rtsock.c revision 1.100 1 /* $NetBSD: rtsock.c,v 1.100 2008/03/29 13:00:43 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.100 2008/03/29 13:00:43 yamt Exp $");
65
66 #include "opt_inet.h"
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/mbuf.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/domain.h>
75 #include <sys/protosw.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/intr.h>
79 #ifdef RTSOCK_DEBUG
80 #include <netinet/in.h>
81 #endif /* RTSOCK_DEBUG */
82
83 #include <net/if.h>
84 #include <net/route.h>
85 #include <net/raw_cb.h>
86
87 #include <machine/stdarg.h>
88
89 DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
90
91 struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
92 struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
93
94 int route_maxqlen = IFQ_MAXLEN;
95 static struct ifqueue route_intrq;
96 static void *route_sih;
97
98 struct walkarg {
99 int w_op;
100 int w_arg;
101 int w_given;
102 int w_needed;
103 void * w_where;
104 int w_tmemsize;
105 int w_tmemneeded;
106 void * w_tmem;
107 };
108
109 static struct mbuf *rt_msg1(int, struct rt_addrinfo *, void *, int);
110 static int rt_msg2(int, struct rt_addrinfo *, void *, struct walkarg *, int *);
111 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
112 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
113 struct rt_addrinfo *);
114 static int sysctl_dumpentry(struct rtentry *, void *);
115 static int sysctl_iflist(int, struct walkarg *, int);
116 static int sysctl_rtable(SYSCTLFN_PROTO);
117 static inline void rt_adjustcount(int, int);
118 static void route_enqueue(struct mbuf *, int);
119
120 /* Sleazy use of local variables throughout file, warning!!!! */
121 #define dst info.rti_info[RTAX_DST]
122 #define gate info.rti_info[RTAX_GATEWAY]
123 #define netmask info.rti_info[RTAX_NETMASK]
124 #define ifpaddr info.rti_info[RTAX_IFP]
125 #define ifaaddr info.rti_info[RTAX_IFA]
126 #define brdaddr info.rti_info[RTAX_BRD]
127
128 static inline void
129 rt_adjustcount(int af, int cnt)
130 {
131 route_cb.any_count += cnt;
132 switch (af) {
133 case AF_INET:
134 route_cb.ip_count += cnt;
135 return;
136 #ifdef INET6
137 case AF_INET6:
138 route_cb.ip6_count += cnt;
139 return;
140 #endif
141 case AF_IPX:
142 route_cb.ipx_count += cnt;
143 return;
144 case AF_NS:
145 route_cb.ns_count += cnt;
146 return;
147 case AF_ISO:
148 route_cb.iso_count += cnt;
149 return;
150 }
151 }
152
153 /*ARGSUSED*/
154 int
155 route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
156 struct mbuf *control, struct lwp *l)
157 {
158 int error = 0;
159 struct rawcb *rp = sotorawcb(so);
160 int s;
161
162 if (req == PRU_ATTACH) {
163 MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK);
164 if ((so->so_pcb = rp) != NULL)
165 memset(so->so_pcb, 0, sizeof(*rp));
166
167 }
168 if (req == PRU_DETACH && rp)
169 rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
170 s = splsoftnet();
171
172 /*
173 * Don't call raw_usrreq() in the attach case, because
174 * we want to allow non-privileged processes to listen on
175 * and send "safe" commands to the routing socket.
176 */
177 if (req == PRU_ATTACH) {
178 if (l == NULL)
179 error = EACCES;
180 else
181 error = raw_attach(so, (int)(long)nam);
182 } else
183 error = raw_usrreq(so, req, m, nam, control, l);
184
185 rp = sotorawcb(so);
186 if (req == PRU_ATTACH && rp) {
187 if (error) {
188 free((void *)rp, M_PCB);
189 splx(s);
190 return error;
191 }
192 rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
193 rp->rcb_laddr = &route_src;
194 rp->rcb_faddr = &route_dst;
195 soisconnected(so);
196 so->so_options |= SO_USELOOPBACK;
197 }
198 splx(s);
199 return error;
200 }
201
202 static const struct sockaddr *
203 intern_netmask(const struct sockaddr *mask)
204 {
205 struct radix_node *rn;
206 extern struct radix_node_head *mask_rnhead;
207
208 if (mask != NULL &&
209 (rn = rn_search(mask, mask_rnhead->rnh_treetop)))
210 mask = (const struct sockaddr *)rn->rn_key;
211
212 return mask;
213 }
214
215 /*ARGSUSED*/
216 int
217 route_output(struct mbuf *m, ...)
218 {
219 struct sockproto proto = { .sp_family = PF_ROUTE, };
220 struct rt_msghdr *rtm = NULL;
221 struct rtentry *rt = NULL;
222 struct rtentry *saved_nrt = NULL;
223 struct rt_addrinfo info;
224 int len, error = 0;
225 struct ifnet *ifp = NULL;
226 struct ifaddr *ifa = NULL;
227 struct socket *so;
228 va_list ap;
229 sa_family_t family;
230
231 va_start(ap, m);
232 so = va_arg(ap, struct socket *);
233 va_end(ap);
234
235 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
236 if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
237 (m = m_pullup(m, sizeof(int32_t))) == NULL))
238 return ENOBUFS;
239 if ((m->m_flags & M_PKTHDR) == 0)
240 panic("route_output");
241 len = m->m_pkthdr.len;
242 if (len < sizeof(*rtm) ||
243 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
244 dst = NULL;
245 senderr(EINVAL);
246 }
247 R_Malloc(rtm, struct rt_msghdr *, len);
248 if (rtm == NULL) {
249 dst = NULL;
250 senderr(ENOBUFS);
251 }
252 m_copydata(m, 0, len, (void *)rtm);
253 if (rtm->rtm_version != RTM_VERSION) {
254 dst = NULL;
255 senderr(EPROTONOSUPPORT);
256 }
257 rtm->rtm_pid = curproc->p_pid;
258 memset(&info, 0, sizeof(info));
259 info.rti_addrs = rtm->rtm_addrs;
260 if (rt_xaddrs(rtm->rtm_type, (void *)(rtm + 1), len + (char *)rtm, &info))
261 senderr(EINVAL);
262 info.rti_flags = rtm->rtm_flags;
263 #ifdef RTSOCK_DEBUG
264 if (dst->sa_family == AF_INET) {
265 printf("%s: extracted dst %s\n", __func__,
266 inet_ntoa(((const struct sockaddr_in *)dst)->sin_addr));
267 }
268 #endif /* RTSOCK_DEBUG */
269 if (dst == NULL || (dst->sa_family >= AF_MAX))
270 senderr(EINVAL);
271 if (gate != NULL && (gate->sa_family >= AF_MAX))
272 senderr(EINVAL);
273
274 /*
275 * Verify that the caller has the appropriate privilege; RTM_GET
276 * is the only operation the non-superuser is allowed.
277 */
278 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
279 0, rtm, NULL, NULL) != 0)
280 senderr(EACCES);
281
282 switch (rtm->rtm_type) {
283
284 case RTM_ADD:
285 if (gate == NULL)
286 senderr(EINVAL);
287 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
288 if (error == 0 && saved_nrt) {
289 rt_setmetrics(rtm->rtm_inits,
290 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
291 saved_nrt->rt_refcnt--;
292 }
293 break;
294
295 case RTM_DELETE:
296 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
297 if (error == 0) {
298 (rt = saved_nrt)->rt_refcnt++;
299 goto report;
300 }
301 break;
302
303 case RTM_GET:
304 case RTM_CHANGE:
305 case RTM_LOCK:
306 /* XXX This will mask dst with netmask before
307 * searching. It did not used to do that. --dyoung
308 */
309 error = rtrequest(RTM_GET, dst, gate, netmask, 0, &rt);
310 if (error != 0)
311 senderr(error);
312 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
313 struct radix_node *rn;
314
315 if (memcmp(dst, rt_getkey(rt), dst->sa_len) != 0)
316 senderr(ESRCH);
317 netmask = intern_netmask(netmask);
318 for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
319 if (netmask == (const struct sockaddr *)rn->rn_mask)
320 break;
321 if (rn == NULL)
322 senderr(ETOOMANYREFS);
323 rt = (struct rtentry *)rn;
324 }
325
326 switch (rtm->rtm_type) {
327 case RTM_GET:
328 report:
329 dst = rt_getkey(rt);
330 gate = rt->rt_gateway;
331 netmask = rt_mask(rt);
332 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
333 ;
334 else if ((ifp = rt->rt_ifp) != NULL) {
335 const struct ifaddr *rtifa;
336 ifpaddr = ifp->if_dl->ifa_addr;
337 /* rtifa used to be simply rt->rt_ifa.
338 * If rt->rt_ifa != NULL, then
339 * rt_get_ifa() != NULL. So this
340 * ought to still be safe. --dyoung
341 */
342 rtifa = rt_get_ifa(rt);
343 ifaaddr = rtifa->ifa_addr;
344 #ifdef RTSOCK_DEBUG
345 if (ifaaddr->sa_family == AF_INET) {
346 printf("%s: copying out RTAX_IFA %s ",
347 __func__,
348 inet_ntoa(((const struct sockaddr_in *)ifaaddr)->sin_addr));
349 printf("for dst %s ifa_getifa %p ifa_seqno %p\n",
350 inet_ntoa(((const struct sockaddr_in *)dst)->sin_addr),
351 (void *)rtifa->ifa_getifa, rtifa->ifa_seqno);
352 }
353 #endif /* RTSOCK_DEBUG */
354 if (ifp->if_flags & IFF_POINTOPOINT)
355 brdaddr = rtifa->ifa_dstaddr;
356 else
357 brdaddr = NULL;
358 rtm->rtm_index = ifp->if_index;
359 } else {
360 ifpaddr = NULL;
361 ifaaddr = NULL;
362 }
363 (void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
364 if (len > rtm->rtm_msglen) {
365 struct rt_msghdr *new_rtm;
366 R_Malloc(new_rtm, struct rt_msghdr *, len);
367 if (new_rtm == NULL)
368 senderr(ENOBUFS);
369 Bcopy(rtm, new_rtm, rtm->rtm_msglen);
370 Free(rtm); rtm = new_rtm;
371 }
372 (void)rt_msg2(rtm->rtm_type, &info, (void *)rtm,
373 NULL, 0);
374 rtm->rtm_flags = rt->rt_flags;
375 rtm->rtm_rmx = rt->rt_rmx;
376 rtm->rtm_addrs = info.rti_addrs;
377 break;
378
379 case RTM_CHANGE:
380 /*
381 * new gateway could require new ifaddr, ifp;
382 * flags may also be different; ifp may be specified
383 * by ll sockaddr when protocol address is ambiguous
384 */
385 if ((error = rt_getifa(&info)) != 0)
386 senderr(error);
387 if (gate && rt_setgate(rt, gate))
388 senderr(EDQUOT);
389 /* new gateway could require new ifaddr, ifp;
390 flags may also be different; ifp may be specified
391 by ll sockaddr when protocol address is ambiguous */
392 if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) &&
393 (ifp = ifa->ifa_ifp) && (ifaaddr || gate))
394 ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate,
395 ifp);
396 else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) ||
397 (gate && (ifa = ifa_ifwithroute(rt->rt_flags,
398 rt_getkey(rt), gate))))
399 ifp = ifa->ifa_ifp;
400 if (ifa) {
401 struct ifaddr *oifa = rt->rt_ifa;
402 if (oifa != ifa) {
403 if (oifa && oifa->ifa_rtrequest) {
404 oifa->ifa_rtrequest(RTM_DELETE,
405 rt, &info);
406 }
407 rt_replace_ifa(rt, ifa);
408 rt->rt_ifp = ifp;
409 }
410 }
411 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
412 &rt->rt_rmx);
413 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
414 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
415 /*
416 * Fall into
417 */
418 case RTM_LOCK:
419 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
420 rt->rt_rmx.rmx_locks |=
421 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
422 break;
423 }
424 break;
425
426 default:
427 senderr(EOPNOTSUPP);
428 }
429
430 flush:
431 if (rtm) {
432 if (error)
433 rtm->rtm_errno = error;
434 else
435 rtm->rtm_flags |= RTF_DONE;
436 }
437 family = dst ? dst->sa_family : 0;
438 if (rt)
439 rtfree(rt);
440 {
441 struct rawcb *rp = NULL;
442 /*
443 * Check to see if we don't want our own messages.
444 */
445 if ((so->so_options & SO_USELOOPBACK) == 0) {
446 if (route_cb.any_count <= 1) {
447 if (rtm)
448 Free(rtm);
449 m_freem(m);
450 return error;
451 }
452 /* There is another listener, so construct message */
453 rp = sotorawcb(so);
454 }
455 if (rtm) {
456 m_copyback(m, 0, rtm->rtm_msglen, (void *)rtm);
457 if (m->m_pkthdr.len < rtm->rtm_msglen) {
458 m_freem(m);
459 m = NULL;
460 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
461 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
462 Free(rtm);
463 }
464 if (rp)
465 rp->rcb_proto.sp_family = 0; /* Avoid us */
466 if (family)
467 proto.sp_protocol = family;
468 if (m)
469 raw_input(m, &proto, &route_src, &route_dst);
470 if (rp)
471 rp->rcb_proto.sp_family = PF_ROUTE;
472 }
473 return error;
474 }
475
476 void
477 rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics *out)
478 {
479 #define metric(f, e) if (which & (f)) out->e = in->e;
480 metric(RTV_RPIPE, rmx_recvpipe);
481 metric(RTV_SPIPE, rmx_sendpipe);
482 metric(RTV_SSTHRESH, rmx_ssthresh);
483 metric(RTV_RTT, rmx_rtt);
484 metric(RTV_RTTVAR, rmx_rttvar);
485 metric(RTV_HOPCOUNT, rmx_hopcount);
486 metric(RTV_MTU, rmx_mtu);
487 metric(RTV_EXPIRE, rmx_expire);
488 #undef metric
489 }
490
491 #define ROUNDUP(a) \
492 ((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
493 #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))
494
495 static int
496 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim, struct rt_addrinfo *rtinfo)
497 {
498 const struct sockaddr *sa = NULL; /* Quell compiler warning */
499 int i;
500
501 for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
502 if ((rtinfo->rti_addrs & (1 << i)) == 0)
503 continue;
504 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
505 ADVANCE(cp, sa);
506 }
507
508 /* Check for extra addresses specified, except RTM_GET asking for interface info. */
509 if (rtmtype == RTM_GET) {
510 if (((rtinfo->rti_addrs & (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
511 return 1;
512 } else {
513 if ((rtinfo->rti_addrs & (~0 << i)) != 0)
514 return 1;
515 }
516 /* Check for bad data length. */
517 if (cp != cplim) {
518 if (i == RTAX_NETMASK + 1 && sa &&
519 cp - ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
520 /*
521 * The last sockaddr was netmask.
522 * We accept this for now for the sake of old
523 * binaries or third party softwares.
524 */
525 ;
526 else
527 return 1;
528 }
529 return 0;
530 }
531
532 static struct mbuf *
533 rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
534 {
535 struct rt_msghdr *rtm;
536 struct mbuf *m;
537 int i;
538 const struct sockaddr *sa;
539 int len, dlen;
540
541 m = m_gethdr(M_DONTWAIT, MT_DATA);
542 if (m == NULL)
543 return m;
544 MCLAIM(m, &routedomain.dom_mowner);
545 switch (type) {
546
547 case RTM_DELADDR:
548 case RTM_NEWADDR:
549 len = sizeof(struct ifa_msghdr);
550 break;
551
552 #ifdef COMPAT_14
553 case RTM_OIFINFO:
554 len = sizeof(struct if_msghdr14);
555 break;
556 #endif
557
558 case RTM_IFINFO:
559 len = sizeof(struct if_msghdr);
560 break;
561
562 case RTM_IFANNOUNCE:
563 case RTM_IEEE80211:
564 len = sizeof(struct if_announcemsghdr);
565 break;
566
567 default:
568 len = sizeof(struct rt_msghdr);
569 }
570 if (len > MHLEN + MLEN)
571 panic("rt_msg1: message too long");
572 else if (len > MHLEN) {
573 m->m_next = m_get(M_DONTWAIT, MT_DATA);
574 if (m->m_next == NULL) {
575 m_freem(m);
576 return NULL;
577 }
578 MCLAIM(m->m_next, m->m_owner);
579 m->m_pkthdr.len = len;
580 m->m_len = MHLEN;
581 m->m_next->m_len = len - MHLEN;
582 } else {
583 m->m_pkthdr.len = m->m_len = len;
584 }
585 m->m_pkthdr.rcvif = NULL;
586 m_copyback(m, 0, datalen, data);
587 rtm = mtod(m, struct rt_msghdr *);
588 for (i = 0; i < RTAX_MAX; i++) {
589 if ((sa = rtinfo->rti_info[i]) == NULL)
590 continue;
591 rtinfo->rti_addrs |= (1 << i);
592 dlen = ROUNDUP(sa->sa_len);
593 m_copyback(m, len, dlen, sa);
594 len += dlen;
595 }
596 if (m->m_pkthdr.len != len) {
597 m_freem(m);
598 return NULL;
599 }
600 rtm->rtm_msglen = len;
601 rtm->rtm_version = RTM_VERSION;
602 rtm->rtm_type = type;
603 return m;
604 }
605
606 /*
607 * rt_msg2
608 *
609 * fills 'cp' or 'w'.w_tmem with the routing socket message and
610 * returns the length of the message in 'lenp'.
611 *
612 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
613 * the message
614 * otherwise walkarg's w_needed is updated and if the user buffer is
615 * specified and w_needed indicates space exists the information is copied
616 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
617 * if the allocation fails ENOBUFS is returned.
618 */
619 static int
620 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct walkarg *w,
621 int *lenp)
622 {
623 int i;
624 int len, dlen, second_time = 0;
625 char *cp0, *cp = cpv;
626
627 rtinfo->rti_addrs = 0;
628 again:
629 switch (type) {
630
631 case RTM_DELADDR:
632 case RTM_NEWADDR:
633 len = sizeof(struct ifa_msghdr);
634 break;
635 #ifdef COMPAT_14
636 case RTM_OIFINFO:
637 len = sizeof(struct if_msghdr14);
638 break;
639 #endif
640
641 case RTM_IFINFO:
642 len = sizeof(struct if_msghdr);
643 break;
644
645 default:
646 len = sizeof(struct rt_msghdr);
647 }
648 if ((cp0 = cp) != NULL)
649 cp += len;
650 for (i = 0; i < RTAX_MAX; i++) {
651 const struct sockaddr *sa;
652
653 if ((sa = rtinfo->rti_info[i]) == NULL)
654 continue;
655 rtinfo->rti_addrs |= (1 << i);
656 dlen = ROUNDUP(sa->sa_len);
657 if (cp) {
658 bcopy(sa, cp, (unsigned)dlen);
659 cp += dlen;
660 }
661 len += dlen;
662 }
663 if (cp == NULL && w != NULL && !second_time) {
664 struct walkarg *rw = w;
665
666 rw->w_needed += len;
667 if (rw->w_needed <= 0 && rw->w_where) {
668 if (rw->w_tmemsize < len) {
669 if (rw->w_tmem)
670 free(rw->w_tmem, M_RTABLE);
671 rw->w_tmem = (void *) malloc(len, M_RTABLE,
672 M_NOWAIT);
673 if (rw->w_tmem)
674 rw->w_tmemsize = len;
675 }
676 if (rw->w_tmem) {
677 cp = rw->w_tmem;
678 second_time = 1;
679 goto again;
680 } else {
681 rw->w_tmemneeded = len;
682 return ENOBUFS;
683 }
684 }
685 }
686 if (cp) {
687 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
688
689 rtm->rtm_version = RTM_VERSION;
690 rtm->rtm_type = type;
691 rtm->rtm_msglen = len;
692 }
693 if (lenp)
694 *lenp = len;
695 return 0;
696 }
697
698 /*
699 * This routine is called to generate a message from the routing
700 * socket indicating that a redirect has occurred, a routing lookup
701 * has failed, or that a protocol has detected timeouts to a particular
702 * destination.
703 */
704 void
705 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
706 {
707 struct rt_msghdr rtm;
708 struct mbuf *m;
709 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
710
711 if (route_cb.any_count == 0)
712 return;
713 memset(&rtm, 0, sizeof(rtm));
714 rtm.rtm_flags = RTF_DONE | flags;
715 rtm.rtm_errno = error;
716 m = rt_msg1(type, rtinfo, (void *)&rtm, sizeof(rtm));
717 if (m == NULL)
718 return;
719 mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
720 route_enqueue(m, sa ? sa->sa_family : 0);
721 }
722
723 /*
724 * This routine is called to generate a message from the routing
725 * socket indicating that the status of a network interface has changed.
726 */
727 void
728 rt_ifmsg(struct ifnet *ifp)
729 {
730 struct if_msghdr ifm;
731 #ifdef COMPAT_14
732 struct if_msghdr14 oifm;
733 #endif
734 struct mbuf *m;
735 struct rt_addrinfo info;
736
737 if (route_cb.any_count == 0)
738 return;
739 memset(&info, 0, sizeof(info));
740 memset(&ifm, 0, sizeof(ifm));
741 ifm.ifm_index = ifp->if_index;
742 ifm.ifm_flags = ifp->if_flags;
743 ifm.ifm_data = ifp->if_data;
744 ifm.ifm_addrs = 0;
745 m = rt_msg1(RTM_IFINFO, &info, (void *)&ifm, sizeof(ifm));
746 if (m == NULL)
747 return;
748 route_enqueue(m, 0);
749 #ifdef COMPAT_14
750 memset(&info, 0, sizeof(info));
751 memset(&oifm, 0, sizeof(oifm));
752 oifm.ifm_index = ifp->if_index;
753 oifm.ifm_flags = ifp->if_flags;
754 oifm.ifm_data.ifi_type = ifp->if_data.ifi_type;
755 oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen;
756 oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen;
757 oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
758 oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric;
759 oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate;
760 oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets;
761 oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors;
762 oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets;
763 oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors;
764 oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions;
765 oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes;
766 oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes;
767 oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts;
768 oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts;
769 oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops;
770 oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto;
771 oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange;
772 oifm.ifm_addrs = 0;
773 m = rt_msg1(RTM_OIFINFO, &info, (void *)&oifm, sizeof(oifm));
774 if (m == NULL)
775 return;
776 route_enqueue(m, 0);
777 #endif
778 }
779
780 /*
781 * This is called to generate messages from the routing socket
782 * indicating a network interface has had addresses associated with it.
783 * if we ever reverse the logic and replace messages TO the routing
784 * socket indicate a request to configure interfaces, then it will
785 * be unnecessary as the routing socket will automatically generate
786 * copies of it.
787 */
788 void
789 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
790 {
791 struct rt_addrinfo info;
792 const struct sockaddr *sa = NULL;
793 int pass;
794 struct mbuf *m = NULL;
795 struct ifnet *ifp = ifa->ifa_ifp;
796
797 if (route_cb.any_count == 0)
798 return;
799 for (pass = 1; pass < 3; pass++) {
800 memset(&info, 0, sizeof(info));
801 if ((cmd == RTM_ADD && pass == 1) ||
802 (cmd == RTM_DELETE && pass == 2)) {
803 struct ifa_msghdr ifam;
804 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
805
806 ifaaddr = sa = ifa->ifa_addr;
807 ifpaddr = ifp->if_dl->ifa_addr;
808 netmask = ifa->ifa_netmask;
809 brdaddr = ifa->ifa_dstaddr;
810 memset(&ifam, 0, sizeof(ifam));
811 ifam.ifam_index = ifp->if_index;
812 ifam.ifam_metric = ifa->ifa_metric;
813 ifam.ifam_flags = ifa->ifa_flags;
814 m = rt_msg1(ncmd, &info, (void *)&ifam, sizeof(ifam));
815 if (m == NULL)
816 continue;
817 mtod(m, struct ifa_msghdr *)->ifam_addrs =
818 info.rti_addrs;
819 }
820 if ((cmd == RTM_ADD && pass == 2) ||
821 (cmd == RTM_DELETE && pass == 1)) {
822 struct rt_msghdr rtm;
823
824 if (rt == NULL)
825 continue;
826 netmask = rt_mask(rt);
827 dst = sa = rt_getkey(rt);
828 gate = rt->rt_gateway;
829 memset(&rtm, 0, sizeof(rtm));
830 rtm.rtm_index = ifp->if_index;
831 rtm.rtm_flags |= rt->rt_flags;
832 rtm.rtm_errno = error;
833 m = rt_msg1(cmd, &info, (void *)&rtm, sizeof(rtm));
834 if (m == NULL)
835 continue;
836 mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
837 }
838 route_enqueue(m, sa ? sa->sa_family : 0);
839 }
840 }
841
842 static struct mbuf *
843 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
844 struct rt_addrinfo *info)
845 {
846 struct if_announcemsghdr ifan;
847
848 memset(info, 0, sizeof(*info));
849 memset(&ifan, 0, sizeof(ifan));
850 ifan.ifan_index = ifp->if_index;
851 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
852 ifan.ifan_what = what;
853 return rt_msg1(type, info, (void *)&ifan, sizeof(ifan));
854 }
855
856 /*
857 * This is called to generate routing socket messages indicating
858 * network interface arrival and departure.
859 */
860 void
861 rt_ifannouncemsg(struct ifnet *ifp, int what)
862 {
863 struct mbuf *m;
864 struct rt_addrinfo info;
865
866 if (route_cb.any_count == 0)
867 return;
868 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
869 if (m == NULL)
870 return;
871 route_enqueue(m, 0);
872 }
873
874 /*
875 * This is called to generate routing socket messages indicating
876 * IEEE80211 wireless events.
877 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
878 */
879 void
880 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
881 {
882 struct mbuf *m;
883 struct rt_addrinfo info;
884
885 if (route_cb.any_count == 0)
886 return;
887 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
888 if (m == NULL)
889 return;
890 /*
891 * Append the ieee80211 data. Try to stick it in the
892 * mbuf containing the ifannounce msg; otherwise allocate
893 * a new mbuf and append.
894 *
895 * NB: we assume m is a single mbuf.
896 */
897 if (data_len > M_TRAILINGSPACE(m)) {
898 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
899 if (n == NULL) {
900 m_freem(m);
901 return;
902 }
903 (void)memcpy(mtod(n, void *), data, data_len);
904 n->m_len = data_len;
905 m->m_next = n;
906 } else if (data_len > 0) {
907 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
908 m->m_len += data_len;
909 }
910 if (m->m_flags & M_PKTHDR)
911 m->m_pkthdr.len += data_len;
912 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
913 route_enqueue(m, 0);
914 }
915
916 /*
917 * This is used in dumping the kernel table via sysctl().
918 */
919 static int
920 sysctl_dumpentry(struct rtentry *rt, void *v)
921 {
922 struct walkarg *w = v;
923 int error = 0, size;
924 struct rt_addrinfo info;
925
926 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
927 return 0;
928 memset(&info, 0, sizeof(info));
929 dst = rt_getkey(rt);
930 gate = rt->rt_gateway;
931 netmask = rt_mask(rt);
932 if (rt->rt_ifp) {
933 const struct ifaddr *rtifa;
934 ifpaddr = rt->rt_ifp->if_dl->ifa_addr;
935 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
936 * then rt_get_ifa() != NULL. So this ought to still be safe.
937 * --dyoung
938 */
939 rtifa = rt_get_ifa(rt);
940 ifaaddr = rtifa->ifa_addr;
941 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
942 brdaddr = rtifa->ifa_dstaddr;
943 }
944 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
945 return error;
946 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
947 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
948
949 rtm->rtm_flags = rt->rt_flags;
950 rtm->rtm_use = rt->rt_use;
951 rtm->rtm_rmx = rt->rt_rmx;
952 KASSERT(rt->rt_ifp != NULL);
953 rtm->rtm_index = rt->rt_ifp->if_index;
954 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
955 rtm->rtm_addrs = info.rti_addrs;
956 if ((error = copyout(rtm, w->w_where, size)) != 0)
957 w->w_where = NULL;
958 else
959 w->w_where = (char *)w->w_where + size;
960 }
961 return error;
962 }
963
964 static int
965 sysctl_iflist(int af, struct walkarg *w, int type)
966 {
967 struct ifnet *ifp;
968 struct ifaddr *ifa;
969 struct rt_addrinfo info;
970 int len, error = 0;
971
972 memset(&info, 0, sizeof(info));
973 IFNET_FOREACH(ifp) {
974 if (w->w_arg && w->w_arg != ifp->if_index)
975 continue;
976 if (IFADDR_EMPTY(ifp))
977 continue;
978 ifpaddr = ifp->if_dl->ifa_addr;
979 switch (type) {
980 case NET_RT_IFLIST:
981 error =
982 rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
983 break;
984 #ifdef COMPAT_14
985 case NET_RT_OIFLIST:
986 error =
987 rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
988 break;
989 #endif
990 default:
991 panic("sysctl_iflist(1)");
992 }
993 if (error)
994 return error;
995 ifpaddr = NULL;
996 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
997 switch (type) {
998 case NET_RT_IFLIST: {
999 struct if_msghdr *ifm;
1000
1001 ifm = (struct if_msghdr *)w->w_tmem;
1002 ifm->ifm_index = ifp->if_index;
1003 ifm->ifm_flags = ifp->if_flags;
1004 ifm->ifm_data = ifp->if_data;
1005 ifm->ifm_addrs = info.rti_addrs;
1006 error = copyout(ifm, w->w_where, len);
1007 if (error)
1008 return error;
1009 w->w_where = (char *)w->w_where + len;
1010 break;
1011 }
1012
1013 #ifdef COMPAT_14
1014 case NET_RT_OIFLIST: {
1015 struct if_msghdr14 *ifm;
1016
1017 ifm = (struct if_msghdr14 *)w->w_tmem;
1018 ifm->ifm_index = ifp->if_index;
1019 ifm->ifm_flags = ifp->if_flags;
1020 ifm->ifm_data.ifi_type = ifp->if_data.ifi_type;
1021 ifm->ifm_data.ifi_addrlen =
1022 ifp->if_data.ifi_addrlen;
1023 ifm->ifm_data.ifi_hdrlen =
1024 ifp->if_data.ifi_hdrlen;
1025 ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
1026 ifm->ifm_data.ifi_metric =
1027 ifp->if_data.ifi_metric;
1028 ifm->ifm_data.ifi_baudrate =
1029 ifp->if_data.ifi_baudrate;
1030 ifm->ifm_data.ifi_ipackets =
1031 ifp->if_data.ifi_ipackets;
1032 ifm->ifm_data.ifi_ierrors =
1033 ifp->if_data.ifi_ierrors;
1034 ifm->ifm_data.ifi_opackets =
1035 ifp->if_data.ifi_opackets;
1036 ifm->ifm_data.ifi_oerrors =
1037 ifp->if_data.ifi_oerrors;
1038 ifm->ifm_data.ifi_collisions =
1039 ifp->if_data.ifi_collisions;
1040 ifm->ifm_data.ifi_ibytes =
1041 ifp->if_data.ifi_ibytes;
1042 ifm->ifm_data.ifi_obytes =
1043 ifp->if_data.ifi_obytes;
1044 ifm->ifm_data.ifi_imcasts =
1045 ifp->if_data.ifi_imcasts;
1046 ifm->ifm_data.ifi_omcasts =
1047 ifp->if_data.ifi_omcasts;
1048 ifm->ifm_data.ifi_iqdrops =
1049 ifp->if_data.ifi_iqdrops;
1050 ifm->ifm_data.ifi_noproto =
1051 ifp->if_data.ifi_noproto;
1052 ifm->ifm_data.ifi_lastchange =
1053 ifp->if_data.ifi_lastchange;
1054 ifm->ifm_addrs = info.rti_addrs;
1055 error = copyout(ifm, w->w_where, len);
1056 if (error)
1057 return error;
1058 w->w_where = (char *)w->w_where + len;
1059 break;
1060 }
1061 #endif
1062 default:
1063 panic("sysctl_iflist(2)");
1064 }
1065 }
1066 IFADDR_FOREACH(ifa, ifp) {
1067 if (af && af != ifa->ifa_addr->sa_family)
1068 continue;
1069 ifaaddr = ifa->ifa_addr;
1070 netmask = ifa->ifa_netmask;
1071 brdaddr = ifa->ifa_dstaddr;
1072 if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
1073 return error;
1074 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1075 struct ifa_msghdr *ifam;
1076
1077 ifam = (struct ifa_msghdr *)w->w_tmem;
1078 ifam->ifam_index = ifa->ifa_ifp->if_index;
1079 ifam->ifam_flags = ifa->ifa_flags;
1080 ifam->ifam_metric = ifa->ifa_metric;
1081 ifam->ifam_addrs = info.rti_addrs;
1082 error = copyout(w->w_tmem, w->w_where, len);
1083 if (error)
1084 return error;
1085 w->w_where = (char *)w->w_where + len;
1086 }
1087 }
1088 ifaaddr = netmask = brdaddr = NULL;
1089 }
1090 return 0;
1091 }
1092
1093 static int
1094 sysctl_rtable(SYSCTLFN_ARGS)
1095 {
1096 void *where = oldp;
1097 size_t *given = oldlenp;
1098 const void *new = newp;
1099 int i, s, error = EINVAL;
1100 u_char af;
1101 struct walkarg w;
1102
1103 if (namelen == 1 && name[0] == CTL_QUERY)
1104 return sysctl_query(SYSCTLFN_CALL(rnode));
1105
1106 if (new)
1107 return EPERM;
1108 if (namelen != 3)
1109 return EINVAL;
1110 af = name[0];
1111 w.w_tmemneeded = 0;
1112 w.w_tmemsize = 0;
1113 w.w_tmem = NULL;
1114 again:
1115 /* we may return here if a later [re]alloc of the t_mem buffer fails */
1116 if (w.w_tmemneeded) {
1117 w.w_tmem = (void *) malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
1118 w.w_tmemsize = w.w_tmemneeded;
1119 w.w_tmemneeded = 0;
1120 }
1121 w.w_op = name[1];
1122 w.w_arg = name[2];
1123 w.w_given = *given;
1124 w.w_needed = 0 - w.w_given;
1125 w.w_where = where;
1126
1127 s = splsoftnet();
1128 switch (w.w_op) {
1129
1130 case NET_RT_DUMP:
1131 case NET_RT_FLAGS:
1132 for (i = 1; i <= AF_MAX; i++)
1133 if ((af == 0 || af == i) &&
1134 (error = rt_walktree(i, sysctl_dumpentry, &w)))
1135 break;
1136 break;
1137
1138 #ifdef COMPAT_14
1139 case NET_RT_OIFLIST:
1140 error = sysctl_iflist(af, &w, w.w_op);
1141 break;
1142 #endif
1143
1144 case NET_RT_IFLIST:
1145 error = sysctl_iflist(af, &w, w.w_op);
1146 }
1147 splx(s);
1148
1149 /* check to see if we couldn't allocate memory with NOWAIT */
1150 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
1151 goto again;
1152
1153 if (w.w_tmem)
1154 free(w.w_tmem, M_RTABLE);
1155 w.w_needed += w.w_given;
1156 if (where) {
1157 *given = (char *)w.w_where - (char *)where;
1158 if (*given < w.w_needed)
1159 return ENOMEM;
1160 } else {
1161 *given = (11 * w.w_needed) / 10;
1162 }
1163 return error;
1164 }
1165
1166 /*
1167 * Routing message software interrupt routine
1168 */
1169 static void
1170 route_intr(void *cookie)
1171 {
1172 struct sockproto proto = { .sp_family = PF_ROUTE, };
1173 struct mbuf *m;
1174 int s;
1175
1176 while (!IF_IS_EMPTY(&route_intrq)) {
1177 s = splnet();
1178 IF_DEQUEUE(&route_intrq, m);
1179 splx(s);
1180 if (m == NULL)
1181 break;
1182 proto.sp_protocol = M_GETCTX(m, uintptr_t);
1183 raw_input(m, &proto, &route_src, &route_dst);
1184 }
1185 }
1186
1187 /*
1188 * Enqueue a message to the software interrupt routine.
1189 */
1190 static void
1191 route_enqueue(struct mbuf *m, int family)
1192 {
1193 int s, wasempty;
1194
1195 s = splnet();
1196 if (IF_QFULL(&route_intrq)) {
1197 IF_DROP(&route_intrq);
1198 m_freem(m);
1199 } else {
1200 wasempty = IF_IS_EMPTY(&route_intrq);
1201 M_SETCTX(m, (uintptr_t)family);
1202 IF_ENQUEUE(&route_intrq, m);
1203 if (wasempty)
1204 softint_schedule(route_sih);
1205 }
1206 splx(s);
1207 }
1208
1209 void
1210 rt_init(void)
1211 {
1212
1213 route_intrq.ifq_maxlen = route_maxqlen;
1214 route_sih = softint_establish(SOFTINT_NET, route_intr, NULL);
1215 }
1216
1217 /*
1218 * Definitions of protocols supported in the ROUTE domain.
1219 */
1220
1221 const struct protosw routesw[] = {
1222 {
1223 .pr_type = SOCK_RAW,
1224 .pr_domain = &routedomain,
1225 .pr_flags = PR_ATOMIC|PR_ADDR,
1226 .pr_input = raw_input,
1227 .pr_output = route_output,
1228 .pr_ctlinput = raw_ctlinput,
1229 .pr_usrreq = route_usrreq,
1230 .pr_init = raw_init,
1231 },
1232 };
1233
1234 struct domain routedomain = {
1235 .dom_family = PF_ROUTE,
1236 .dom_name = "route",
1237 .dom_init = route_init,
1238 .dom_protosw = routesw,
1239 .dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
1240 };
1241
1242 SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
1243 {
1244 const struct sysctlnode *rnode = NULL;
1245
1246 sysctl_createv(clog, 0, NULL, NULL,
1247 CTLFLAG_PERMANENT,
1248 CTLTYPE_NODE, "net", NULL,
1249 NULL, 0, NULL, 0,
1250 CTL_NET, CTL_EOL);
1251
1252 sysctl_createv(clog, 0, NULL, &rnode,
1253 CTLFLAG_PERMANENT,
1254 CTLTYPE_NODE, "route",
1255 SYSCTL_DESCR("PF_ROUTE information"),
1256 NULL, 0, NULL, 0,
1257 CTL_NET, PF_ROUTE, CTL_EOL);
1258 sysctl_createv(clog, 0, NULL, NULL,
1259 CTLFLAG_PERMANENT,
1260 CTLTYPE_NODE, "rtable",
1261 SYSCTL_DESCR("Routing table information"),
1262 sysctl_rtable, 0, NULL, 0,
1263 CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
1264 sysctl_createv(clog, 0, &rnode, NULL,
1265 CTLFLAG_PERMANENT,
1266 CTLTYPE_STRUCT, "stats",
1267 SYSCTL_DESCR("Routing statistics"),
1268 NULL, 0, &rtstat, sizeof(rtstat),
1269 CTL_CREATE, CTL_EOL);
1270 }
1271