");
1862 }
1863 }
1864
1865 void
1866 rt_timer_queue_destroy(struct rttimer_queue *rtq)
1867 {
1868
1869 RT_WLOCK();
1870 rt_timer_queue_remove_all(rtq);
1871 LIST_REMOVE(rtq, rtq_link);
1872 RT_UNLOCK();
1873
1874 /*
1875 * Caller is responsible for freeing the rttimer_queue structure.
1876 */
1877 }
1878
1879 unsigned long
1880 rt_timer_count(struct rttimer_queue *rtq)
1881 {
1882 return rtq->rtq_count;
1883 }
1884
1885 static void
1886 rt_timer_remove_all(struct rtentry *rt)
1887 {
1888 struct rttimer *r;
1889
1890 RT_WLOCK();
1891 while ((r = LIST_FIRST(&rt->rt_timer)) != NULL) {
1892 LIST_REMOVE(r, rtt_link);
1893 TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1894 if (r->rtt_queue->rtq_count > 0)
1895 r->rtt_queue->rtq_count--;
1896 else
1897 printf("rt_timer_remove_all: rtq_count reached 0\n");
1898 pool_put(&rttimer_pool, r);
1899 }
1900 RT_UNLOCK();
1901 }
1902
1903 int
1904 rt_timer_add(struct rtentry *rt,
1905 void (*func)(struct rtentry *, struct rttimer *),
1906 struct rttimer_queue *queue)
1907 {
1908 struct rttimer *r;
1909
1910 KASSERT(func != NULL);
1911 RT_WLOCK();
1912 /*
1913 * If there's already a timer with this action, destroy it before
1914 * we add a new one.
1915 */
1916 LIST_FOREACH(r, &rt->rt_timer, rtt_link) {
1917 if (r->rtt_func == func)
1918 break;
1919 }
1920 if (r != NULL) {
1921 LIST_REMOVE(r, rtt_link);
1922 TAILQ_REMOVE(&r->rtt_queue->rtq_head, r, rtt_next);
1923 if (r->rtt_queue->rtq_count > 0)
1924 r->rtt_queue->rtq_count--;
1925 else
1926 printf("rt_timer_add: rtq_count reached 0\n");
1927 } else {
1928 r = pool_get(&rttimer_pool, PR_NOWAIT);
1929 if (r == NULL) {
1930 RT_UNLOCK();
1931 return ENOBUFS;
1932 }
1933 }
1934
1935 memset(r, 0, sizeof(*r));
1936
1937 r->rtt_rt = rt;
1938 r->rtt_time = time_uptime;
1939 r->rtt_func = func;
1940 r->rtt_queue = queue;
1941 LIST_INSERT_HEAD(&rt->rt_timer, r, rtt_link);
1942 TAILQ_INSERT_TAIL(&queue->rtq_head, r, rtt_next);
1943 r->rtt_queue->rtq_count++;
1944
1945 RT_UNLOCK();
1946
1947 return 0;
1948 }
1949
1950 static void
1951 rt_timer_work(struct work *wk, void *arg)
1952 {
1953 struct rttimer_queue *rtq;
1954 struct rttimer *r;
1955
1956 RT_WLOCK();
1957 LIST_FOREACH(rtq, &rttimer_queue_head, rtq_link) {
1958 while ((r = TAILQ_FIRST(&rtq->rtq_head)) != NULL &&
1959 (r->rtt_time + rtq->rtq_timeout) < time_uptime) {
1960 LIST_REMOVE(r, rtt_link);
1961 TAILQ_REMOVE(&rtq->rtq_head, r, rtt_next);
1962 /*
1963 * Take a reference to avoid the rtentry is freed
1964 * accidentally after RT_UNLOCK. The callback
1965 * (rtt_func) must rt_unref it by itself.
1966 */
1967 rt_ref(r->rtt_rt);
1968 RT_REFCNT_TRACE(r->rtt_rt);
1969 RT_UNLOCK();
1970 (*r->rtt_func)(r->rtt_rt, r);
1971 pool_put(&rttimer_pool, r);
1972 RT_WLOCK();
1973 if (rtq->rtq_count > 0)
1974 rtq->rtq_count--;
1975 else
1976 printf("rt_timer_timer: rtq_count reached 0\n");
1977 }
1978 }
1979 RT_UNLOCK();
1980
1981 callout_reset(&rt_timer_ch, hz, rt_timer_timer, NULL);
1982 }
1983
1984 static void
1985 rt_timer_timer(void *arg)
1986 {
1987
1988 workqueue_enqueue(rt_timer_wq, &rt_timer_wk, NULL);
1989 }
1990
1991 static struct rtentry *
1992 _rtcache_init(struct route *ro, int flag)
1993 {
1994 struct rtentry *rt;
1995
1996 rtcache_invariants(ro);
1997 KASSERT(ro->_ro_rt == NULL);
1998
1999 if (rtcache_getdst(ro) == NULL)
2000 return NULL;
2001 rt = rtalloc1(rtcache_getdst(ro), flag);
2002 if (rt != NULL) {
2003 RT_RLOCK();
2004 if (ISSET(rt->rt_flags, RTF_UP)) {
2005 ro->_ro_rt = rt;
2006 ro->ro_rtcache_generation = rtcache_generation;
2007 rtcache_ref(rt, ro);
2008 }
2009 RT_UNLOCK();
2010 rt_unref(rt);
2011 }
2012
2013 rtcache_invariants(ro);
2014 return ro->_ro_rt;
2015 }
2016
2017 struct rtentry *
2018 rtcache_init(struct route *ro)
2019 {
2020
2021 return _rtcache_init(ro, 1);
2022 }
2023
2024 struct rtentry *
2025 rtcache_init_noclone(struct route *ro)
2026 {
2027
2028 return _rtcache_init(ro, 0);
2029 }
2030
2031 struct rtentry *
2032 rtcache_update(struct route *ro, int clone)
2033 {
2034
2035 ro->_ro_rt = NULL;
2036 return _rtcache_init(ro, clone);
2037 }
2038
2039 void
2040 rtcache_copy(struct route *new_ro, struct route *old_ro)
2041 {
2042 struct rtentry *rt;
2043 int ret;
2044
2045 KASSERT(new_ro != old_ro);
2046 rtcache_invariants(new_ro);
2047 rtcache_invariants(old_ro);
2048
2049 rt = rtcache_validate(old_ro);
2050
2051 if (rtcache_getdst(old_ro) == NULL)
2052 goto out;
2053 ret = rtcache_setdst(new_ro, rtcache_getdst(old_ro));
2054 if (ret != 0)
2055 goto out;
2056
2057 RT_RLOCK();
2058 new_ro->_ro_rt = rt;
2059 new_ro->ro_rtcache_generation = rtcache_generation;
2060 RT_UNLOCK();
2061 rtcache_invariants(new_ro);
2062 out:
2063 rtcache_unref(rt, old_ro);
2064 return;
2065 }
2066
2067 #if defined(RT_DEBUG) && defined(NET_MPSAFE)
2068 static void
2069 rtcache_trace(const char *func, struct rtentry *rt, struct route *ro)
2070 {
2071 char dst[64];
2072
2073 sockaddr_format(ro->ro_sa, dst, 64);
2074 printf("trace: %s:\tdst=%s cpu=%d lwp=%p psref=%p target=%p\n", func, dst,
2075 cpu_index(curcpu()), curlwp, &ro->ro_psref, &rt->rt_psref);
2076 }
2077 #define RTCACHE_PSREF_TRACE(rt, ro) rtcache_trace(__func__, (rt), (ro))
2078 #else
2079 #define RTCACHE_PSREF_TRACE(rt, ro) do {} while (0)
2080 #endif
2081
2082 static void
2083 rtcache_ref(struct rtentry *rt, struct route *ro)
2084 {
2085
2086 KASSERT(rt != NULL);
2087
2088 #ifdef NET_MPSAFE
2089 RTCACHE_PSREF_TRACE(rt, ro);
2090 ro->ro_bound = curlwp_bind();
2091 psref_acquire(&ro->ro_psref, &rt->rt_psref, rt_psref_class);
2092 #endif
2093 }
2094
2095 void
2096 rtcache_unref(struct rtentry *rt, struct route *ro)
2097 {
2098
2099 if (rt == NULL)
2100 return;
2101
2102 #ifdef NET_MPSAFE
2103 psref_release(&ro->ro_psref, &rt->rt_psref, rt_psref_class);
2104 curlwp_bindx(ro->ro_bound);
2105 RTCACHE_PSREF_TRACE(rt, ro);
2106 #endif
2107 }
2108
2109 struct rtentry *
2110 rtcache_validate(struct route *ro)
2111 {
2112 struct rtentry *rt = NULL;
2113
2114 #ifdef NET_MPSAFE
2115 retry:
2116 #endif
2117 rtcache_invariants(ro);
2118 RT_RLOCK();
2119 if (ro->ro_rtcache_generation != rtcache_generation) {
2120 /* The cache is invalidated */
2121 rt = NULL;
2122 goto out;
2123 }
2124
2125 rt = ro->_ro_rt;
2126 if (rt == NULL)
2127 goto out;
2128
2129 if ((rt->rt_flags & RTF_UP) == 0) {
2130 rt = NULL;
2131 goto out;
2132 }
2133 #ifdef NET_MPSAFE
2134 if (ISSET(rt->rt_flags, RTF_UPDATING)) {
2135 if (rt_wait_ok()) {
2136 RT_UNLOCK();
2137
2138 /* We can wait until the update is complete */
2139 rt_update_wait();
2140 goto retry;
2141 } else {
2142 rt = NULL;
2143 }
2144 } else
2145 #endif
2146 rtcache_ref(rt, ro);
2147 out:
2148 RT_UNLOCK();
2149 return rt;
2150 }
2151
2152 struct rtentry *
2153 rtcache_lookup2(struct route *ro, const struct sockaddr *dst,
2154 int clone, int *hitp)
2155 {
2156 const struct sockaddr *odst;
2157 struct rtentry *rt = NULL;
2158
2159 odst = rtcache_getdst(ro);
2160 if (odst == NULL)
2161 goto miss;
2162
2163 if (sockaddr_cmp(odst, dst) != 0) {
2164 rtcache_free(ro);
2165 goto miss;
2166 }
2167
2168 rt = rtcache_validate(ro);
2169 if (rt == NULL) {
2170 ro->_ro_rt = NULL;
2171 goto miss;
2172 }
2173
2174 rtcache_invariants(ro);
2175
2176 if (hitp != NULL)
2177 *hitp = 1;
2178 return rt;
2179 miss:
2180 if (hitp != NULL)
2181 *hitp = 0;
2182 if (rtcache_setdst(ro, dst) == 0)
2183 rt = _rtcache_init(ro, clone);
2184
2185 rtcache_invariants(ro);
2186
2187 return rt;
2188 }
2189
2190 void
2191 rtcache_free(struct route *ro)
2192 {
2193
2194 ro->_ro_rt = NULL;
2195 if (ro->ro_sa != NULL) {
2196 sockaddr_free(ro->ro_sa);
2197 ro->ro_sa = NULL;
2198 }
2199 rtcache_invariants(ro);
2200 }
2201
2202 int
2203 rtcache_setdst(struct route *ro, const struct sockaddr *sa)
2204 {
2205 KASSERT(sa != NULL);
2206
2207 rtcache_invariants(ro);
2208 if (ro->ro_sa != NULL) {
2209 if (ro->ro_sa->sa_family == sa->sa_family) {
2210 ro->_ro_rt = NULL;
2211 sockaddr_copy(ro->ro_sa, ro->ro_sa->sa_len, sa);
2212 rtcache_invariants(ro);
2213 return 0;
2214 }
2215 /* free ro_sa, wrong family */
2216 rtcache_free(ro);
2217 }
2218
2219 KASSERT(ro->_ro_rt == NULL);
2220
2221 if ((ro->ro_sa = sockaddr_dup(sa, M_ZERO | M_NOWAIT)) == NULL) {
2222 rtcache_invariants(ro);
2223 return ENOMEM;
2224 }
2225 rtcache_invariants(ro);
2226 return 0;
2227 }
2228
2229 const struct sockaddr *
2230 rt_settag(struct rtentry *rt, const struct sockaddr *tag)
2231 {
2232 if (rt->rt_tag != tag) {
2233 if (rt->rt_tag != NULL)
2234 sockaddr_free(rt->rt_tag);
2235 rt->rt_tag = sockaddr_dup(tag, M_ZERO | M_NOWAIT);
2236 }
2237 return rt->rt_tag;
2238 }
2239
2240 struct sockaddr *
2241 rt_gettag(const struct rtentry *rt)
2242 {
2243 return rt->rt_tag;
2244 }
2245
2246 int
2247 rt_check_reject_route(const struct rtentry *rt, const struct ifnet *ifp)
2248 {
2249
2250 if ((rt->rt_flags & RTF_REJECT) != 0) {
2251 /* Mimic looutput */
2252 if (ifp->if_flags & IFF_LOOPBACK)
2253 return (rt->rt_flags & RTF_HOST) ?
2254 EHOSTUNREACH : ENETUNREACH;
2255 else if (rt->rt_rmx.rmx_expire == 0 ||
2256 time_uptime < rt->rt_rmx.rmx_expire)
2257 return (rt->rt_flags & RTF_GATEWAY) ?
2258 EHOSTUNREACH : EHOSTDOWN;
2259 }
2260
2261 return 0;
2262 }
2263
2264 void
2265 rt_delete_matched_entries(sa_family_t family, int (*f)(struct rtentry *, void *),
2266 void *v)
2267 {
2268
2269 for (;;) {
2270 int s;
2271 int error;
2272 struct rtentry *rt, *retrt = NULL;
2273
2274 RT_RLOCK();
2275 s = splsoftnet();
2276 rt = rtbl_search_matched_entry(family, f, v);
2277 if (rt == NULL) {
2278 splx(s);
2279 RT_UNLOCK();
2280 return;
2281 }
2282 rt_ref(rt);
2283 splx(s);
2284 RT_UNLOCK();
2285
2286 error = rtrequest(RTM_DELETE, rt_getkey(rt), rt->rt_gateway,
2287 rt_mask(rt), rt->rt_flags, &retrt);
2288 if (error == 0) {
2289 KASSERT(retrt == rt);
2290 KASSERT((retrt->rt_flags & RTF_UP) == 0);
2291 retrt->rt_ifp = NULL;
2292 rt_unref(rt);
2293 rt_free(retrt);
2294 } else if (error == ESRCH) {
2295 /* Someone deleted the entry already. */
2296 rt_unref(rt);
2297 } else {
2298 log(LOG_ERR, "%s: unable to delete rtentry @ %p, "
2299 "error = %d\n", rt->rt_ifp->if_xname, rt, error);
2300 /* XXX how to treat this case? */
2301 }
2302 }
2303 }
2304
2305 static int
2306 rt_walktree_locked(sa_family_t family, int (*f)(struct rtentry *, void *),
2307 void *v)
2308 {
2309
2310 return rtbl_walktree(family, f, v);
2311 }
2312
2313 int
2314 rt_walktree(sa_family_t family, int (*f)(struct rtentry *, void *), void *v)
2315 {
2316 int error;
2317
2318 RT_RLOCK();
2319 error = rt_walktree_locked(family, f, v);
2320 RT_UNLOCK();
2321
2322 return error;
2323 }
2324
2325 #ifdef DDB
2326
2327 #include <machine/db_machdep.h>
2328 #include <ddb/db_interface.h>
2329 #include <ddb/db_output.h>
2330
2331 #define rt_expire rt_rmx.rmx_expire
2332
2333 static void
2334 db_print_sa(const struct sockaddr *sa)
2335 {
2336 int len;
2337 const u_char *p;
2338
2339 if (sa == NULL) {
2340 db_printf("[NULL]");
2341 return;
2342 }
2343
2344 p = (const u_char *)sa;
2345 len = sa->sa_len;
2346 db_printf("[");
2347 while (len > 0) {
2348 db_printf("%d", *p);
2349 p++; len--;
2350 if (len) db_printf(",");
2351 }
2352 db_printf("]\n");
2353 }
2354
2355 static void
2356 db_print_ifa(struct ifaddr *ifa)
2357 {
2358 if (ifa == NULL)
2359 return;
2360 db_printf(" ifa_addr=");
2361 db_print_sa(ifa->ifa_addr);
2362 db_printf(" ifa_dsta=");
2363 db_print_sa(ifa->ifa_dstaddr);
2364 db_printf(" ifa_mask=");
2365 db_print_sa(ifa->ifa_netmask);
2366 db_printf(" flags=0x%x,refcnt=%d,metric=%d\n",
2367 ifa->ifa_flags,
2368 ifa->ifa_refcnt,
2369 ifa->ifa_metric);
2370 }
2371
2372 /*
2373 * Function to pass to rt_walktree().
2374 * Return non-zero error to abort walk.
2375 */
2376 static int
2377 db_show_rtentry(struct rtentry *rt, void *w)
2378 {
2379 db_printf("rtentry=%p", rt);
2380
2381 db_printf(" flags=0x%x refcnt=%d use=%"PRId64" expire=%"PRId64"\n",
2382 rt->rt_flags, rt->rt_refcnt,
2383 rt->rt_use, (uint64_t)rt->rt_expire);
2384
2385 db_printf(" key="); db_print_sa(rt_getkey(rt));
2386 db_printf(" mask="); db_print_sa(rt_mask(rt));
2387 db_printf(" gw="); db_print_sa(rt->rt_gateway);
2388
2389 db_printf(" ifp=%p ", rt->rt_ifp);
2390 if (rt->rt_ifp)
2391 db_printf("(%s)", rt->rt_ifp->if_xname);
2392 else
2393 db_printf("(NULL)");
2394
2395 db_printf(" ifa=%p\n", rt->rt_ifa);
2396 db_print_ifa(rt->rt_ifa);
2397
2398 db_printf(" gwroute=%p llinfo=%p\n",
2399 rt->rt_gwroute, rt->rt_llinfo);
2400
2401 return 0;
2402 }
2403
2404 /*
2405 * Function to print all the route trees.
2406 * Use this from ddb: "show routes"
2407 */
2408 void
2409 db_show_routes(db_expr_t addr, bool have_addr,
2410 db_expr_t count, const char *modif)
2411 {
2412
2413 /* Taking RT_LOCK will fail if LOCKDEBUG is enabled. */
2414 rt_walktree_locked(AF_INET, db_show_rtentry, NULL);
2415 }
2416 #endif
2417