rtsock.c revision 1.101.2.2 1 /* $NetBSD: rtsock.c,v 1.101.2.2 2009/05/04 08:14:15 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.101.2.2 2009/05/04 08:14:15 yamt Exp $");
65
66 #include "opt_inet.h"
67 #ifdef _KERNEL_OPT
68 #include "opt_compat_netbsd.h"
69 #endif
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>
74 #include <sys/mbuf.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/domain.h>
78 #include <sys/protosw.h>
79 #include <sys/sysctl.h>
80 #include <sys/kauth.h>
81 #include <sys/intr.h>
82 #ifdef RTSOCK_DEBUG
83 #include <netinet/in.h>
84 #endif /* RTSOCK_DEBUG */
85
86 #include <net/if.h>
87 #include <net/route.h>
88 #include <net/raw_cb.h>
89
90 #if defined(COMPAT_14) || defined(COMPAT_50)
91 #include <compat/net/if.h>
92 #endif
93
94 #include <machine/stdarg.h>
95
96 DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
97
98 struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
99 struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
100
101 int route_maxqlen = IFQ_MAXLEN;
102 static struct ifqueue route_intrq;
103 static void *route_sih;
104
105 static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *);
106 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
107 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
108 struct rt_addrinfo *);
109 static int sysctl_dumpentry(struct rtentry *, void *);
110 static int sysctl_iflist(int, struct rt_walkarg *, int);
111 static int sysctl_rtable(SYSCTLFN_PROTO);
112 static void rt_adjustcount(int, int);
113
114 static void
115 rt_adjustcount(int af, int cnt)
116 {
117 route_cb.any_count += cnt;
118 switch (af) {
119 case AF_INET:
120 route_cb.ip_count += cnt;
121 return;
122 #ifdef INET6
123 case AF_INET6:
124 route_cb.ip6_count += cnt;
125 return;
126 #endif
127 case AF_IPX:
128 route_cb.ipx_count += cnt;
129 return;
130 case AF_NS:
131 route_cb.ns_count += cnt;
132 return;
133 case AF_ISO:
134 route_cb.iso_count += cnt;
135 return;
136 }
137 }
138
139 static void
140 cvtmetrics(struct rt_metrics *ortm, const struct nrt_metrics *rtm)
141 {
142 ortm->rmx_locks = rtm->rmx_locks;
143 ortm->rmx_mtu = rtm->rmx_mtu;
144 ortm->rmx_hopcount = rtm->rmx_hopcount;
145 ortm->rmx_expire = rtm->rmx_expire;
146 ortm->rmx_recvpipe = rtm->rmx_recvpipe;
147 ortm->rmx_sendpipe = rtm->rmx_sendpipe;
148 ortm->rmx_ssthresh = rtm->rmx_ssthresh;
149 ortm->rmx_rtt = rtm->rmx_rtt;
150 ortm->rmx_rttvar = rtm->rmx_rttvar;
151 ortm->rmx_pksent = rtm->rmx_pksent;
152 }
153
154 /*ARGSUSED*/
155 int
156 route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
157 struct mbuf *control, struct lwp *l)
158 {
159 int error = 0;
160 struct rawcb *rp = sotorawcb(so);
161 int s;
162
163 if (req == PRU_ATTACH) {
164 sosetlock(so);
165 rp = malloc(sizeof(*rp), M_PCB, M_WAITOK|M_ZERO);
166 so->so_pcb = rp;
167 }
168 if (req == PRU_DETACH && rp)
169 rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
170 s = splsoftnet();
171
172 /*
173 * Don't call raw_usrreq() in the attach case, because
174 * we want to allow non-privileged processes to listen on
175 * and send "safe" commands to the routing socket.
176 */
177 if (req == PRU_ATTACH) {
178 if (l == NULL)
179 error = EACCES;
180 else
181 error = raw_attach(so, (int)(long)nam);
182 } else
183 error = raw_usrreq(so, req, m, nam, control, l);
184
185 rp = sotorawcb(so);
186 if (req == PRU_ATTACH && rp) {
187 if (error) {
188 free(rp, M_PCB);
189 splx(s);
190 return error;
191 }
192 rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
193 rp->rcb_laddr = &route_src;
194 rp->rcb_faddr = &route_dst;
195 soisconnected(so);
196 so->so_options |= SO_USELOOPBACK;
197 }
198 splx(s);
199 return error;
200 }
201
202 static const struct sockaddr *
203 intern_netmask(const struct sockaddr *mask)
204 {
205 struct radix_node *rn;
206 extern struct radix_node_head *mask_rnhead;
207
208 if (mask != NULL &&
209 (rn = rn_search(mask, mask_rnhead->rnh_treetop)))
210 mask = (const struct sockaddr *)rn->rn_key;
211
212 return mask;
213 }
214
215 /*ARGSUSED*/
216 int
217 route_output(struct mbuf *m, ...)
218 {
219 struct sockproto proto = { .sp_family = PF_ROUTE, };
220 struct rt_msghdr *rtm = NULL;
221 struct rt_msghdr *old_rtm = NULL;
222 struct rtentry *rt = NULL;
223 struct rtentry *saved_nrt = NULL;
224 struct rt_addrinfo info;
225 int len, error = 0;
226 struct ifnet *ifp = NULL;
227 struct ifaddr *ifa = NULL;
228 struct socket *so;
229 va_list ap;
230 sa_family_t family;
231
232 va_start(ap, m);
233 so = va_arg(ap, struct socket *);
234 va_end(ap);
235
236 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
237 if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
238 (m = m_pullup(m, sizeof(int32_t))) == NULL))
239 return ENOBUFS;
240 if ((m->m_flags & M_PKTHDR) == 0)
241 panic("route_output");
242 len = m->m_pkthdr.len;
243 if (len < sizeof(*rtm) ||
244 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
245 info.rti_info[RTAX_DST] = NULL;
246 senderr(EINVAL);
247 }
248 R_Malloc(rtm, struct rt_msghdr *, len);
249 if (rtm == NULL) {
250 info.rti_info[RTAX_DST] = NULL;
251 senderr(ENOBUFS);
252 }
253 m_copydata(m, 0, len, rtm);
254 if (rtm->rtm_version != RTM_VERSION) {
255 info.rti_info[RTAX_DST] = NULL;
256 senderr(EPROTONOSUPPORT);
257 }
258 rtm->rtm_pid = curproc->p_pid;
259 memset(&info, 0, sizeof(info));
260 info.rti_addrs = rtm->rtm_addrs;
261 if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
262 &info))
263 senderr(EINVAL);
264 info.rti_flags = rtm->rtm_flags;
265 #ifdef RTSOCK_DEBUG
266 if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
267 printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
268 inet_ntoa(((const struct sockaddr_in *)
269 info.rti_info[RTAX_DST])->sin_addr));
270 }
271 #endif /* RTSOCK_DEBUG */
272 if (info.rti_info[RTAX_DST] == NULL ||
273 (info.rti_info[RTAX_DST]->sa_family >= AF_MAX))
274 senderr(EINVAL);
275 if (info.rti_info[RTAX_GATEWAY] != NULL &&
276 (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
277 senderr(EINVAL);
278
279 /*
280 * Verify that the caller has the appropriate privilege; RTM_GET
281 * is the only operation the non-superuser is allowed.
282 */
283 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
284 0, rtm, NULL, NULL) != 0)
285 senderr(EACCES);
286
287 switch (rtm->rtm_type) {
288
289 case RTM_ADD:
290 if (info.rti_info[RTAX_GATEWAY] == NULL)
291 senderr(EINVAL);
292 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
293 if (error == 0 && saved_nrt) {
294 rt_setmetrics(rtm->rtm_inits,
295 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
296 saved_nrt->rt_refcnt--;
297 }
298 break;
299
300 case RTM_DELETE:
301 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
302 if (error == 0) {
303 (rt = saved_nrt)->rt_refcnt++;
304 goto report;
305 }
306 break;
307
308 case RTM_GET:
309 case RTM_CHANGE:
310 case RTM_LOCK:
311 /* XXX This will mask info.rti_info[RTAX_DST] with
312 * info.rti_info[RTAX_NETMASK] before
313 * searching. It did not used to do that. --dyoung
314 */
315 error = rtrequest1(RTM_GET, &info, &rt);
316 if (error != 0)
317 senderr(error);
318 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
319 struct radix_node *rn;
320
321 if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
322 info.rti_info[RTAX_DST]->sa_len) != 0)
323 senderr(ESRCH);
324 info.rti_info[RTAX_NETMASK] = intern_netmask(
325 info.rti_info[RTAX_NETMASK]);
326 for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
327 if (info.rti_info[RTAX_NETMASK] ==
328 (const struct sockaddr *)rn->rn_mask)
329 break;
330 if (rn == NULL)
331 senderr(ETOOMANYREFS);
332 rt = (struct rtentry *)rn;
333 }
334
335 switch (rtm->rtm_type) {
336 case RTM_GET:
337 report:
338 info.rti_info[RTAX_DST] = rt_getkey(rt);
339 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
340 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
341 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
342 ;
343 else if ((ifp = rt->rt_ifp) != NULL) {
344 const struct ifaddr *rtifa;
345 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
346 /* rtifa used to be simply rt->rt_ifa.
347 * If rt->rt_ifa != NULL, then
348 * rt_get_ifa() != NULL. So this
349 * ought to still be safe. --dyoung
350 */
351 rtifa = rt_get_ifa(rt);
352 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
353 #ifdef RTSOCK_DEBUG
354 if (info.rti_info[RTAX_IFA]->sa_family ==
355 AF_INET) {
356 printf("%s: copying out RTAX_IFA %s ",
357 __func__, inet_ntoa(
358 (const struct sockaddr_in *)
359 info.rti_info[RTAX_IFA])->sin_addr);
360 printf("for info.rti_info[RTAX_DST] %s "
361 "ifa_getifa %p ifa_seqno %p\n",
362 inet_ntoa(
363 (const struct sockaddr_in *)
364 info.rti_info[RTAX_DST])->sin_addr),
365 (void *)rtifa->ifa_getifa,
366 rtifa->ifa_seqno);
367 }
368 #endif /* RTSOCK_DEBUG */
369 if (ifp->if_flags & IFF_POINTOPOINT) {
370 info.rti_info[RTAX_BRD] =
371 rtifa->ifa_dstaddr;
372 } else
373 info.rti_info[RTAX_BRD] = NULL;
374 rtm->rtm_index = ifp->if_index;
375 } else {
376 info.rti_info[RTAX_IFP] = NULL;
377 info.rti_info[RTAX_IFA] = NULL;
378 }
379 (void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
380 if (len > rtm->rtm_msglen) {
381 old_rtm = rtm;
382 R_Malloc(rtm, struct rt_msghdr *, len);
383 if (rtm == NULL)
384 senderr(ENOBUFS);
385 (void)memcpy(rtm, old_rtm, old_rtm->rtm_msglen);
386 }
387 (void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0);
388 rtm->rtm_flags = rt->rt_flags;
389 cvtmetrics(&rtm->rtm_rmx, &rt->rt_rmx);
390 rtm->rtm_addrs = info.rti_addrs;
391 break;
392
393 case RTM_CHANGE:
394 /*
395 * new gateway could require new ifaddr, ifp;
396 * flags may also be different; ifp may be specified
397 * by ll sockaddr when protocol address is ambiguous
398 */
399 if ((error = rt_getifa(&info)) != 0)
400 senderr(error);
401 if (info.rti_info[RTAX_GATEWAY] &&
402 rt_setgate(rt, info.rti_info[RTAX_GATEWAY]))
403 senderr(EDQUOT);
404 /* new gateway could require new ifaddr, ifp;
405 flags may also be different; ifp may be specified
406 by ll sockaddr when protocol address is ambiguous */
407 if (info.rti_info[RTAX_IFP] &&
408 (ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) &&
409 (ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] ||
410 info.rti_info[RTAX_GATEWAY])) {
411 ifa = ifaof_ifpforaddr(info.rti_info[RTAX_IFA] ?
412 info.rti_info[RTAX_IFA] :
413 info.rti_info[RTAX_GATEWAY], ifp);
414 } else if ((info.rti_info[RTAX_IFA] &&
415 (ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) ||
416 (info.rti_info[RTAX_GATEWAY] &&
417 (ifa = ifa_ifwithroute(rt->rt_flags,
418 rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) {
419 ifp = ifa->ifa_ifp;
420 }
421 if (ifa) {
422 struct ifaddr *oifa = rt->rt_ifa;
423 if (oifa != ifa) {
424 if (oifa && oifa->ifa_rtrequest) {
425 oifa->ifa_rtrequest(RTM_DELETE,
426 rt, &info);
427 }
428 rt_replace_ifa(rt, ifa);
429 rt->rt_ifp = ifp;
430 }
431 }
432 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
433 &rt->rt_rmx);
434 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
435 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
436 /*FALLTHROUGH*/
437 case RTM_LOCK:
438 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
439 rt->rt_rmx.rmx_locks |=
440 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
441 break;
442 }
443 break;
444
445 default:
446 senderr(EOPNOTSUPP);
447 }
448
449 flush:
450 if (rtm) {
451 if (error)
452 rtm->rtm_errno = error;
453 else
454 rtm->rtm_flags |= RTF_DONE;
455 }
456 family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
457 0;
458 /* We cannot free old_rtm until we have stopped using the
459 * pointers in info, some of which may point to sockaddrs
460 * in old_rtm.
461 */
462 if (old_rtm != NULL)
463 Free(old_rtm);
464 if (rt)
465 rtfree(rt);
466 {
467 struct rawcb *rp = NULL;
468 /*
469 * Check to see if we don't want our own messages.
470 */
471 if ((so->so_options & SO_USELOOPBACK) == 0) {
472 if (route_cb.any_count <= 1) {
473 if (rtm)
474 Free(rtm);
475 m_freem(m);
476 return error;
477 }
478 /* There is another listener, so construct message */
479 rp = sotorawcb(so);
480 }
481 if (rtm) {
482 m_copyback(m, 0, rtm->rtm_msglen, rtm);
483 if (m->m_pkthdr.len < rtm->rtm_msglen) {
484 m_freem(m);
485 m = NULL;
486 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
487 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
488 Free(rtm);
489 }
490 if (rp)
491 rp->rcb_proto.sp_family = 0; /* Avoid us */
492 if (family)
493 proto.sp_protocol = family;
494 if (m)
495 raw_input(m, &proto, &route_src, &route_dst);
496 if (rp)
497 rp->rcb_proto.sp_family = PF_ROUTE;
498 }
499 return error;
500 }
501
502 void
503 rt_setmetrics(u_long which, const struct rt_metrics *in, struct nrt_metrics *out)
504 {
505 #define metric(f, e) if (which & (f)) out->e = in->e;
506 metric(RTV_RPIPE, rmx_recvpipe);
507 metric(RTV_SPIPE, rmx_sendpipe);
508 metric(RTV_SSTHRESH, rmx_ssthresh);
509 metric(RTV_RTT, rmx_rtt);
510 metric(RTV_RTTVAR, rmx_rttvar);
511 metric(RTV_HOPCOUNT, rmx_hopcount);
512 metric(RTV_MTU, rmx_mtu);
513 /* XXX time_t: Will not work after February 2145 (u_long time) */
514 metric(RTV_EXPIRE, rmx_expire);
515 #undef metric
516 }
517
518 static int
519 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
520 struct rt_addrinfo *rtinfo)
521 {
522 const struct sockaddr *sa = NULL; /* Quell compiler warning */
523 int i;
524
525 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
526 if ((rtinfo->rti_addrs & (1 << i)) == 0)
527 continue;
528 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
529 RT_ADVANCE(cp, sa);
530 }
531
532 /*
533 * Check for extra addresses specified, except RTM_GET asking
534 * for interface info.
535 */
536 if (rtmtype == RTM_GET) {
537 if (((rtinfo->rti_addrs &
538 (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
539 return 1;
540 } else if ((rtinfo->rti_addrs & (~0 << i)) != 0)
541 return 1;
542 /* Check for bad data length. */
543 if (cp != cplim) {
544 if (i == RTAX_NETMASK + 1 && sa != NULL &&
545 cp - RT_ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
546 /*
547 * The last sockaddr was info.rti_info[RTAX_NETMASK].
548 * We accept this for now for the sake of old
549 * binaries or third party softwares.
550 */
551 ;
552 else
553 return 1;
554 }
555 return 0;
556 }
557
558 struct mbuf *
559 rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
560 {
561 struct rt_msghdr *rtm;
562 struct mbuf *m;
563 int i;
564 const struct sockaddr *sa;
565 int len, dlen;
566
567 m = m_gethdr(M_DONTWAIT, MT_DATA);
568 if (m == NULL)
569 return m;
570 MCLAIM(m, &routedomain.dom_mowner);
571 switch (type) {
572
573 case RTM_DELADDR:
574 case RTM_NEWADDR:
575 len = sizeof(struct ifa_msghdr);
576 break;
577
578 #ifdef COMPAT_14
579 case RTM_OOIFINFO:
580 len = sizeof(struct if_msghdr14);
581 break;
582 #endif
583 #ifdef COMPAT_50
584 case RTM_OIFINFO:
585 len = sizeof(struct if_msghdr50);
586 break;
587 #endif
588
589 case RTM_IFINFO:
590 len = sizeof(struct if_msghdr);
591 break;
592
593 case RTM_IFANNOUNCE:
594 case RTM_IEEE80211:
595 len = sizeof(struct if_announcemsghdr);
596 break;
597
598 default:
599 len = sizeof(struct rt_msghdr);
600 }
601 if (len > MHLEN + MLEN)
602 panic("rt_msg1: message too long");
603 else if (len > MHLEN) {
604 m->m_next = m_get(M_DONTWAIT, MT_DATA);
605 if (m->m_next == NULL) {
606 m_freem(m);
607 return NULL;
608 }
609 MCLAIM(m->m_next, m->m_owner);
610 m->m_pkthdr.len = len;
611 m->m_len = MHLEN;
612 m->m_next->m_len = len - MHLEN;
613 } else {
614 m->m_pkthdr.len = m->m_len = len;
615 }
616 m->m_pkthdr.rcvif = NULL;
617 m_copyback(m, 0, datalen, data);
618 if (len > datalen)
619 (void)memset(mtod(m, char *) + datalen, 0, len - datalen);
620 rtm = mtod(m, struct rt_msghdr *);
621 for (i = 0; i < RTAX_MAX; i++) {
622 if ((sa = rtinfo->rti_info[i]) == NULL)
623 continue;
624 rtinfo->rti_addrs |= (1 << i);
625 dlen = RT_ROUNDUP(sa->sa_len);
626 m_copyback(m, len, dlen, sa);
627 len += dlen;
628 }
629 if (m->m_pkthdr.len != len) {
630 m_freem(m);
631 return NULL;
632 }
633 rtm->rtm_msglen = len;
634 rtm->rtm_version = RTM_VERSION;
635 rtm->rtm_type = type;
636 return m;
637 }
638
639 /*
640 * rt_msg2
641 *
642 * fills 'cp' or 'w'.w_tmem with the routing socket message and
643 * returns the length of the message in 'lenp'.
644 *
645 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
646 * the message
647 * otherwise walkarg's w_needed is updated and if the user buffer is
648 * specified and w_needed indicates space exists the information is copied
649 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
650 * if the allocation fails ENOBUFS is returned.
651 */
652 static int
653 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
654 int *lenp)
655 {
656 int i;
657 int len, dlen, second_time = 0;
658 char *cp0, *cp = cpv;
659
660 rtinfo->rti_addrs = 0;
661 again:
662 switch (type) {
663
664 case RTM_DELADDR:
665 case RTM_NEWADDR:
666 len = sizeof(struct ifa_msghdr);
667 break;
668 #ifdef COMPAT_14
669 case RTM_OOIFINFO:
670 len = sizeof(struct if_msghdr14);
671 break;
672 #endif
673 #ifdef COMPAT_50
674 case RTM_OIFINFO:
675 len = sizeof(struct if_msghdr50);
676 break;
677 #endif
678
679 case RTM_IFINFO:
680 len = sizeof(struct if_msghdr);
681 break;
682
683 default:
684 len = sizeof(struct rt_msghdr);
685 }
686 if ((cp0 = cp) != NULL)
687 cp += len;
688 for (i = 0; i < RTAX_MAX; i++) {
689 const struct sockaddr *sa;
690
691 if ((sa = rtinfo->rti_info[i]) == NULL)
692 continue;
693 rtinfo->rti_addrs |= (1 << i);
694 dlen = RT_ROUNDUP(sa->sa_len);
695 if (cp) {
696 (void)memcpy(cp, sa, (size_t)dlen);
697 cp += dlen;
698 }
699 len += dlen;
700 }
701 if (cp == NULL && w != NULL && !second_time) {
702 struct rt_walkarg *rw = w;
703
704 rw->w_needed += len;
705 if (rw->w_needed <= 0 && rw->w_where) {
706 if (rw->w_tmemsize < len) {
707 if (rw->w_tmem)
708 free(rw->w_tmem, M_RTABLE);
709 rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT);
710 if (rw->w_tmem)
711 rw->w_tmemsize = len;
712 else
713 rw->w_tmemsize = 0;
714 }
715 if (rw->w_tmem) {
716 cp = rw->w_tmem;
717 second_time = 1;
718 goto again;
719 } else {
720 rw->w_tmemneeded = len;
721 return ENOBUFS;
722 }
723 }
724 }
725 if (cp) {
726 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
727
728 rtm->rtm_version = RTM_VERSION;
729 rtm->rtm_type = type;
730 rtm->rtm_msglen = len;
731 }
732 if (lenp)
733 *lenp = len;
734 return 0;
735 }
736
737 /*
738 * This routine is called to generate a message from the routing
739 * socket indicating that a redirect has occurred, a routing lookup
740 * has failed, or that a protocol has detected timeouts to a particular
741 * destination.
742 */
743 void
744 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
745 {
746 struct rt_msghdr rtm;
747 struct mbuf *m;
748 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
749
750 if (route_cb.any_count == 0)
751 return;
752 memset(&rtm, 0, sizeof(rtm));
753 rtm.rtm_flags = RTF_DONE | flags;
754 rtm.rtm_errno = error;
755 m = rt_msg1(type, rtinfo, &rtm, sizeof(rtm));
756 if (m == NULL)
757 return;
758 mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
759 route_enqueue(m, sa ? sa->sa_family : 0);
760 }
761
762 /*
763 * This routine is called to generate a message from the routing
764 * socket indicating that the status of a network interface has changed.
765 */
766 void
767 rt_ifmsg(struct ifnet *ifp)
768 {
769 struct if_msghdr ifm;
770 struct mbuf *m;
771 struct rt_addrinfo info;
772
773 if (route_cb.any_count == 0)
774 return;
775 (void)memset(&info, 0, sizeof(info));
776 (void)memset(&ifm, 0, sizeof(ifm));
777 ifm.ifm_index = ifp->if_index;
778 ifm.ifm_flags = ifp->if_flags;
779 ifm.ifm_data = ifp->if_data;
780 ifm.ifm_addrs = 0;
781 m = rt_msg1(RTM_IFINFO, &info, &ifm, sizeof(ifm));
782 if (m == NULL)
783 return;
784 route_enqueue(m, 0);
785 #ifdef COMPAT_14
786 compat_14_rt_ifmsg(ifp, &ifm);
787 #endif
788 #ifdef COMPAT_50
789 compat_50_rt_ifmsg(ifp, &ifm);
790 #endif
791 }
792
793
794 /*
795 * This is called to generate messages from the routing socket
796 * indicating a network interface has had addresses associated with it.
797 * if we ever reverse the logic and replace messages TO the routing
798 * socket indicate a request to configure interfaces, then it will
799 * be unnecessary as the routing socket will automatically generate
800 * copies of it.
801 */
802 void
803 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
804 {
805 #define cmdpass(__cmd, __pass) (((__cmd) << 2) | (__pass))
806 struct rt_addrinfo info;
807 const struct sockaddr *sa;
808 int pass;
809 struct mbuf *m;
810 struct ifnet *ifp = ifa->ifa_ifp;
811 struct rt_msghdr rtm;
812 struct ifa_msghdr ifam;
813 int ncmd;
814
815 if (route_cb.any_count == 0)
816 return;
817 for (pass = 1; pass < 3; pass++) {
818 memset(&info, 0, sizeof(info));
819 switch (cmdpass(cmd, pass)) {
820 case cmdpass(RTM_ADD, 1):
821 case cmdpass(RTM_CHANGE, 1):
822 case cmdpass(RTM_DELETE, 2):
823 if (cmd == RTM_ADD)
824 ncmd = RTM_NEWADDR;
825 else
826 ncmd = RTM_DELADDR;
827
828 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
829 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
830 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
831 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
832 memset(&ifam, 0, sizeof(ifam));
833 ifam.ifam_index = ifp->if_index;
834 ifam.ifam_metric = ifa->ifa_metric;
835 ifam.ifam_flags = ifa->ifa_flags;
836 m = rt_msg1(ncmd, &info, &ifam, sizeof(ifam));
837 if (m == NULL)
838 continue;
839 mtod(m, struct ifa_msghdr *)->ifam_addrs =
840 info.rti_addrs;
841 break;
842 case cmdpass(RTM_ADD, 2):
843 case cmdpass(RTM_CHANGE, 2):
844 case cmdpass(RTM_DELETE, 1):
845 if (rt == NULL)
846 continue;
847 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
848 info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
849 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
850 memset(&rtm, 0, sizeof(rtm));
851 rtm.rtm_index = ifp->if_index;
852 rtm.rtm_flags |= rt->rt_flags;
853 rtm.rtm_errno = error;
854 m = rt_msg1(cmd, &info, &rtm, sizeof(rtm));
855 if (m == NULL)
856 continue;
857 mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
858 break;
859 default:
860 continue;
861 }
862 #ifdef DIAGNOSTIC
863 if (m == NULL)
864 panic("%s: called with wrong command", __func__);
865 #endif
866 route_enqueue(m, sa ? sa->sa_family : 0);
867 }
868 #undef cmdpass
869 }
870
871 static struct mbuf *
872 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
873 struct rt_addrinfo *info)
874 {
875 struct if_announcemsghdr ifan;
876
877 memset(info, 0, sizeof(*info));
878 memset(&ifan, 0, sizeof(ifan));
879 ifan.ifan_index = ifp->if_index;
880 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
881 ifan.ifan_what = what;
882 return rt_msg1(type, info, &ifan, sizeof(ifan));
883 }
884
885 /*
886 * This is called to generate routing socket messages indicating
887 * network interface arrival and departure.
888 */
889 void
890 rt_ifannouncemsg(struct ifnet *ifp, int what)
891 {
892 struct mbuf *m;
893 struct rt_addrinfo info;
894
895 if (route_cb.any_count == 0)
896 return;
897 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
898 if (m == NULL)
899 return;
900 route_enqueue(m, 0);
901 }
902
903 /*
904 * This is called to generate routing socket messages indicating
905 * IEEE80211 wireless events.
906 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
907 */
908 void
909 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
910 {
911 struct mbuf *m;
912 struct rt_addrinfo info;
913
914 if (route_cb.any_count == 0)
915 return;
916 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
917 if (m == NULL)
918 return;
919 /*
920 * Append the ieee80211 data. Try to stick it in the
921 * mbuf containing the ifannounce msg; otherwise allocate
922 * a new mbuf and append.
923 *
924 * NB: we assume m is a single mbuf.
925 */
926 if (data_len > M_TRAILINGSPACE(m)) {
927 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
928 if (n == NULL) {
929 m_freem(m);
930 return;
931 }
932 (void)memcpy(mtod(n, void *), data, data_len);
933 n->m_len = data_len;
934 m->m_next = n;
935 } else if (data_len > 0) {
936 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
937 m->m_len += data_len;
938 }
939 if (m->m_flags & M_PKTHDR)
940 m->m_pkthdr.len += data_len;
941 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
942 route_enqueue(m, 0);
943 }
944
945 /*
946 * This is used in dumping the kernel table via sysctl().
947 */
948 static int
949 sysctl_dumpentry(struct rtentry *rt, void *v)
950 {
951 struct rt_walkarg *w = v;
952 int error = 0, size;
953 struct rt_addrinfo info;
954
955 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
956 return 0;
957 memset(&info, 0, sizeof(info));
958 info.rti_info[RTAX_DST] = rt_getkey(rt);
959 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
960 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
961 if (rt->rt_ifp) {
962 const struct ifaddr *rtifa;
963 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
964 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
965 * then rt_get_ifa() != NULL. So this ought to still be safe.
966 * --dyoung
967 */
968 rtifa = rt_get_ifa(rt);
969 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
970 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
971 info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
972 }
973 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
974 return error;
975 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
976 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
977
978 rtm->rtm_flags = rt->rt_flags;
979 rtm->rtm_use = rt->rt_use;
980 cvtmetrics(&rtm->rtm_rmx, &rt->rt_rmx);
981 KASSERT(rt->rt_ifp != NULL);
982 rtm->rtm_index = rt->rt_ifp->if_index;
983 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
984 rtm->rtm_addrs = info.rti_addrs;
985 if ((error = copyout(rtm, w->w_where, size)) != 0)
986 w->w_where = NULL;
987 else
988 w->w_where = (char *)w->w_where + size;
989 }
990 return error;
991 }
992
993 static int
994 sysctl_iflist(int af, struct rt_walkarg *w, int type)
995 {
996 struct ifnet *ifp;
997 struct ifaddr *ifa;
998 struct rt_addrinfo info;
999 int len, error = 0;
1000
1001 memset(&info, 0, sizeof(info));
1002 IFNET_FOREACH(ifp) {
1003 if (w->w_arg && w->w_arg != ifp->if_index)
1004 continue;
1005 if (IFADDR_EMPTY(ifp))
1006 continue;
1007 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
1008 switch (type) {
1009 case NET_RT_IFLIST:
1010 error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
1011 break;
1012 #ifdef COMPAT_14
1013 case NET_RT_OOIFLIST:
1014 error = rt_msg2(RTM_OOIFINFO, &info, NULL, w, &len);
1015 break;
1016 #endif
1017 #ifdef COMPAT_50
1018 case NET_RT_OIFLIST:
1019 error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
1020 break;
1021 #endif
1022 default:
1023 panic("sysctl_iflist(1)");
1024 }
1025 if (error)
1026 return error;
1027 info.rti_info[RTAX_IFP] = NULL;
1028 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1029 switch (type) {
1030 case NET_RT_IFLIST: {
1031 struct if_msghdr *ifm;
1032
1033 ifm = (struct if_msghdr *)w->w_tmem;
1034 ifm->ifm_index = ifp->if_index;
1035 ifm->ifm_flags = ifp->if_flags;
1036 ifm->ifm_data = ifp->if_data;
1037 ifm->ifm_addrs = info.rti_addrs;
1038 error = copyout(ifm, w->w_where, len);
1039 if (error)
1040 return error;
1041 w->w_where = (char *)w->w_where + len;
1042 break;
1043 }
1044
1045 #ifdef COMPAT_14
1046 case NET_RT_OOIFLIST:
1047 error = compat_14_iflist(ifp, w, &info, len);
1048 if (error)
1049 return error;
1050 break;
1051 #endif
1052 #ifdef COMPAT_50
1053 case NET_RT_OIFLIST:
1054 error = compat_50_iflist(ifp, w, &info, len);
1055 if (error)
1056 return error;
1057 break;
1058 #endif
1059 default:
1060 panic("sysctl_iflist(2)");
1061 }
1062 }
1063 IFADDR_FOREACH(ifa, ifp) {
1064 if (af && af != ifa->ifa_addr->sa_family)
1065 continue;
1066 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1067 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1068 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1069 if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
1070 return error;
1071 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1072 struct ifa_msghdr *ifam;
1073
1074 ifam = (struct ifa_msghdr *)w->w_tmem;
1075 ifam->ifam_index = ifa->ifa_ifp->if_index;
1076 ifam->ifam_flags = ifa->ifa_flags;
1077 ifam->ifam_metric = ifa->ifa_metric;
1078 ifam->ifam_addrs = info.rti_addrs;
1079 error = copyout(w->w_tmem, w->w_where, len);
1080 if (error)
1081 return error;
1082 w->w_where = (char *)w->w_where + len;
1083 }
1084 }
1085 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1086 info.rti_info[RTAX_BRD] = NULL;
1087 }
1088 return 0;
1089 }
1090
1091 static int
1092 sysctl_rtable(SYSCTLFN_ARGS)
1093 {
1094 void *where = oldp;
1095 size_t *given = oldlenp;
1096 const void *new = newp;
1097 int i, s, error = EINVAL;
1098 u_char af;
1099 struct rt_walkarg w;
1100
1101 if (namelen == 1 && name[0] == CTL_QUERY)
1102 return sysctl_query(SYSCTLFN_CALL(rnode));
1103
1104 if (new)
1105 return EPERM;
1106 if (namelen != 3)
1107 return EINVAL;
1108 af = name[0];
1109 w.w_tmemneeded = 0;
1110 w.w_tmemsize = 0;
1111 w.w_tmem = NULL;
1112 again:
1113 /* we may return here if a later [re]alloc of the t_mem buffer fails */
1114 if (w.w_tmemneeded) {
1115 w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
1116 w.w_tmemsize = w.w_tmemneeded;
1117 w.w_tmemneeded = 0;
1118 }
1119 w.w_op = name[1];
1120 w.w_arg = name[2];
1121 w.w_given = *given;
1122 w.w_needed = 0 - w.w_given;
1123 w.w_where = where;
1124
1125 s = splsoftnet();
1126 switch (w.w_op) {
1127
1128 case NET_RT_DUMP:
1129 case NET_RT_FLAGS:
1130 for (i = 1; i <= AF_MAX; i++)
1131 if ((af == 0 || af == i) &&
1132 (error = rt_walktree(i, sysctl_dumpentry, &w)))
1133 break;
1134 break;
1135
1136 #ifdef COMPAT_14
1137 case NET_RT_OOIFLIST:
1138 error = sysctl_iflist(af, &w, w.w_op);
1139 break;
1140 #endif
1141 #ifdef COMPAT_50
1142 case NET_RT_OIFLIST:
1143 error = sysctl_iflist(af, &w, w.w_op);
1144 break;
1145 #endif
1146
1147 case NET_RT_IFLIST:
1148 error = sysctl_iflist(af, &w, w.w_op);
1149 }
1150 splx(s);
1151
1152 /* check to see if we couldn't allocate memory with NOWAIT */
1153 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
1154 goto again;
1155
1156 if (w.w_tmem)
1157 free(w.w_tmem, M_RTABLE);
1158 w.w_needed += w.w_given;
1159 if (where) {
1160 *given = (char *)w.w_where - (char *)where;
1161 if (*given < w.w_needed)
1162 return ENOMEM;
1163 } else {
1164 *given = (11 * w.w_needed) / 10;
1165 }
1166 return error;
1167 }
1168
1169 /*
1170 * Routing message software interrupt routine
1171 */
1172 static void
1173 route_intr(void *cookie)
1174 {
1175 struct sockproto proto = { .sp_family = PF_ROUTE, };
1176 struct mbuf *m;
1177 int s;
1178
1179 mutex_enter(softnet_lock);
1180 KERNEL_LOCK(1, NULL);
1181 while (!IF_IS_EMPTY(&route_intrq)) {
1182 s = splnet();
1183 IF_DEQUEUE(&route_intrq, m);
1184 splx(s);
1185 if (m == NULL)
1186 break;
1187 proto.sp_protocol = M_GETCTX(m, uintptr_t);
1188 raw_input(m, &proto, &route_src, &route_dst);
1189 }
1190 KERNEL_UNLOCK_ONE(NULL);
1191 mutex_exit(softnet_lock);
1192 }
1193
1194 /*
1195 * Enqueue a message to the software interrupt routine.
1196 */
1197 void
1198 route_enqueue(struct mbuf *m, int family)
1199 {
1200 int s, wasempty;
1201
1202 s = splnet();
1203 if (IF_QFULL(&route_intrq)) {
1204 IF_DROP(&route_intrq);
1205 m_freem(m);
1206 } else {
1207 wasempty = IF_IS_EMPTY(&route_intrq);
1208 M_SETCTX(m, (uintptr_t)family);
1209 IF_ENQUEUE(&route_intrq, m);
1210 if (wasempty)
1211 softint_schedule(route_sih);
1212 }
1213 splx(s);
1214 }
1215
1216 void
1217 rt_init(void)
1218 {
1219
1220 route_intrq.ifq_maxlen = route_maxqlen;
1221 route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1222 route_intr, NULL);
1223 }
1224
1225 /*
1226 * Definitions of protocols supported in the ROUTE domain.
1227 */
1228 PR_WRAP_USRREQ(route_usrreq)
1229 #define route_usrreq route_usrreq_wrapper
1230
1231 const struct protosw routesw[] = {
1232 {
1233 .pr_type = SOCK_RAW,
1234 .pr_domain = &routedomain,
1235 .pr_flags = PR_ATOMIC|PR_ADDR,
1236 .pr_input = raw_input,
1237 .pr_output = route_output,
1238 .pr_ctlinput = raw_ctlinput,
1239 .pr_usrreq = route_usrreq,
1240 .pr_init = raw_init,
1241 },
1242 };
1243
1244 struct domain routedomain = {
1245 .dom_family = PF_ROUTE,
1246 .dom_name = "route",
1247 .dom_init = route_init,
1248 .dom_protosw = routesw,
1249 .dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
1250 };
1251
1252 SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
1253 {
1254 const struct sysctlnode *rnode = NULL;
1255
1256 sysctl_createv(clog, 0, NULL, NULL,
1257 CTLFLAG_PERMANENT,
1258 CTLTYPE_NODE, "net", NULL,
1259 NULL, 0, NULL, 0,
1260 CTL_NET, CTL_EOL);
1261
1262 sysctl_createv(clog, 0, NULL, &rnode,
1263 CTLFLAG_PERMANENT,
1264 CTLTYPE_NODE, "route",
1265 SYSCTL_DESCR("PF_ROUTE information"),
1266 NULL, 0, NULL, 0,
1267 CTL_NET, PF_ROUTE, CTL_EOL);
1268 sysctl_createv(clog, 0, NULL, NULL,
1269 CTLFLAG_PERMANENT,
1270 CTLTYPE_NODE, "rtable",
1271 SYSCTL_DESCR("Routing table information"),
1272 sysctl_rtable, 0, NULL, 0,
1273 CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
1274 sysctl_createv(clog, 0, &rnode, NULL,
1275 CTLFLAG_PERMANENT,
1276 CTLTYPE_STRUCT, "stats",
1277 SYSCTL_DESCR("Routing statistics"),
1278 NULL, 0, &rtstat, sizeof(rtstat),
1279 CTL_CREATE, CTL_EOL);
1280 }
1281