rtsock.c revision 1.1.1.3 1 1.1 cgd /*
2 1.1.1.2 fvdl * Copyright (c) 1988, 1991, 1993
3 1.1.1.2 fvdl * The Regents of the University of California. All rights reserved.
4 1.1 cgd *
5 1.1 cgd * Redistribution and use in source and binary forms, with or without
6 1.1 cgd * modification, are permitted provided that the following conditions
7 1.1 cgd * are met:
8 1.1 cgd * 1. Redistributions of source code must retain the above copyright
9 1.1 cgd * notice, this list of conditions and the following disclaimer.
10 1.1 cgd * 2. Redistributions in binary form must reproduce the above copyright
11 1.1 cgd * notice, this list of conditions and the following disclaimer in the
12 1.1 cgd * documentation and/or other materials provided with the distribution.
13 1.1 cgd * 3. All advertising materials mentioning features or use of this software
14 1.1 cgd * must display the following acknowledgement:
15 1.1 cgd * This product includes software developed by the University of
16 1.1 cgd * California, Berkeley and its contributors.
17 1.1 cgd * 4. Neither the name of the University nor the names of its contributors
18 1.1 cgd * may be used to endorse or promote products derived from this software
19 1.1 cgd * without specific prior written permission.
20 1.1 cgd *
21 1.1 cgd * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 cgd * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 cgd * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 cgd * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 cgd * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 cgd * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 cgd * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 cgd * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 cgd * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 cgd * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 cgd * SUCH DAMAGE.
32 1.1 cgd *
33 1.1.1.3 fvdl * @(#)rtsock.c 8.6 (Berkeley) 2/11/95
34 1.1 cgd */
35 1.1 cgd
36 1.1.1.2 fvdl #include <sys/param.h>
37 1.1.1.2 fvdl #include <sys/systm.h>
38 1.1.1.2 fvdl #include <sys/proc.h>
39 1.1.1.2 fvdl #include <sys/mbuf.h>
40 1.1.1.2 fvdl #include <sys/socket.h>
41 1.1.1.2 fvdl #include <sys/socketvar.h>
42 1.1.1.2 fvdl #include <sys/domain.h>
43 1.1.1.2 fvdl #include <sys/protosw.h>
44 1.1.1.2 fvdl
45 1.1.1.2 fvdl #include <net/if.h>
46 1.1.1.2 fvdl #include <net/route.h>
47 1.1.1.2 fvdl #include <net/raw_cb.h>
48 1.1.1.2 fvdl
49 1.1.1.2 fvdl struct sockaddr route_dst = { 2, PF_ROUTE, };
50 1.1.1.2 fvdl struct sockaddr route_src = { 2, PF_ROUTE, };
51 1.1.1.2 fvdl struct sockproto route_proto = { PF_ROUTE, };
52 1.1.1.2 fvdl
53 1.1.1.2 fvdl struct walkarg {
54 1.1.1.2 fvdl int w_op, w_arg, w_given, w_needed, w_tmemsize;
55 1.1.1.2 fvdl caddr_t w_where, w_tmem;
56 1.1.1.2 fvdl };
57 1.1.1.2 fvdl
58 1.1.1.2 fvdl static struct mbuf *
59 1.1.1.2 fvdl rt_msg1 __P((int, struct rt_addrinfo *));
60 1.1.1.2 fvdl static int rt_msg2 __P((int,
61 1.1.1.2 fvdl struct rt_addrinfo *, caddr_t, struct walkarg *));
62 1.1.1.2 fvdl static void rt_xaddrs __P((caddr_t, caddr_t, struct rt_addrinfo *));
63 1.1.1.2 fvdl
64 1.1.1.2 fvdl /* Sleazy use of local variables throughout file, warning!!!! */
65 1.1.1.2 fvdl #define dst info.rti_info[RTAX_DST]
66 1.1.1.2 fvdl #define gate info.rti_info[RTAX_GATEWAY]
67 1.1.1.2 fvdl #define netmask info.rti_info[RTAX_NETMASK]
68 1.1.1.2 fvdl #define genmask info.rti_info[RTAX_GENMASK]
69 1.1.1.2 fvdl #define ifpaddr info.rti_info[RTAX_IFP]
70 1.1.1.2 fvdl #define ifaaddr info.rti_info[RTAX_IFA]
71 1.1.1.2 fvdl #define brdaddr info.rti_info[RTAX_BRD]
72 1.1 cgd
73 1.1 cgd /*ARGSUSED*/
74 1.1.1.2 fvdl int
75 1.1 cgd route_usrreq(so, req, m, nam, control)
76 1.1 cgd register struct socket *so;
77 1.1 cgd int req;
78 1.1 cgd struct mbuf *m, *nam, *control;
79 1.1 cgd {
80 1.1 cgd register int error = 0;
81 1.1 cgd register struct rawcb *rp = sotorawcb(so);
82 1.1 cgd int s;
83 1.1.1.2 fvdl
84 1.1 cgd if (req == PRU_ATTACH) {
85 1.1 cgd MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK);
86 1.1 cgd if (so->so_pcb = (caddr_t)rp)
87 1.1 cgd bzero(so->so_pcb, sizeof(*rp));
88 1.1 cgd
89 1.1 cgd }
90 1.1 cgd if (req == PRU_DETACH && rp) {
91 1.1 cgd int af = rp->rcb_proto.sp_protocol;
92 1.1 cgd if (af == AF_INET)
93 1.1 cgd route_cb.ip_count--;
94 1.1 cgd else if (af == AF_NS)
95 1.1 cgd route_cb.ns_count--;
96 1.1 cgd else if (af == AF_ISO)
97 1.1 cgd route_cb.iso_count--;
98 1.1 cgd route_cb.any_count--;
99 1.1 cgd }
100 1.1 cgd s = splnet();
101 1.1 cgd error = raw_usrreq(so, req, m, nam, control);
102 1.1 cgd rp = sotorawcb(so);
103 1.1 cgd if (req == PRU_ATTACH && rp) {
104 1.1 cgd int af = rp->rcb_proto.sp_protocol;
105 1.1 cgd if (error) {
106 1.1 cgd free((caddr_t)rp, M_PCB);
107 1.1 cgd splx(s);
108 1.1 cgd return (error);
109 1.1 cgd }
110 1.1 cgd if (af == AF_INET)
111 1.1 cgd route_cb.ip_count++;
112 1.1 cgd else if (af == AF_NS)
113 1.1 cgd route_cb.ns_count++;
114 1.1 cgd else if (af == AF_ISO)
115 1.1 cgd route_cb.iso_count++;
116 1.1 cgd rp->rcb_faddr = &route_src;
117 1.1 cgd route_cb.any_count++;
118 1.1 cgd soisconnected(so);
119 1.1 cgd so->so_options |= SO_USELOOPBACK;
120 1.1 cgd }
121 1.1 cgd splx(s);
122 1.1 cgd return (error);
123 1.1 cgd }
124 1.1 cgd
125 1.1 cgd /*ARGSUSED*/
126 1.1.1.2 fvdl int
127 1.1 cgd route_output(m, so)
128 1.1 cgd register struct mbuf *m;
129 1.1 cgd struct socket *so;
130 1.1 cgd {
131 1.1 cgd register struct rt_msghdr *rtm = 0;
132 1.1 cgd register struct rtentry *rt = 0;
133 1.1 cgd struct rtentry *saved_nrt = 0;
134 1.1.1.3 fvdl struct radix_node_head *rnh;
135 1.1.1.2 fvdl struct rt_addrinfo info;
136 1.1 cgd int len, error = 0;
137 1.1 cgd struct ifnet *ifp = 0;
138 1.1 cgd struct ifaddr *ifa = 0;
139 1.1 cgd
140 1.1 cgd #define senderr(e) { error = e; goto flush;}
141 1.1.1.2 fvdl if (m == 0 || ((m->m_len < sizeof(long)) &&
142 1.1.1.2 fvdl (m = m_pullup(m, sizeof(long))) == 0))
143 1.1 cgd return (ENOBUFS);
144 1.1 cgd if ((m->m_flags & M_PKTHDR) == 0)
145 1.1 cgd panic("route_output");
146 1.1 cgd len = m->m_pkthdr.len;
147 1.1 cgd if (len < sizeof(*rtm) ||
148 1.1.1.2 fvdl len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
149 1.1.1.2 fvdl dst = 0;
150 1.1 cgd senderr(EINVAL);
151 1.1.1.2 fvdl }
152 1.1 cgd R_Malloc(rtm, struct rt_msghdr *, len);
153 1.1.1.2 fvdl if (rtm == 0) {
154 1.1.1.2 fvdl dst = 0;
155 1.1 cgd senderr(ENOBUFS);
156 1.1.1.2 fvdl }
157 1.1 cgd m_copydata(m, 0, len, (caddr_t)rtm);
158 1.1.1.2 fvdl if (rtm->rtm_version != RTM_VERSION) {
159 1.1.1.2 fvdl dst = 0;
160 1.1 cgd senderr(EPROTONOSUPPORT);
161 1.1.1.2 fvdl }
162 1.1 cgd rtm->rtm_pid = curproc->p_pid;
163 1.1.1.2 fvdl info.rti_addrs = rtm->rtm_addrs;
164 1.1.1.2 fvdl rt_xaddrs((caddr_t)(rtm + 1), len + (caddr_t)rtm, &info);
165 1.1.1.2 fvdl if (dst == 0)
166 1.1 cgd senderr(EINVAL);
167 1.1.1.2 fvdl if (genmask) {
168 1.1.1.2 fvdl struct radix_node *t;
169 1.1.1.3 fvdl t = rn_addmask((caddr_t)genmask, 0, 1);
170 1.1 cgd if (t && Bcmp(genmask, t->rn_key, *(u_char *)genmask) == 0)
171 1.1 cgd genmask = (struct sockaddr *)(t->rn_key);
172 1.1 cgd else
173 1.1 cgd senderr(ENOBUFS);
174 1.1 cgd }
175 1.1 cgd switch (rtm->rtm_type) {
176 1.1.1.2 fvdl
177 1.1 cgd case RTM_ADD:
178 1.1 cgd if (gate == 0)
179 1.1 cgd senderr(EINVAL);
180 1.1 cgd error = rtrequest(RTM_ADD, dst, gate, netmask,
181 1.1 cgd rtm->rtm_flags, &saved_nrt);
182 1.1 cgd if (error == 0 && saved_nrt) {
183 1.1 cgd rt_setmetrics(rtm->rtm_inits,
184 1.1 cgd &rtm->rtm_rmx, &saved_nrt->rt_rmx);
185 1.1 cgd saved_nrt->rt_refcnt--;
186 1.1 cgd saved_nrt->rt_genmask = genmask;
187 1.1 cgd }
188 1.1 cgd break;
189 1.1 cgd
190 1.1 cgd case RTM_DELETE:
191 1.1 cgd error = rtrequest(RTM_DELETE, dst, gate, netmask,
192 1.1.1.3 fvdl rtm->rtm_flags, &saved_nrt);
193 1.1.1.3 fvdl if (error == 0) {
194 1.1.1.3 fvdl (rt = saved_nrt)->rt_refcnt++;
195 1.1.1.3 fvdl goto report;
196 1.1.1.3 fvdl }
197 1.1 cgd break;
198 1.1 cgd
199 1.1 cgd case RTM_GET:
200 1.1 cgd case RTM_CHANGE:
201 1.1 cgd case RTM_LOCK:
202 1.1.1.3 fvdl if ((rnh = rt_tables[dst->sa_family]) == 0) {
203 1.1.1.3 fvdl senderr(EAFNOSUPPORT);
204 1.1.1.3 fvdl } else if (rt = (struct rtentry *)
205 1.1.1.3 fvdl rnh->rnh_lookup(dst, netmask, rnh))
206 1.1.1.3 fvdl rt->rt_refcnt++;
207 1.1.1.3 fvdl else
208 1.1 cgd senderr(ESRCH);
209 1.1 cgd switch(rtm->rtm_type) {
210 1.1 cgd
211 1.1 cgd case RTM_GET:
212 1.1.1.3 fvdl report:
213 1.1.1.2 fvdl dst = rt_key(rt);
214 1.1.1.2 fvdl gate = rt->rt_gateway;
215 1.1.1.2 fvdl netmask = rt_mask(rt);
216 1.1.1.2 fvdl genmask = rt->rt_genmask;
217 1.1 cgd if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) {
218 1.1.1.2 fvdl if (ifp = rt->rt_ifp) {
219 1.1.1.2 fvdl ifpaddr = ifp->if_addrlist->ifa_addr;
220 1.1 cgd ifaaddr = rt->rt_ifa->ifa_addr;
221 1.1.1.3 fvdl if (ifp->if_flags & IFF_POINTOPOINT)
222 1.1.1.3 fvdl brdaddr = rt->rt_ifa->ifa_dstaddr;
223 1.1.1.3 fvdl else
224 1.1.1.3 fvdl brdaddr = 0;
225 1.1.1.2 fvdl rtm->rtm_index = ifp->if_index;
226 1.1 cgd } else {
227 1.1.1.2 fvdl ifpaddr = 0;
228 1.1.1.2 fvdl ifaaddr = 0;
229 1.1.1.2 fvdl }
230 1.1 cgd }
231 1.1.1.3 fvdl len = rt_msg2(rtm->rtm_type, &info, (caddr_t)0,
232 1.1.1.2 fvdl (struct walkarg *)0);
233 1.1 cgd if (len > rtm->rtm_msglen) {
234 1.1 cgd struct rt_msghdr *new_rtm;
235 1.1 cgd R_Malloc(new_rtm, struct rt_msghdr *, len);
236 1.1 cgd if (new_rtm == 0)
237 1.1 cgd senderr(ENOBUFS);
238 1.1 cgd Bcopy(rtm, new_rtm, rtm->rtm_msglen);
239 1.1 cgd Free(rtm); rtm = new_rtm;
240 1.1 cgd }
241 1.1.1.3 fvdl (void)rt_msg2(rtm->rtm_type, &info, (caddr_t)rtm,
242 1.1.1.2 fvdl (struct walkarg *)0);
243 1.1 cgd rtm->rtm_flags = rt->rt_flags;
244 1.1 cgd rtm->rtm_rmx = rt->rt_rmx;
245 1.1.1.2 fvdl rtm->rtm_addrs = info.rti_addrs;
246 1.1 cgd break;
247 1.1 cgd
248 1.1 cgd case RTM_CHANGE:
249 1.1.1.2 fvdl if (gate && rt_setgate(rt, rt_key(rt), gate))
250 1.1 cgd senderr(EDQUOT);
251 1.1 cgd /* new gateway could require new ifaddr, ifp;
252 1.1 cgd flags may also be different; ifp may be specified
253 1.1 cgd by ll sockaddr when protocol address is ambiguous */
254 1.1 cgd if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) &&
255 1.1 cgd (ifp = ifa->ifa_ifp))
256 1.1 cgd ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate,
257 1.1 cgd ifp);
258 1.1 cgd else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) ||
259 1.1 cgd (ifa = ifa_ifwithroute(rt->rt_flags,
260 1.1 cgd rt_key(rt), gate)))
261 1.1 cgd ifp = ifa->ifa_ifp;
262 1.1 cgd if (ifa) {
263 1.1 cgd register struct ifaddr *oifa = rt->rt_ifa;
264 1.1 cgd if (oifa != ifa) {
265 1.1 cgd if (oifa && oifa->ifa_rtrequest)
266 1.1 cgd oifa->ifa_rtrequest(RTM_DELETE,
267 1.1 cgd rt, gate);
268 1.1.1.2 fvdl IFAFREE(rt->rt_ifa);
269 1.1 cgd rt->rt_ifa = ifa;
270 1.1.1.2 fvdl ifa->ifa_refcnt++;
271 1.1 cgd rt->rt_ifp = ifp;
272 1.1 cgd }
273 1.1 cgd }
274 1.1 cgd rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
275 1.1 cgd &rt->rt_rmx);
276 1.1 cgd if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
277 1.1 cgd rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, gate);
278 1.1 cgd if (genmask)
279 1.1 cgd rt->rt_genmask = genmask;
280 1.1 cgd /*
281 1.1 cgd * Fall into
282 1.1 cgd */
283 1.1 cgd case RTM_LOCK:
284 1.1.1.2 fvdl rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
285 1.1 cgd rt->rt_rmx.rmx_locks |=
286 1.1 cgd (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
287 1.1 cgd break;
288 1.1 cgd }
289 1.1.1.2 fvdl break;
290 1.1 cgd
291 1.1 cgd default:
292 1.1 cgd senderr(EOPNOTSUPP);
293 1.1 cgd }
294 1.1 cgd
295 1.1 cgd flush:
296 1.1 cgd if (rtm) {
297 1.1 cgd if (error)
298 1.1 cgd rtm->rtm_errno = error;
299 1.1 cgd else
300 1.1 cgd rtm->rtm_flags |= RTF_DONE;
301 1.1 cgd }
302 1.1 cgd if (rt)
303 1.1 cgd rtfree(rt);
304 1.1 cgd {
305 1.1 cgd register struct rawcb *rp = 0;
306 1.1 cgd /*
307 1.1 cgd * Check to see if we don't want our own messages.
308 1.1 cgd */
309 1.1 cgd if ((so->so_options & SO_USELOOPBACK) == 0) {
310 1.1 cgd if (route_cb.any_count <= 1) {
311 1.1 cgd if (rtm)
312 1.1 cgd Free(rtm);
313 1.1 cgd m_freem(m);
314 1.1 cgd return (error);
315 1.1 cgd }
316 1.1 cgd /* There is another listener, so construct message */
317 1.1 cgd rp = sotorawcb(so);
318 1.1 cgd }
319 1.1 cgd if (rtm) {
320 1.1 cgd m_copyback(m, 0, rtm->rtm_msglen, (caddr_t)rtm);
321 1.1 cgd Free(rtm);
322 1.1 cgd }
323 1.1 cgd if (rp)
324 1.1 cgd rp->rcb_proto.sp_family = 0; /* Avoid us */
325 1.1 cgd if (dst)
326 1.1 cgd route_proto.sp_protocol = dst->sa_family;
327 1.1 cgd raw_input(m, &route_proto, &route_src, &route_dst);
328 1.1 cgd if (rp)
329 1.1 cgd rp->rcb_proto.sp_family = PF_ROUTE;
330 1.1 cgd }
331 1.1 cgd return (error);
332 1.1 cgd }
333 1.1 cgd
334 1.1.1.2 fvdl void
335 1.1 cgd rt_setmetrics(which, in, out)
336 1.1 cgd u_long which;
337 1.1 cgd register struct rt_metrics *in, *out;
338 1.1 cgd {
339 1.1 cgd #define metric(f, e) if (which & (f)) out->e = in->e;
340 1.1 cgd metric(RTV_RPIPE, rmx_recvpipe);
341 1.1 cgd metric(RTV_SPIPE, rmx_sendpipe);
342 1.1 cgd metric(RTV_SSTHRESH, rmx_ssthresh);
343 1.1 cgd metric(RTV_RTT, rmx_rtt);
344 1.1 cgd metric(RTV_RTTVAR, rmx_rttvar);
345 1.1 cgd metric(RTV_HOPCOUNT, rmx_hopcount);
346 1.1 cgd metric(RTV_MTU, rmx_mtu);
347 1.1 cgd metric(RTV_EXPIRE, rmx_expire);
348 1.1 cgd #undef metric
349 1.1 cgd }
350 1.1 cgd
351 1.1.1.2 fvdl #define ROUNDUP(a) \
352 1.1.1.2 fvdl ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
353 1.1.1.2 fvdl #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))
354 1.1.1.2 fvdl
355 1.1.1.2 fvdl static void
356 1.1.1.2 fvdl rt_xaddrs(cp, cplim, rtinfo)
357 1.1.1.2 fvdl register caddr_t cp, cplim;
358 1.1.1.2 fvdl register struct rt_addrinfo *rtinfo;
359 1.1.1.2 fvdl {
360 1.1.1.2 fvdl register struct sockaddr *sa;
361 1.1.1.2 fvdl register int i;
362 1.1.1.2 fvdl
363 1.1.1.2 fvdl bzero(rtinfo->rti_info, sizeof(rtinfo->rti_info));
364 1.1.1.2 fvdl for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
365 1.1.1.2 fvdl if ((rtinfo->rti_addrs & (1 << i)) == 0)
366 1.1.1.2 fvdl continue;
367 1.1.1.2 fvdl rtinfo->rti_info[i] = sa = (struct sockaddr *)cp;
368 1.1.1.2 fvdl ADVANCE(cp, sa);
369 1.1.1.2 fvdl }
370 1.1.1.2 fvdl }
371 1.1.1.2 fvdl
372 1.1 cgd /*
373 1.1 cgd * Copy data from a buffer back into the indicated mbuf chain,
374 1.1 cgd * starting "off" bytes from the beginning, extending the mbuf
375 1.1 cgd * chain if necessary.
376 1.1 cgd */
377 1.1.1.2 fvdl void
378 1.1 cgd m_copyback(m0, off, len, cp)
379 1.1 cgd struct mbuf *m0;
380 1.1 cgd register int off;
381 1.1 cgd register int len;
382 1.1 cgd caddr_t cp;
383 1.1 cgd {
384 1.1 cgd register int mlen;
385 1.1 cgd register struct mbuf *m = m0, *n;
386 1.1 cgd int totlen = 0;
387 1.1 cgd
388 1.1 cgd if (m0 == 0)
389 1.1 cgd return;
390 1.1 cgd while (off > (mlen = m->m_len)) {
391 1.1 cgd off -= mlen;
392 1.1 cgd totlen += mlen;
393 1.1 cgd if (m->m_next == 0) {
394 1.1 cgd n = m_getclr(M_DONTWAIT, m->m_type);
395 1.1 cgd if (n == 0)
396 1.1 cgd goto out;
397 1.1 cgd n->m_len = min(MLEN, len + off);
398 1.1 cgd m->m_next = n;
399 1.1 cgd }
400 1.1 cgd m = m->m_next;
401 1.1 cgd }
402 1.1 cgd while (len > 0) {
403 1.1 cgd mlen = min (m->m_len - off, len);
404 1.1 cgd bcopy(cp, off + mtod(m, caddr_t), (unsigned)mlen);
405 1.1 cgd cp += mlen;
406 1.1 cgd len -= mlen;
407 1.1 cgd mlen += off;
408 1.1 cgd off = 0;
409 1.1 cgd totlen += mlen;
410 1.1 cgd if (len == 0)
411 1.1 cgd break;
412 1.1 cgd if (m->m_next == 0) {
413 1.1 cgd n = m_get(M_DONTWAIT, m->m_type);
414 1.1 cgd if (n == 0)
415 1.1 cgd break;
416 1.1 cgd n->m_len = min(MLEN, len);
417 1.1 cgd m->m_next = n;
418 1.1 cgd }
419 1.1 cgd m = m->m_next;
420 1.1 cgd }
421 1.1 cgd out: if (((m = m0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen))
422 1.1 cgd m->m_pkthdr.len = totlen;
423 1.1 cgd }
424 1.1 cgd
425 1.1.1.2 fvdl static struct mbuf *
426 1.1.1.2 fvdl rt_msg1(type, rtinfo)
427 1.1.1.2 fvdl int type;
428 1.1.1.2 fvdl register struct rt_addrinfo *rtinfo;
429 1.1 cgd {
430 1.1 cgd register struct rt_msghdr *rtm;
431 1.1 cgd register struct mbuf *m;
432 1.1.1.2 fvdl register int i;
433 1.1.1.2 fvdl register struct sockaddr *sa;
434 1.1.1.2 fvdl int len, dlen;
435 1.1 cgd
436 1.1 cgd m = m_gethdr(M_DONTWAIT, MT_DATA);
437 1.1 cgd if (m == 0)
438 1.1.1.2 fvdl return (m);
439 1.1.1.2 fvdl switch (type) {
440 1.1.1.2 fvdl
441 1.1.1.2 fvdl case RTM_DELADDR:
442 1.1.1.2 fvdl case RTM_NEWADDR:
443 1.1.1.2 fvdl len = sizeof(struct ifa_msghdr);
444 1.1.1.2 fvdl break;
445 1.1.1.2 fvdl
446 1.1.1.2 fvdl case RTM_IFINFO:
447 1.1.1.2 fvdl len = sizeof(struct if_msghdr);
448 1.1.1.2 fvdl break;
449 1.1.1.2 fvdl
450 1.1.1.2 fvdl default:
451 1.1.1.2 fvdl len = sizeof(struct rt_msghdr);
452 1.1.1.2 fvdl }
453 1.1.1.2 fvdl if (len > MHLEN)
454 1.1.1.2 fvdl panic("rt_msg1");
455 1.1.1.2 fvdl m->m_pkthdr.len = m->m_len = len;
456 1.1 cgd m->m_pkthdr.rcvif = 0;
457 1.1 cgd rtm = mtod(m, struct rt_msghdr *);
458 1.1.1.2 fvdl bzero((caddr_t)rtm, len);
459 1.1.1.2 fvdl for (i = 0; i < RTAX_MAX; i++) {
460 1.1.1.2 fvdl if ((sa = rtinfo->rti_info[i]) == NULL)
461 1.1.1.2 fvdl continue;
462 1.1.1.2 fvdl rtinfo->rti_addrs |= (1 << i);
463 1.1.1.2 fvdl dlen = ROUNDUP(sa->sa_len);
464 1.1.1.2 fvdl m_copyback(m, len, dlen, (caddr_t)sa);
465 1.1.1.2 fvdl len += dlen;
466 1.1.1.2 fvdl }
467 1.1.1.2 fvdl if (m->m_pkthdr.len != len) {
468 1.1.1.2 fvdl m_freem(m);
469 1.1.1.2 fvdl return (NULL);
470 1.1.1.2 fvdl }
471 1.1 cgd rtm->rtm_msglen = len;
472 1.1 cgd rtm->rtm_version = RTM_VERSION;
473 1.1 cgd rtm->rtm_type = type;
474 1.1.1.2 fvdl return (m);
475 1.1.1.2 fvdl }
476 1.1.1.2 fvdl
477 1.1.1.2 fvdl static int
478 1.1.1.2 fvdl rt_msg2(type, rtinfo, cp, w)
479 1.1.1.2 fvdl int type;
480 1.1.1.2 fvdl register struct rt_addrinfo *rtinfo;
481 1.1.1.2 fvdl caddr_t cp;
482 1.1.1.2 fvdl struct walkarg *w;
483 1.1.1.2 fvdl {
484 1.1.1.2 fvdl register int i;
485 1.1.1.2 fvdl int len, dlen, second_time = 0;
486 1.1.1.2 fvdl caddr_t cp0;
487 1.1.1.2 fvdl
488 1.1.1.2 fvdl rtinfo->rti_addrs = 0;
489 1.1.1.2 fvdl again:
490 1.1.1.2 fvdl switch (type) {
491 1.1.1.2 fvdl
492 1.1.1.2 fvdl case RTM_DELADDR:
493 1.1.1.2 fvdl case RTM_NEWADDR:
494 1.1.1.2 fvdl len = sizeof(struct ifa_msghdr);
495 1.1.1.2 fvdl break;
496 1.1.1.2 fvdl
497 1.1.1.2 fvdl case RTM_IFINFO:
498 1.1.1.2 fvdl len = sizeof(struct if_msghdr);
499 1.1.1.2 fvdl break;
500 1.1.1.2 fvdl
501 1.1.1.2 fvdl default:
502 1.1.1.2 fvdl len = sizeof(struct rt_msghdr);
503 1.1 cgd }
504 1.1.1.2 fvdl if (cp0 = cp)
505 1.1.1.2 fvdl cp += len;
506 1.1.1.2 fvdl for (i = 0; i < RTAX_MAX; i++) {
507 1.1.1.2 fvdl register struct sockaddr *sa;
508 1.1.1.2 fvdl
509 1.1.1.2 fvdl if ((sa = rtinfo->rti_info[i]) == 0)
510 1.1.1.2 fvdl continue;
511 1.1.1.2 fvdl rtinfo->rti_addrs |= (1 << i);
512 1.1.1.2 fvdl dlen = ROUNDUP(sa->sa_len);
513 1.1.1.2 fvdl if (cp) {
514 1.1.1.2 fvdl bcopy((caddr_t)sa, cp, (unsigned)dlen);
515 1.1.1.2 fvdl cp += dlen;
516 1.1.1.2 fvdl }
517 1.1 cgd len += dlen;
518 1.1 cgd }
519 1.1.1.2 fvdl if (cp == 0 && w != NULL && !second_time) {
520 1.1.1.2 fvdl register struct walkarg *rw = w;
521 1.1.1.2 fvdl
522 1.1.1.2 fvdl rw->w_needed += len;
523 1.1.1.2 fvdl if (rw->w_needed <= 0 && rw->w_where) {
524 1.1.1.2 fvdl if (rw->w_tmemsize < len) {
525 1.1.1.2 fvdl if (rw->w_tmem)
526 1.1.1.2 fvdl free(rw->w_tmem, M_RTABLE);
527 1.1.1.2 fvdl if (rw->w_tmem = (caddr_t)
528 1.1.1.2 fvdl malloc(len, M_RTABLE, M_NOWAIT))
529 1.1.1.2 fvdl rw->w_tmemsize = len;
530 1.1.1.2 fvdl }
531 1.1.1.2 fvdl if (rw->w_tmem) {
532 1.1.1.2 fvdl cp = rw->w_tmem;
533 1.1.1.2 fvdl second_time = 1;
534 1.1.1.2 fvdl goto again;
535 1.1.1.2 fvdl } else
536 1.1.1.2 fvdl rw->w_where = 0;
537 1.1.1.2 fvdl }
538 1.1 cgd }
539 1.1.1.2 fvdl if (cp) {
540 1.1.1.2 fvdl register struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
541 1.1.1.2 fvdl
542 1.1.1.2 fvdl rtm->rtm_version = RTM_VERSION;
543 1.1.1.2 fvdl rtm->rtm_type = type;
544 1.1.1.2 fvdl rtm->rtm_msglen = len;
545 1.1 cgd }
546 1.1.1.2 fvdl return (len);
547 1.1.1.2 fvdl }
548 1.1.1.2 fvdl
549 1.1.1.2 fvdl /*
550 1.1.1.2 fvdl * This routine is called to generate a message from the routing
551 1.1.1.2 fvdl * socket indicating that a redirect has occured, a routing lookup
552 1.1.1.2 fvdl * has failed, or that a protocol has detected timeouts to a particular
553 1.1.1.2 fvdl * destination.
554 1.1.1.2 fvdl */
555 1.1.1.2 fvdl void
556 1.1.1.2 fvdl rt_missmsg(type, rtinfo, flags, error)
557 1.1.1.2 fvdl int type, flags, error;
558 1.1.1.2 fvdl register struct rt_addrinfo *rtinfo;
559 1.1.1.2 fvdl {
560 1.1.1.2 fvdl register struct rt_msghdr *rtm;
561 1.1.1.2 fvdl register struct mbuf *m;
562 1.1.1.2 fvdl struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
563 1.1.1.2 fvdl
564 1.1.1.2 fvdl if (route_cb.any_count == 0)
565 1.1.1.2 fvdl return;
566 1.1.1.2 fvdl m = rt_msg1(type, rtinfo);
567 1.1.1.2 fvdl if (m == 0)
568 1.1.1.2 fvdl return;
569 1.1.1.2 fvdl rtm = mtod(m, struct rt_msghdr *);
570 1.1.1.2 fvdl rtm->rtm_flags = RTF_DONE | flags;
571 1.1 cgd rtm->rtm_errno = error;
572 1.1.1.2 fvdl rtm->rtm_addrs = rtinfo->rti_addrs;
573 1.1.1.2 fvdl route_proto.sp_protocol = sa ? sa->sa_family : 0;
574 1.1 cgd raw_input(m, &route_proto, &route_src, &route_dst);
575 1.1 cgd }
576 1.1 cgd
577 1.1 cgd /*
578 1.1.1.2 fvdl * This routine is called to generate a message from the routing
579 1.1.1.2 fvdl * socket indicating that the status of a network interface has changed.
580 1.1 cgd */
581 1.1.1.2 fvdl void
582 1.1.1.2 fvdl rt_ifmsg(ifp)
583 1.1.1.2 fvdl register struct ifnet *ifp;
584 1.1.1.2 fvdl {
585 1.1.1.2 fvdl register struct if_msghdr *ifm;
586 1.1.1.2 fvdl struct mbuf *m;
587 1.1.1.2 fvdl struct rt_addrinfo info;
588 1.1.1.2 fvdl
589 1.1.1.2 fvdl if (route_cb.any_count == 0)
590 1.1.1.2 fvdl return;
591 1.1.1.2 fvdl bzero((caddr_t)&info, sizeof(info));
592 1.1.1.2 fvdl m = rt_msg1(RTM_IFINFO, &info);
593 1.1.1.2 fvdl if (m == 0)
594 1.1.1.2 fvdl return;
595 1.1.1.2 fvdl ifm = mtod(m, struct if_msghdr *);
596 1.1.1.2 fvdl ifm->ifm_index = ifp->if_index;
597 1.1.1.2 fvdl ifm->ifm_flags = ifp->if_flags;
598 1.1.1.2 fvdl ifm->ifm_data = ifp->if_data;
599 1.1.1.2 fvdl ifm->ifm_addrs = 0;
600 1.1.1.2 fvdl route_proto.sp_protocol = 0;
601 1.1.1.2 fvdl raw_input(m, &route_proto, &route_src, &route_dst);
602 1.1.1.2 fvdl }
603 1.1.1.2 fvdl
604 1.1.1.2 fvdl /*
605 1.1.1.2 fvdl * This is called to generate messages from the routing socket
606 1.1.1.2 fvdl * indicating a network interface has had addresses associated with it.
607 1.1.1.2 fvdl * if we ever reverse the logic and replace messages TO the routing
608 1.1.1.2 fvdl * socket indicate a request to configure interfaces, then it will
609 1.1.1.2 fvdl * be unnecessary as the routing socket will automatically generate
610 1.1.1.2 fvdl * copies of it.
611 1.1.1.2 fvdl */
612 1.1.1.2 fvdl void
613 1.1.1.2 fvdl rt_newaddrmsg(cmd, ifa, error, rt)
614 1.1.1.2 fvdl int cmd, error;
615 1.1.1.2 fvdl register struct ifaddr *ifa;
616 1.1.1.2 fvdl register struct rtentry *rt;
617 1.1.1.2 fvdl {
618 1.1.1.2 fvdl struct rt_addrinfo info;
619 1.1.1.2 fvdl struct sockaddr *sa;
620 1.1.1.2 fvdl int pass;
621 1.1.1.2 fvdl struct mbuf *m;
622 1.1.1.2 fvdl struct ifnet *ifp = ifa->ifa_ifp;
623 1.1.1.2 fvdl
624 1.1.1.2 fvdl if (route_cb.any_count == 0)
625 1.1.1.2 fvdl return;
626 1.1.1.2 fvdl for (pass = 1; pass < 3; pass++) {
627 1.1.1.2 fvdl bzero((caddr_t)&info, sizeof(info));
628 1.1.1.2 fvdl if ((cmd == RTM_ADD && pass == 1) ||
629 1.1.1.2 fvdl (cmd == RTM_DELETE && pass == 2)) {
630 1.1.1.2 fvdl register struct ifa_msghdr *ifam;
631 1.1.1.2 fvdl int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
632 1.1.1.2 fvdl
633 1.1.1.2 fvdl ifaaddr = sa = ifa->ifa_addr;
634 1.1.1.2 fvdl ifpaddr = ifp->if_addrlist->ifa_addr;
635 1.1.1.2 fvdl netmask = ifa->ifa_netmask;
636 1.1.1.2 fvdl brdaddr = ifa->ifa_dstaddr;
637 1.1.1.2 fvdl if ((m = rt_msg1(ncmd, &info)) == NULL)
638 1.1.1.2 fvdl continue;
639 1.1.1.2 fvdl ifam = mtod(m, struct ifa_msghdr *);
640 1.1.1.2 fvdl ifam->ifam_index = ifp->if_index;
641 1.1.1.2 fvdl ifam->ifam_metric = ifa->ifa_metric;
642 1.1.1.2 fvdl ifam->ifam_flags = ifa->ifa_flags;
643 1.1.1.2 fvdl ifam->ifam_addrs = info.rti_addrs;
644 1.1.1.2 fvdl }
645 1.1.1.2 fvdl if ((cmd == RTM_ADD && pass == 2) ||
646 1.1.1.2 fvdl (cmd == RTM_DELETE && pass == 1)) {
647 1.1.1.2 fvdl register struct rt_msghdr *rtm;
648 1.1.1.2 fvdl
649 1.1.1.2 fvdl if (rt == 0)
650 1.1.1.2 fvdl continue;
651 1.1.1.2 fvdl netmask = rt_mask(rt);
652 1.1.1.2 fvdl dst = sa = rt_key(rt);
653 1.1.1.2 fvdl gate = rt->rt_gateway;
654 1.1.1.2 fvdl if ((m = rt_msg1(cmd, &info)) == NULL)
655 1.1.1.2 fvdl continue;
656 1.1.1.2 fvdl rtm = mtod(m, struct rt_msghdr *);
657 1.1.1.2 fvdl rtm->rtm_index = ifp->if_index;
658 1.1.1.2 fvdl rtm->rtm_flags |= rt->rt_flags;
659 1.1.1.2 fvdl rtm->rtm_errno = error;
660 1.1.1.2 fvdl rtm->rtm_addrs = info.rti_addrs;
661 1.1.1.2 fvdl }
662 1.1.1.2 fvdl route_proto.sp_protocol = sa ? sa->sa_family : 0;
663 1.1.1.2 fvdl raw_input(m, &route_proto, &route_src, &route_dst);
664 1.1.1.2 fvdl }
665 1.1.1.2 fvdl }
666 1.1.1.2 fvdl
667 1.1.1.2 fvdl /*
668 1.1.1.2 fvdl * This is used in dumping the kernel table via sysctl().
669 1.1.1.2 fvdl */
670 1.1.1.2 fvdl int
671 1.1.1.2 fvdl sysctl_dumpentry(rn, w)
672 1.1 cgd struct radix_node *rn;
673 1.1 cgd register struct walkarg *w;
674 1.1 cgd {
675 1.1 cgd register struct rtentry *rt = (struct rtentry *)rn;
676 1.1.1.2 fvdl int error = 0, size;
677 1.1.1.2 fvdl struct rt_addrinfo info;
678 1.1 cgd
679 1.1.1.2 fvdl if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
680 1.1.1.2 fvdl return 0;
681 1.1.1.2 fvdl bzero((caddr_t)&info, sizeof(info));
682 1.1.1.2 fvdl dst = rt_key(rt);
683 1.1.1.2 fvdl gate = rt->rt_gateway;
684 1.1.1.2 fvdl netmask = rt_mask(rt);
685 1.1.1.2 fvdl genmask = rt->rt_genmask;
686 1.1.1.3 fvdl if (rt->rt_ifp) {
687 1.1.1.3 fvdl ifpaddr = rt->rt_ifp->if_addrlist->ifa_addr;
688 1.1.1.3 fvdl ifaaddr = rt->rt_ifa->ifa_addr;
689 1.1.1.3 fvdl if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
690 1.1.1.3 fvdl brdaddr = rt->rt_ifa->ifa_dstaddr;
691 1.1.1.3 fvdl }
692 1.1.1.2 fvdl size = rt_msg2(RTM_GET, &info, 0, w);
693 1.1.1.2 fvdl if (w->w_where && w->w_tmem) {
694 1.1.1.2 fvdl register struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
695 1.1.1.2 fvdl
696 1.1.1.2 fvdl rtm->rtm_flags = rt->rt_flags;
697 1.1.1.2 fvdl rtm->rtm_use = rt->rt_use;
698 1.1.1.2 fvdl rtm->rtm_rmx = rt->rt_rmx;
699 1.1.1.2 fvdl rtm->rtm_index = rt->rt_ifp->if_index;
700 1.1.1.2 fvdl rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
701 1.1.1.2 fvdl rtm->rtm_addrs = info.rti_addrs;
702 1.1.1.2 fvdl if (error = copyout((caddr_t)rtm, w->w_where, size))
703 1.1.1.2 fvdl w->w_where = NULL;
704 1.1.1.2 fvdl else
705 1.1.1.2 fvdl w->w_where += size;
706 1.1.1.2 fvdl }
707 1.1.1.2 fvdl return (error);
708 1.1.1.2 fvdl }
709 1.1.1.2 fvdl
710 1.1.1.2 fvdl int
711 1.1.1.2 fvdl sysctl_iflist(af, w)
712 1.1.1.2 fvdl int af;
713 1.1.1.2 fvdl register struct walkarg *w;
714 1.1.1.2 fvdl {
715 1.1.1.2 fvdl register struct ifnet *ifp;
716 1.1.1.2 fvdl register struct ifaddr *ifa;
717 1.1.1.2 fvdl struct rt_addrinfo info;
718 1.1.1.2 fvdl int len, error = 0;
719 1.1.1.2 fvdl
720 1.1.1.2 fvdl bzero((caddr_t)&info, sizeof(info));
721 1.1.1.2 fvdl for (ifp = ifnet; ifp; ifp = ifp->if_next) {
722 1.1.1.2 fvdl if (w->w_arg && w->w_arg != ifp->if_index)
723 1.1.1.2 fvdl continue;
724 1.1.1.2 fvdl ifa = ifp->if_addrlist;
725 1.1.1.2 fvdl ifpaddr = ifa->ifa_addr;
726 1.1.1.2 fvdl len = rt_msg2(RTM_IFINFO, &info, (caddr_t)0, w);
727 1.1.1.2 fvdl ifpaddr = 0;
728 1.1.1.2 fvdl if (w->w_where && w->w_tmem) {
729 1.1.1.2 fvdl register struct if_msghdr *ifm;
730 1.1.1.2 fvdl
731 1.1.1.2 fvdl ifm = (struct if_msghdr *)w->w_tmem;
732 1.1.1.2 fvdl ifm->ifm_index = ifp->if_index;
733 1.1.1.2 fvdl ifm->ifm_flags = ifp->if_flags;
734 1.1.1.2 fvdl ifm->ifm_data = ifp->if_data;
735 1.1.1.2 fvdl ifm->ifm_addrs = info.rti_addrs;
736 1.1.1.2 fvdl if (error = copyout((caddr_t)ifm, w->w_where, len))
737 1.1.1.2 fvdl return (error);
738 1.1.1.2 fvdl w->w_where += len;
739 1.1.1.2 fvdl }
740 1.1.1.2 fvdl while (ifa = ifa->ifa_next) {
741 1.1.1.2 fvdl if (af && af != ifa->ifa_addr->sa_family)
742 1.1.1.2 fvdl continue;
743 1.1.1.2 fvdl ifaaddr = ifa->ifa_addr;
744 1.1.1.2 fvdl netmask = ifa->ifa_netmask;
745 1.1.1.2 fvdl brdaddr = ifa->ifa_dstaddr;
746 1.1.1.2 fvdl len = rt_msg2(RTM_NEWADDR, &info, 0, w);
747 1.1.1.2 fvdl if (w->w_where && w->w_tmem) {
748 1.1.1.2 fvdl register struct ifa_msghdr *ifam;
749 1.1.1.2 fvdl
750 1.1.1.2 fvdl ifam = (struct ifa_msghdr *)w->w_tmem;
751 1.1.1.2 fvdl ifam->ifam_index = ifa->ifa_ifp->if_index;
752 1.1.1.2 fvdl ifam->ifam_flags = ifa->ifa_flags;
753 1.1.1.2 fvdl ifam->ifam_metric = ifa->ifa_metric;
754 1.1.1.2 fvdl ifam->ifam_addrs = info.rti_addrs;
755 1.1.1.2 fvdl if (error = copyout(w->w_tmem, w->w_where, len))
756 1.1.1.2 fvdl return (error);
757 1.1.1.2 fvdl w->w_where += len;
758 1.1.1.2 fvdl }
759 1.1.1.2 fvdl }
760 1.1.1.2 fvdl ifaaddr = netmask = brdaddr = 0;
761 1.1.1.2 fvdl }
762 1.1 cgd return (0);
763 1.1 cgd }
764 1.1 cgd
765 1.1.1.2 fvdl int
766 1.1.1.2 fvdl sysctl_rtable(name, namelen, where, given, new, newlen)
767 1.1.1.2 fvdl int *name;
768 1.1.1.2 fvdl int namelen;
769 1.1 cgd caddr_t where;
770 1.1.1.2 fvdl size_t *given;
771 1.1.1.2 fvdl caddr_t *new;
772 1.1.1.2 fvdl size_t newlen;
773 1.1 cgd {
774 1.1 cgd register struct radix_node_head *rnh;
775 1.1.1.2 fvdl int i, s, error = EINVAL;
776 1.1.1.2 fvdl u_char af;
777 1.1 cgd struct walkarg w;
778 1.1 cgd
779 1.1.1.2 fvdl if (new)
780 1.1.1.2 fvdl return (EPERM);
781 1.1.1.2 fvdl if (namelen != 3)
782 1.1 cgd return (EINVAL);
783 1.1.1.2 fvdl af = name[0];
784 1.1 cgd Bzero(&w, sizeof(w));
785 1.1.1.2 fvdl w.w_where = where;
786 1.1.1.2 fvdl w.w_given = *given;
787 1.1 cgd w.w_needed = 0 - w.w_given;
788 1.1.1.2 fvdl w.w_op = name[1];
789 1.1.1.2 fvdl w.w_arg = name[2];
790 1.1 cgd
791 1.1 cgd s = splnet();
792 1.1.1.2 fvdl switch (w.w_op) {
793 1.1.1.2 fvdl
794 1.1.1.2 fvdl case NET_RT_DUMP:
795 1.1.1.2 fvdl case NET_RT_FLAGS:
796 1.1.1.2 fvdl for (i = 1; i <= AF_MAX; i++)
797 1.1.1.2 fvdl if ((rnh = rt_tables[i]) && (af == 0 || af == i) &&
798 1.1.1.2 fvdl (error = rnh->rnh_walktree(rnh,
799 1.1.1.2 fvdl sysctl_dumpentry, &w)))
800 1.1.1.2 fvdl break;
801 1.1.1.2 fvdl break;
802 1.1.1.2 fvdl
803 1.1.1.2 fvdl case NET_RT_IFLIST:
804 1.1.1.2 fvdl error = sysctl_iflist(af, &w);
805 1.1 cgd }
806 1.1.1.2 fvdl splx(s);
807 1.1.1.2 fvdl if (w.w_tmem)
808 1.1.1.2 fvdl free(w.w_tmem, M_RTABLE);
809 1.1 cgd w.w_needed += w.w_given;
810 1.1.1.2 fvdl if (where) {
811 1.1 cgd *given = w.w_where - where;
812 1.1.1.2 fvdl if (*given < w.w_needed)
813 1.1.1.2 fvdl return (ENOMEM);
814 1.1.1.2 fvdl } else {
815 1.1.1.2 fvdl *given = (11 * w.w_needed) / 10;
816 1.1 cgd }
817 1.1.1.2 fvdl return (error);
818 1.1 cgd }
819 1.1 cgd
820 1.1 cgd /*
821 1.1 cgd * Definitions of protocols supported in the ROUTE domain.
822 1.1 cgd */
823 1.1 cgd
824 1.1 cgd extern struct domain routedomain; /* or at least forward */
825 1.1 cgd
826 1.1 cgd struct protosw routesw[] = {
827 1.1 cgd { SOCK_RAW, &routedomain, 0, PR_ATOMIC|PR_ADDR,
828 1.1 cgd raw_input, route_output, raw_ctlinput, 0,
829 1.1 cgd route_usrreq,
830 1.1 cgd raw_init, 0, 0, 0,
831 1.1.1.2 fvdl sysctl_rtable,
832 1.1 cgd }
833 1.1 cgd };
834 1.1 cgd
835 1.1 cgd struct domain routedomain =
836 1.1.1.2 fvdl { PF_ROUTE, "route", route_init, 0, 0,
837 1.1 cgd routesw, &routesw[sizeof(routesw)/sizeof(routesw[0])] };
838