Home | History | Annotate | Line # | Download | only in net
rtsock.c revision 1.103
      1 /*	$NetBSD: rtsock.c,v 1.103 2008/05/13 20:16:30 dyoung Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1988, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.103 2008/05/13 20:16:30 dyoung Exp $");
     65 
     66 #include "opt_inet.h"
     67 
     68 #include <sys/param.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/mbuf.h>
     72 #include <sys/socket.h>
     73 #include <sys/socketvar.h>
     74 #include <sys/domain.h>
     75 #include <sys/protosw.h>
     76 #include <sys/sysctl.h>
     77 #include <sys/kauth.h>
     78 #include <sys/intr.h>
     79 #ifdef RTSOCK_DEBUG
     80 #include <netinet/in.h>
     81 #endif /* RTSOCK_DEBUG */
     82 
     83 #include <net/if.h>
     84 #include <net/route.h>
     85 #include <net/raw_cb.h>
     86 
     87 #include <machine/stdarg.h>
     88 
     89 DOMAIN_DEFINE(routedomain);	/* forward declare and add to link set */
     90 
     91 struct	sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
     92 struct	sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
     93 
     94 int	route_maxqlen = IFQ_MAXLEN;
     95 static struct	ifqueue route_intrq;
     96 static void	*route_sih;
     97 
     98 struct walkarg {
     99 	int	w_op;
    100 	int	w_arg;
    101 	int	w_given;
    102 	int	w_needed;
    103 	void *	w_where;
    104 	int	w_tmemsize;
    105 	int	w_tmemneeded;
    106 	void *	w_tmem;
    107 };
    108 
    109 static struct mbuf *rt_msg1(int, struct rt_addrinfo *, void *, int);
    110 static int rt_msg2(int, struct rt_addrinfo *, void *, struct walkarg *, int *);
    111 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
    112 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
    113     struct rt_addrinfo *);
    114 static int sysctl_dumpentry(struct rtentry *, void *);
    115 static int sysctl_iflist(int, struct walkarg *, int);
    116 static int sysctl_rtable(SYSCTLFN_PROTO);
    117 static inline void rt_adjustcount(int, int);
    118 static void route_enqueue(struct mbuf *, int);
    119 
    120 /* Sleazy use of local variables throughout file, warning!!!! */
    121 #define dst	info.rti_info[RTAX_DST]
    122 #define gate	info.rti_info[RTAX_GATEWAY]
    123 #define netmask	info.rti_info[RTAX_NETMASK]
    124 #define ifpaddr	info.rti_info[RTAX_IFP]
    125 #define ifaaddr	info.rti_info[RTAX_IFA]
    126 #define brdaddr	info.rti_info[RTAX_BRD]
    127 
    128 static inline void
    129 rt_adjustcount(int af, int cnt)
    130 {
    131 	route_cb.any_count += cnt;
    132 	switch (af) {
    133 	case AF_INET:
    134 		route_cb.ip_count += cnt;
    135 		return;
    136 #ifdef INET6
    137 	case AF_INET6:
    138 		route_cb.ip6_count += cnt;
    139 		return;
    140 #endif
    141 	case AF_IPX:
    142 		route_cb.ipx_count += cnt;
    143 		return;
    144 	case AF_NS:
    145 		route_cb.ns_count += cnt;
    146 		return;
    147 	case AF_ISO:
    148 		route_cb.iso_count += cnt;
    149 		return;
    150 	}
    151 }
    152 
    153 /*ARGSUSED*/
    154 int
    155 route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    156 	struct mbuf *control, struct lwp *l)
    157 {
    158 	int error = 0;
    159 	struct rawcb *rp = sotorawcb(so);
    160 	int s;
    161 
    162 	if (req == PRU_ATTACH) {
    163 		sosetlock(so);
    164 		MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK);
    165 		if ((so->so_pcb = rp) != NULL)
    166 			memset(so->so_pcb, 0, sizeof(*rp));
    167 
    168 	}
    169 	if (req == PRU_DETACH && rp)
    170 		rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
    171 	s = splsoftnet();
    172 
    173 	/*
    174 	 * Don't call raw_usrreq() in the attach case, because
    175 	 * we want to allow non-privileged processes to listen on
    176 	 * and send "safe" commands to the routing socket.
    177 	 */
    178 	if (req == PRU_ATTACH) {
    179 		if (l == NULL)
    180 			error = EACCES;
    181 		else
    182 			error = raw_attach(so, (int)(long)nam);
    183 	} else
    184 		error = raw_usrreq(so, req, m, nam, control, l);
    185 
    186 	rp = sotorawcb(so);
    187 	if (req == PRU_ATTACH && rp) {
    188 		if (error) {
    189 			free((void *)rp, M_PCB);
    190 			splx(s);
    191 			return error;
    192 		}
    193 		rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
    194 		rp->rcb_laddr = &route_src;
    195 		rp->rcb_faddr = &route_dst;
    196 		soisconnected(so);
    197 		so->so_options |= SO_USELOOPBACK;
    198 	}
    199 	splx(s);
    200 	return error;
    201 }
    202 
    203 static const struct sockaddr *
    204 intern_netmask(const struct sockaddr *mask)
    205 {
    206 	struct radix_node *rn;
    207 	extern struct radix_node_head *mask_rnhead;
    208 
    209 	if (mask != NULL &&
    210 	    (rn = rn_search(mask, mask_rnhead->rnh_treetop)))
    211 		mask = (const struct sockaddr *)rn->rn_key;
    212 
    213 	return mask;
    214 }
    215 
    216 /*ARGSUSED*/
    217 int
    218 route_output(struct mbuf *m, ...)
    219 {
    220 	struct sockproto proto = { .sp_family = PF_ROUTE, };
    221 	struct rt_msghdr *rtm = NULL;
    222 	struct rtentry *rt = NULL;
    223 	struct rtentry *saved_nrt = NULL;
    224 	struct rt_addrinfo info;
    225 	int len, error = 0;
    226 	struct ifnet *ifp = NULL;
    227 	struct ifaddr *ifa = NULL;
    228 	struct socket *so;
    229 	va_list ap;
    230 	sa_family_t family;
    231 
    232 	va_start(ap, m);
    233 	so = va_arg(ap, struct socket *);
    234 	va_end(ap);
    235 
    236 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
    237 	if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
    238 	   (m = m_pullup(m, sizeof(int32_t))) == NULL))
    239 		return ENOBUFS;
    240 	if ((m->m_flags & M_PKTHDR) == 0)
    241 		panic("route_output");
    242 	len = m->m_pkthdr.len;
    243 	if (len < sizeof(*rtm) ||
    244 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
    245 		dst = NULL;
    246 		senderr(EINVAL);
    247 	}
    248 	R_Malloc(rtm, struct rt_msghdr *, len);
    249 	if (rtm == NULL) {
    250 		dst = NULL;
    251 		senderr(ENOBUFS);
    252 	}
    253 	m_copydata(m, 0, len, (void *)rtm);
    254 	if (rtm->rtm_version != RTM_VERSION) {
    255 		dst = NULL;
    256 		senderr(EPROTONOSUPPORT);
    257 	}
    258 	rtm->rtm_pid = curproc->p_pid;
    259 	memset(&info, 0, sizeof(info));
    260 	info.rti_addrs = rtm->rtm_addrs;
    261 	if (rt_xaddrs(rtm->rtm_type, (void *)(rtm + 1), len + (char *)rtm, &info))
    262 		senderr(EINVAL);
    263 	info.rti_flags = rtm->rtm_flags;
    264 #ifdef RTSOCK_DEBUG
    265 	if (dst->sa_family == AF_INET) {
    266 		printf("%s: extracted dst %s\n", __func__,
    267 		    inet_ntoa(((const struct sockaddr_in *)dst)->sin_addr));
    268 	}
    269 #endif /* RTSOCK_DEBUG */
    270 	if (dst == NULL || (dst->sa_family >= AF_MAX))
    271 		senderr(EINVAL);
    272 	if (gate != NULL && (gate->sa_family >= AF_MAX))
    273 		senderr(EINVAL);
    274 
    275 	/*
    276 	 * Verify that the caller has the appropriate privilege; RTM_GET
    277 	 * is the only operation the non-superuser is allowed.
    278 	 */
    279 	if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
    280 	    0, rtm, NULL, NULL) != 0)
    281 		senderr(EACCES);
    282 
    283 	switch (rtm->rtm_type) {
    284 
    285 	case RTM_ADD:
    286 		if (gate == NULL)
    287 			senderr(EINVAL);
    288 		error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
    289 		if (error == 0 && saved_nrt) {
    290 			rt_setmetrics(rtm->rtm_inits,
    291 			    &rtm->rtm_rmx, &saved_nrt->rt_rmx);
    292 			saved_nrt->rt_refcnt--;
    293 		}
    294 		break;
    295 
    296 	case RTM_DELETE:
    297 		error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
    298 		if (error == 0) {
    299 			(rt = saved_nrt)->rt_refcnt++;
    300 			goto report;
    301 		}
    302 		break;
    303 
    304 	case RTM_GET:
    305 	case RTM_CHANGE:
    306 	case RTM_LOCK:
    307                 /* XXX This will mask dst with netmask before
    308                  * searching.  It did not used to do that.  --dyoung
    309 		 */
    310 		error = rtrequest1(RTM_GET, &info, &rt);
    311 		if (error != 0)
    312 			senderr(error);
    313 		if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
    314 			struct radix_node *rn;
    315 
    316 			if (memcmp(dst, rt_getkey(rt), dst->sa_len) != 0)
    317 				senderr(ESRCH);
    318 			netmask = intern_netmask(netmask);
    319 			for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
    320 				if (netmask == (const struct sockaddr *)rn->rn_mask)
    321 					break;
    322 			if (rn == NULL)
    323 				senderr(ETOOMANYREFS);
    324 			rt = (struct rtentry *)rn;
    325 		}
    326 
    327 		switch (rtm->rtm_type) {
    328 		case RTM_GET:
    329 		report:
    330 			dst = rt_getkey(rt);
    331 			gate = rt->rt_gateway;
    332 			netmask = rt_mask(rt);
    333 			if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
    334 				;
    335 			else if ((ifp = rt->rt_ifp) != NULL) {
    336 				const struct ifaddr *rtifa;
    337 				ifpaddr = ifp->if_dl->ifa_addr;
    338                                 /* rtifa used to be simply rt->rt_ifa.
    339                                  * If rt->rt_ifa != NULL, then
    340                                  * rt_get_ifa() != NULL.  So this
    341                                  * ought to still be safe. --dyoung
    342 				 */
    343 				rtifa = rt_get_ifa(rt);
    344 				ifaaddr = rtifa->ifa_addr;
    345 #ifdef RTSOCK_DEBUG
    346 				if (ifaaddr->sa_family == AF_INET) {
    347 					printf("%s: copying out RTAX_IFA %s ",
    348 					    __func__,
    349 					    inet_ntoa(((const struct sockaddr_in *)ifaaddr)->sin_addr));
    350 					printf("for dst %s ifa_getifa %p ifa_seqno %p\n",
    351 					    inet_ntoa(((const struct sockaddr_in *)dst)->sin_addr),
    352 					    (void *)rtifa->ifa_getifa, rtifa->ifa_seqno);
    353 				}
    354 #endif /* RTSOCK_DEBUG */
    355 				if (ifp->if_flags & IFF_POINTOPOINT)
    356 					brdaddr = rtifa->ifa_dstaddr;
    357 				else
    358 					brdaddr = NULL;
    359 				rtm->rtm_index = ifp->if_index;
    360 			} else {
    361 				ifpaddr = NULL;
    362 				ifaaddr = NULL;
    363 			}
    364 			(void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
    365 			if (len > rtm->rtm_msglen) {
    366 				struct rt_msghdr *new_rtm;
    367 				R_Malloc(new_rtm, struct rt_msghdr *, len);
    368 				if (new_rtm == NULL)
    369 					senderr(ENOBUFS);
    370 				memmove(new_rtm, rtm, rtm->rtm_msglen);
    371 				Free(rtm); rtm = new_rtm;
    372 			}
    373 			(void)rt_msg2(rtm->rtm_type, &info, (void *)rtm,
    374 			    NULL, 0);
    375 			rtm->rtm_flags = rt->rt_flags;
    376 			rtm->rtm_rmx = rt->rt_rmx;
    377 			rtm->rtm_addrs = info.rti_addrs;
    378 			break;
    379 
    380 		case RTM_CHANGE:
    381 			/*
    382 			 * new gateway could require new ifaddr, ifp;
    383 			 * flags may also be different; ifp may be specified
    384 			 * by ll sockaddr when protocol address is ambiguous
    385 			 */
    386 			if ((error = rt_getifa(&info)) != 0)
    387 				senderr(error);
    388 			if (gate && rt_setgate(rt, gate))
    389 				senderr(EDQUOT);
    390 			/* new gateway could require new ifaddr, ifp;
    391 			   flags may also be different; ifp may be specified
    392 			   by ll sockaddr when protocol address is ambiguous */
    393 			if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) &&
    394 			    (ifp = ifa->ifa_ifp) && (ifaaddr || gate))
    395 				ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate,
    396 				    ifp);
    397 			else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) ||
    398 			    (gate && (ifa = ifa_ifwithroute(rt->rt_flags,
    399 			    rt_getkey(rt), gate))))
    400 				ifp = ifa->ifa_ifp;
    401 			if (ifa) {
    402 				struct ifaddr *oifa = rt->rt_ifa;
    403 				if (oifa != ifa) {
    404 					if (oifa && oifa->ifa_rtrequest) {
    405 						oifa->ifa_rtrequest(RTM_DELETE,
    406 						    rt, &info);
    407 					}
    408 					rt_replace_ifa(rt, ifa);
    409 					rt->rt_ifp = ifp;
    410 				}
    411 			}
    412 			rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
    413 			    &rt->rt_rmx);
    414 			if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
    415 				rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
    416 			/*
    417 			 * Fall into
    418 			 */
    419 		case RTM_LOCK:
    420 			rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
    421 			rt->rt_rmx.rmx_locks |=
    422 			    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
    423 			break;
    424 		}
    425 		break;
    426 
    427 	default:
    428 		senderr(EOPNOTSUPP);
    429 	}
    430 
    431 flush:
    432 	if (rtm) {
    433 		if (error)
    434 			rtm->rtm_errno = error;
    435 		else
    436 			rtm->rtm_flags |= RTF_DONE;
    437 	}
    438 	family = dst ? dst->sa_family : 0;
    439 	if (rt)
    440 		rtfree(rt);
    441     {
    442 	struct rawcb *rp = NULL;
    443 	/*
    444 	 * Check to see if we don't want our own messages.
    445 	 */
    446 	if ((so->so_options & SO_USELOOPBACK) == 0) {
    447 		if (route_cb.any_count <= 1) {
    448 			if (rtm)
    449 				Free(rtm);
    450 			m_freem(m);
    451 			return error;
    452 		}
    453 		/* There is another listener, so construct message */
    454 		rp = sotorawcb(so);
    455 	}
    456 	if (rtm) {
    457 		m_copyback(m, 0, rtm->rtm_msglen, (void *)rtm);
    458 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
    459 			m_freem(m);
    460 			m = NULL;
    461 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
    462 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
    463 		Free(rtm);
    464 	}
    465 	if (rp)
    466 		rp->rcb_proto.sp_family = 0; /* Avoid us */
    467 	if (family)
    468 		proto.sp_protocol = family;
    469 	if (m)
    470 		raw_input(m, &proto, &route_src, &route_dst);
    471 	if (rp)
    472 		rp->rcb_proto.sp_family = PF_ROUTE;
    473     }
    474 	return error;
    475 }
    476 
    477 void
    478 rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics *out)
    479 {
    480 #define metric(f, e) if (which & (f)) out->e = in->e;
    481 	metric(RTV_RPIPE, rmx_recvpipe);
    482 	metric(RTV_SPIPE, rmx_sendpipe);
    483 	metric(RTV_SSTHRESH, rmx_ssthresh);
    484 	metric(RTV_RTT, rmx_rtt);
    485 	metric(RTV_RTTVAR, rmx_rttvar);
    486 	metric(RTV_HOPCOUNT, rmx_hopcount);
    487 	metric(RTV_MTU, rmx_mtu);
    488 	metric(RTV_EXPIRE, rmx_expire);
    489 #undef metric
    490 }
    491 
    492 #define ROUNDUP(a) \
    493 	((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
    494 #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))
    495 
    496 static int
    497 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim, struct rt_addrinfo *rtinfo)
    498 {
    499 	const struct sockaddr *sa = NULL;	/* Quell compiler warning */
    500 	int i;
    501 
    502 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
    503 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
    504 			continue;
    505 		rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
    506 		ADVANCE(cp, sa);
    507 	}
    508 
    509 	/* Check for extra addresses specified, except RTM_GET asking for interface info.  */
    510 	if (rtmtype == RTM_GET) {
    511 		if (((rtinfo->rti_addrs & (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
    512 			return 1;
    513 	} else {
    514 		if ((rtinfo->rti_addrs & (~0 << i)) != 0)
    515 			return 1;
    516 	}
    517 	/* Check for bad data length.  */
    518 	if (cp != cplim) {
    519 		if (i == RTAX_NETMASK + 1 && sa &&
    520 		    cp - ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
    521 			/*
    522 			 * The last sockaddr was netmask.
    523 			 * We accept this for now for the sake of old
    524 			 * binaries or third party softwares.
    525 			 */
    526 			;
    527 		else
    528 			return 1;
    529 	}
    530 	return 0;
    531 }
    532 
    533 static struct mbuf *
    534 rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
    535 {
    536 	struct rt_msghdr *rtm;
    537 	struct mbuf *m;
    538 	int i;
    539 	const struct sockaddr *sa;
    540 	int len, dlen;
    541 
    542 	m = m_gethdr(M_DONTWAIT, MT_DATA);
    543 	if (m == NULL)
    544 		return m;
    545 	MCLAIM(m, &routedomain.dom_mowner);
    546 	switch (type) {
    547 
    548 	case RTM_DELADDR:
    549 	case RTM_NEWADDR:
    550 		len = sizeof(struct ifa_msghdr);
    551 		break;
    552 
    553 #ifdef COMPAT_14
    554 	case RTM_OIFINFO:
    555 		len = sizeof(struct if_msghdr14);
    556 		break;
    557 #endif
    558 
    559 	case RTM_IFINFO:
    560 		len = sizeof(struct if_msghdr);
    561 		break;
    562 
    563 	case RTM_IFANNOUNCE:
    564 	case RTM_IEEE80211:
    565 		len = sizeof(struct if_announcemsghdr);
    566 		break;
    567 
    568 	default:
    569 		len = sizeof(struct rt_msghdr);
    570 	}
    571 	if (len > MHLEN + MLEN)
    572 		panic("rt_msg1: message too long");
    573 	else if (len > MHLEN) {
    574 		m->m_next = m_get(M_DONTWAIT, MT_DATA);
    575 		if (m->m_next == NULL) {
    576 			m_freem(m);
    577 			return NULL;
    578 		}
    579 		MCLAIM(m->m_next, m->m_owner);
    580 		m->m_pkthdr.len = len;
    581 		m->m_len = MHLEN;
    582 		m->m_next->m_len = len - MHLEN;
    583 	} else {
    584 		m->m_pkthdr.len = m->m_len = len;
    585 	}
    586 	m->m_pkthdr.rcvif = NULL;
    587 	m_copyback(m, 0, datalen, data);
    588 	rtm = mtod(m, struct rt_msghdr *);
    589 	for (i = 0; i < RTAX_MAX; i++) {
    590 		if ((sa = rtinfo->rti_info[i]) == NULL)
    591 			continue;
    592 		rtinfo->rti_addrs |= (1 << i);
    593 		dlen = ROUNDUP(sa->sa_len);
    594 		m_copyback(m, len, dlen, sa);
    595 		len += dlen;
    596 	}
    597 	if (m->m_pkthdr.len != len) {
    598 		m_freem(m);
    599 		return NULL;
    600 	}
    601 	rtm->rtm_msglen = len;
    602 	rtm->rtm_version = RTM_VERSION;
    603 	rtm->rtm_type = type;
    604 	return m;
    605 }
    606 
    607 /*
    608  * rt_msg2
    609  *
    610  *	 fills 'cp' or 'w'.w_tmem with the routing socket message and
    611  *		returns the length of the message in 'lenp'.
    612  *
    613  * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
    614  *	the message
    615  * otherwise walkarg's w_needed is updated and if the user buffer is
    616  *	specified and w_needed indicates space exists the information is copied
    617  *	into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
    618  *	if the allocation fails ENOBUFS is returned.
    619  */
    620 static int
    621 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct walkarg *w,
    622 	int *lenp)
    623 {
    624 	int i;
    625 	int len, dlen, second_time = 0;
    626 	char *cp0, *cp = cpv;
    627 
    628 	rtinfo->rti_addrs = 0;
    629 again:
    630 	switch (type) {
    631 
    632 	case RTM_DELADDR:
    633 	case RTM_NEWADDR:
    634 		len = sizeof(struct ifa_msghdr);
    635 		break;
    636 #ifdef COMPAT_14
    637 	case RTM_OIFINFO:
    638 		len = sizeof(struct if_msghdr14);
    639 		break;
    640 #endif
    641 
    642 	case RTM_IFINFO:
    643 		len = sizeof(struct if_msghdr);
    644 		break;
    645 
    646 	default:
    647 		len = sizeof(struct rt_msghdr);
    648 	}
    649 	if ((cp0 = cp) != NULL)
    650 		cp += len;
    651 	for (i = 0; i < RTAX_MAX; i++) {
    652 		const struct sockaddr *sa;
    653 
    654 		if ((sa = rtinfo->rti_info[i]) == NULL)
    655 			continue;
    656 		rtinfo->rti_addrs |= (1 << i);
    657 		dlen = ROUNDUP(sa->sa_len);
    658 		if (cp) {
    659 			bcopy(sa, cp, (unsigned)dlen);
    660 			cp += dlen;
    661 		}
    662 		len += dlen;
    663 	}
    664 	if (cp == NULL && w != NULL && !second_time) {
    665 		struct walkarg *rw = w;
    666 
    667 		rw->w_needed += len;
    668 		if (rw->w_needed <= 0 && rw->w_where) {
    669 			if (rw->w_tmemsize < len) {
    670 				if (rw->w_tmem)
    671 					free(rw->w_tmem, M_RTABLE);
    672 				rw->w_tmem = (void *) malloc(len, M_RTABLE,
    673 				    M_NOWAIT);
    674 				if (rw->w_tmem)
    675 					rw->w_tmemsize = len;
    676 			}
    677 			if (rw->w_tmem) {
    678 				cp = rw->w_tmem;
    679 				second_time = 1;
    680 				goto again;
    681 			} else {
    682 				rw->w_tmemneeded = len;
    683 				return ENOBUFS;
    684 			}
    685 		}
    686 	}
    687 	if (cp) {
    688 		struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
    689 
    690 		rtm->rtm_version = RTM_VERSION;
    691 		rtm->rtm_type = type;
    692 		rtm->rtm_msglen = len;
    693 	}
    694 	if (lenp)
    695 		*lenp = len;
    696 	return 0;
    697 }
    698 
    699 /*
    700  * This routine is called to generate a message from the routing
    701  * socket indicating that a redirect has occurred, a routing lookup
    702  * has failed, or that a protocol has detected timeouts to a particular
    703  * destination.
    704  */
    705 void
    706 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
    707 {
    708 	struct rt_msghdr rtm;
    709 	struct mbuf *m;
    710 	const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
    711 
    712 	if (route_cb.any_count == 0)
    713 		return;
    714 	memset(&rtm, 0, sizeof(rtm));
    715 	rtm.rtm_flags = RTF_DONE | flags;
    716 	rtm.rtm_errno = error;
    717 	m = rt_msg1(type, rtinfo, (void *)&rtm, sizeof(rtm));
    718 	if (m == NULL)
    719 		return;
    720 	mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
    721 	route_enqueue(m, sa ? sa->sa_family : 0);
    722 }
    723 
    724 /*
    725  * This routine is called to generate a message from the routing
    726  * socket indicating that the status of a network interface has changed.
    727  */
    728 void
    729 rt_ifmsg(struct ifnet *ifp)
    730 {
    731 	struct if_msghdr ifm;
    732 #ifdef COMPAT_14
    733 	struct if_msghdr14 oifm;
    734 #endif
    735 	struct mbuf *m;
    736 	struct rt_addrinfo info;
    737 
    738 	if (route_cb.any_count == 0)
    739 		return;
    740 	memset(&info, 0, sizeof(info));
    741 	memset(&ifm, 0, sizeof(ifm));
    742 	ifm.ifm_index = ifp->if_index;
    743 	ifm.ifm_flags = ifp->if_flags;
    744 	ifm.ifm_data = ifp->if_data;
    745 	ifm.ifm_addrs = 0;
    746 	m = rt_msg1(RTM_IFINFO, &info, (void *)&ifm, sizeof(ifm));
    747 	if (m == NULL)
    748 		return;
    749 	route_enqueue(m, 0);
    750 #ifdef COMPAT_14
    751 	memset(&info, 0, sizeof(info));
    752 	memset(&oifm, 0, sizeof(oifm));
    753 	oifm.ifm_index = ifp->if_index;
    754 	oifm.ifm_flags = ifp->if_flags;
    755 	oifm.ifm_data.ifi_type = ifp->if_data.ifi_type;
    756 	oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen;
    757 	oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen;
    758 	oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
    759 	oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric;
    760 	oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate;
    761 	oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets;
    762 	oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors;
    763 	oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets;
    764 	oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors;
    765 	oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions;
    766 	oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes;
    767 	oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes;
    768 	oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts;
    769 	oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts;
    770 	oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops;
    771 	oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto;
    772 	oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange;
    773 	oifm.ifm_addrs = 0;
    774 	m = rt_msg1(RTM_OIFINFO, &info, (void *)&oifm, sizeof(oifm));
    775 	if (m == NULL)
    776 		return;
    777 	route_enqueue(m, 0);
    778 #endif
    779 }
    780 
    781 /*
    782  * This is called to generate messages from the routing socket
    783  * indicating a network interface has had addresses associated with it.
    784  * if we ever reverse the logic and replace messages TO the routing
    785  * socket indicate a request to configure interfaces, then it will
    786  * be unnecessary as the routing socket will automatically generate
    787  * copies of it.
    788  */
    789 void
    790 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
    791 {
    792 	struct rt_addrinfo info;
    793 	const struct sockaddr *sa = NULL;
    794 	int pass;
    795 	struct mbuf *m = NULL;
    796 	struct ifnet *ifp = ifa->ifa_ifp;
    797 
    798 	if (route_cb.any_count == 0)
    799 		return;
    800 	for (pass = 1; pass < 3; pass++) {
    801 		memset(&info, 0, sizeof(info));
    802 		if ((cmd == RTM_ADD && pass == 1) ||
    803 		    (cmd == RTM_DELETE && pass == 2)) {
    804 			struct ifa_msghdr ifam;
    805 			int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
    806 
    807 			ifaaddr = sa = ifa->ifa_addr;
    808 			ifpaddr = ifp->if_dl->ifa_addr;
    809 			netmask = ifa->ifa_netmask;
    810 			brdaddr = ifa->ifa_dstaddr;
    811 			memset(&ifam, 0, sizeof(ifam));
    812 			ifam.ifam_index = ifp->if_index;
    813 			ifam.ifam_metric = ifa->ifa_metric;
    814 			ifam.ifam_flags = ifa->ifa_flags;
    815 			m = rt_msg1(ncmd, &info, (void *)&ifam, sizeof(ifam));
    816 			if (m == NULL)
    817 				continue;
    818 			mtod(m, struct ifa_msghdr *)->ifam_addrs =
    819 			    info.rti_addrs;
    820 		}
    821 		if ((cmd == RTM_ADD && pass == 2) ||
    822 		    (cmd == RTM_DELETE && pass == 1)) {
    823 			struct rt_msghdr rtm;
    824 
    825 			if (rt == NULL)
    826 				continue;
    827 			netmask = rt_mask(rt);
    828 			dst = sa = rt_getkey(rt);
    829 			gate = rt->rt_gateway;
    830 			memset(&rtm, 0, sizeof(rtm));
    831 			rtm.rtm_index = ifp->if_index;
    832 			rtm.rtm_flags |= rt->rt_flags;
    833 			rtm.rtm_errno = error;
    834 			m = rt_msg1(cmd, &info, (void *)&rtm, sizeof(rtm));
    835 			if (m == NULL)
    836 				continue;
    837 			mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
    838 		}
    839 		route_enqueue(m, sa ? sa->sa_family : 0);
    840 	}
    841 }
    842 
    843 static struct mbuf *
    844 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
    845     struct rt_addrinfo *info)
    846 {
    847 	struct if_announcemsghdr ifan;
    848 
    849 	memset(info, 0, sizeof(*info));
    850 	memset(&ifan, 0, sizeof(ifan));
    851 	ifan.ifan_index = ifp->if_index;
    852 	strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
    853 	ifan.ifan_what = what;
    854 	return rt_msg1(type, info, (void *)&ifan, sizeof(ifan));
    855 }
    856 
    857 /*
    858  * This is called to generate routing socket messages indicating
    859  * network interface arrival and departure.
    860  */
    861 void
    862 rt_ifannouncemsg(struct ifnet *ifp, int what)
    863 {
    864 	struct mbuf *m;
    865 	struct rt_addrinfo info;
    866 
    867 	if (route_cb.any_count == 0)
    868 		return;
    869 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
    870 	if (m == NULL)
    871 		return;
    872 	route_enqueue(m, 0);
    873 }
    874 
    875 /*
    876  * This is called to generate routing socket messages indicating
    877  * IEEE80211 wireless events.
    878  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
    879  */
    880 void
    881 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
    882 {
    883 	struct mbuf *m;
    884 	struct rt_addrinfo info;
    885 
    886 	if (route_cb.any_count == 0)
    887 		return;
    888 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
    889 	if (m == NULL)
    890 		return;
    891 	/*
    892 	 * Append the ieee80211 data.  Try to stick it in the
    893 	 * mbuf containing the ifannounce msg; otherwise allocate
    894 	 * a new mbuf and append.
    895 	 *
    896 	 * NB: we assume m is a single mbuf.
    897 	 */
    898 	if (data_len > M_TRAILINGSPACE(m)) {
    899 		struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
    900 		if (n == NULL) {
    901 			m_freem(m);
    902 			return;
    903 		}
    904 		(void)memcpy(mtod(n, void *), data, data_len);
    905 		n->m_len = data_len;
    906 		m->m_next = n;
    907 	} else if (data_len > 0) {
    908 		(void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
    909 		m->m_len += data_len;
    910 	}
    911 	if (m->m_flags & M_PKTHDR)
    912 		m->m_pkthdr.len += data_len;
    913 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
    914 	route_enqueue(m, 0);
    915 }
    916 
    917 /*
    918  * This is used in dumping the kernel table via sysctl().
    919  */
    920 static int
    921 sysctl_dumpentry(struct rtentry *rt, void *v)
    922 {
    923 	struct walkarg *w = v;
    924 	int error = 0, size;
    925 	struct rt_addrinfo info;
    926 
    927 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
    928 		return 0;
    929 	memset(&info, 0, sizeof(info));
    930 	dst = rt_getkey(rt);
    931 	gate = rt->rt_gateway;
    932 	netmask = rt_mask(rt);
    933 	if (rt->rt_ifp) {
    934 		const struct ifaddr *rtifa;
    935 		ifpaddr = rt->rt_ifp->if_dl->ifa_addr;
    936 		/* rtifa used to be simply rt->rt_ifa.  If rt->rt_ifa != NULL,
    937 		 * then rt_get_ifa() != NULL.  So this ought to still be safe.
    938 		 * --dyoung
    939 		 */
    940 		rtifa = rt_get_ifa(rt);
    941 		ifaaddr = rtifa->ifa_addr;
    942 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
    943 			brdaddr = rtifa->ifa_dstaddr;
    944 	}
    945 	if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
    946 		return error;
    947 	if (w->w_where && w->w_tmem && w->w_needed <= 0) {
    948 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
    949 
    950 		rtm->rtm_flags = rt->rt_flags;
    951 		rtm->rtm_use = rt->rt_use;
    952 		rtm->rtm_rmx = rt->rt_rmx;
    953 		KASSERT(rt->rt_ifp != NULL);
    954 		rtm->rtm_index = rt->rt_ifp->if_index;
    955 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
    956 		rtm->rtm_addrs = info.rti_addrs;
    957 		if ((error = copyout(rtm, w->w_where, size)) != 0)
    958 			w->w_where = NULL;
    959 		else
    960 			w->w_where = (char *)w->w_where + size;
    961 	}
    962 	return error;
    963 }
    964 
    965 static int
    966 sysctl_iflist(int af, struct walkarg *w, int type)
    967 {
    968 	struct ifnet *ifp;
    969 	struct ifaddr *ifa;
    970 	struct	rt_addrinfo info;
    971 	int	len, error = 0;
    972 
    973 	memset(&info, 0, sizeof(info));
    974 	IFNET_FOREACH(ifp) {
    975 		if (w->w_arg && w->w_arg != ifp->if_index)
    976 			continue;
    977 		if (IFADDR_EMPTY(ifp))
    978 			continue;
    979 		ifpaddr = ifp->if_dl->ifa_addr;
    980 		switch (type) {
    981 		case NET_RT_IFLIST:
    982 			error =
    983 			    rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
    984 			break;
    985 #ifdef COMPAT_14
    986 		case NET_RT_OIFLIST:
    987 			error =
    988 			    rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
    989 			break;
    990 #endif
    991 		default:
    992 			panic("sysctl_iflist(1)");
    993 		}
    994 		if (error)
    995 			return error;
    996 		ifpaddr = NULL;
    997 		if (w->w_where && w->w_tmem && w->w_needed <= 0) {
    998 			switch (type) {
    999 			case NET_RT_IFLIST: {
   1000 				struct if_msghdr *ifm;
   1001 
   1002 				ifm = (struct if_msghdr *)w->w_tmem;
   1003 				ifm->ifm_index = ifp->if_index;
   1004 				ifm->ifm_flags = ifp->if_flags;
   1005 				ifm->ifm_data = ifp->if_data;
   1006 				ifm->ifm_addrs = info.rti_addrs;
   1007 				error = copyout(ifm, w->w_where, len);
   1008 				if (error)
   1009 					return error;
   1010 				w->w_where = (char *)w->w_where + len;
   1011 				break;
   1012 			}
   1013 
   1014 #ifdef COMPAT_14
   1015 			case NET_RT_OIFLIST: {
   1016 				struct if_msghdr14 *ifm;
   1017 
   1018 				ifm = (struct if_msghdr14 *)w->w_tmem;
   1019 				ifm->ifm_index = ifp->if_index;
   1020 				ifm->ifm_flags = ifp->if_flags;
   1021 				ifm->ifm_data.ifi_type = ifp->if_data.ifi_type;
   1022 				ifm->ifm_data.ifi_addrlen =
   1023 				    ifp->if_data.ifi_addrlen;
   1024 				ifm->ifm_data.ifi_hdrlen =
   1025 				    ifp->if_data.ifi_hdrlen;
   1026 				ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
   1027 				ifm->ifm_data.ifi_metric =
   1028 				    ifp->if_data.ifi_metric;
   1029 				ifm->ifm_data.ifi_baudrate =
   1030 				    ifp->if_data.ifi_baudrate;
   1031 				ifm->ifm_data.ifi_ipackets =
   1032 				    ifp->if_data.ifi_ipackets;
   1033 				ifm->ifm_data.ifi_ierrors =
   1034 				    ifp->if_data.ifi_ierrors;
   1035 				ifm->ifm_data.ifi_opackets =
   1036 				    ifp->if_data.ifi_opackets;
   1037 				ifm->ifm_data.ifi_oerrors =
   1038 				    ifp->if_data.ifi_oerrors;
   1039 				ifm->ifm_data.ifi_collisions =
   1040 				    ifp->if_data.ifi_collisions;
   1041 				ifm->ifm_data.ifi_ibytes =
   1042 				    ifp->if_data.ifi_ibytes;
   1043 				ifm->ifm_data.ifi_obytes =
   1044 				    ifp->if_data.ifi_obytes;
   1045 				ifm->ifm_data.ifi_imcasts =
   1046 				    ifp->if_data.ifi_imcasts;
   1047 				ifm->ifm_data.ifi_omcasts =
   1048 				    ifp->if_data.ifi_omcasts;
   1049 				ifm->ifm_data.ifi_iqdrops =
   1050 				    ifp->if_data.ifi_iqdrops;
   1051 				ifm->ifm_data.ifi_noproto =
   1052 				    ifp->if_data.ifi_noproto;
   1053 				ifm->ifm_data.ifi_lastchange =
   1054 				    ifp->if_data.ifi_lastchange;
   1055 				ifm->ifm_addrs = info.rti_addrs;
   1056 				error = copyout(ifm, w->w_where, len);
   1057 				if (error)
   1058 					return error;
   1059 				w->w_where = (char *)w->w_where + len;
   1060 				break;
   1061 			}
   1062 #endif
   1063 			default:
   1064 				panic("sysctl_iflist(2)");
   1065 			}
   1066 		}
   1067 		IFADDR_FOREACH(ifa, ifp) {
   1068 			if (af && af != ifa->ifa_addr->sa_family)
   1069 				continue;
   1070 			ifaaddr = ifa->ifa_addr;
   1071 			netmask = ifa->ifa_netmask;
   1072 			brdaddr = ifa->ifa_dstaddr;
   1073 			if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
   1074 				return error;
   1075 			if (w->w_where && w->w_tmem && w->w_needed <= 0) {
   1076 				struct ifa_msghdr *ifam;
   1077 
   1078 				ifam = (struct ifa_msghdr *)w->w_tmem;
   1079 				ifam->ifam_index = ifa->ifa_ifp->if_index;
   1080 				ifam->ifam_flags = ifa->ifa_flags;
   1081 				ifam->ifam_metric = ifa->ifa_metric;
   1082 				ifam->ifam_addrs = info.rti_addrs;
   1083 				error = copyout(w->w_tmem, w->w_where, len);
   1084 				if (error)
   1085 					return error;
   1086 				w->w_where = (char *)w->w_where + len;
   1087 			}
   1088 		}
   1089 		ifaaddr = netmask = brdaddr = NULL;
   1090 	}
   1091 	return 0;
   1092 }
   1093 
   1094 static int
   1095 sysctl_rtable(SYSCTLFN_ARGS)
   1096 {
   1097 	void 	*where = oldp;
   1098 	size_t	*given = oldlenp;
   1099 	const void *new = newp;
   1100 	int	i, s, error = EINVAL;
   1101 	u_char  af;
   1102 	struct	walkarg w;
   1103 
   1104 	if (namelen == 1 && name[0] == CTL_QUERY)
   1105 		return sysctl_query(SYSCTLFN_CALL(rnode));
   1106 
   1107 	if (new)
   1108 		return EPERM;
   1109 	if (namelen != 3)
   1110 		return EINVAL;
   1111 	af = name[0];
   1112 	w.w_tmemneeded = 0;
   1113 	w.w_tmemsize = 0;
   1114 	w.w_tmem = NULL;
   1115 again:
   1116 	/* we may return here if a later [re]alloc of the t_mem buffer fails */
   1117 	if (w.w_tmemneeded) {
   1118 		w.w_tmem = (void *) malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
   1119 		w.w_tmemsize = w.w_tmemneeded;
   1120 		w.w_tmemneeded = 0;
   1121 	}
   1122 	w.w_op = name[1];
   1123 	w.w_arg = name[2];
   1124 	w.w_given = *given;
   1125 	w.w_needed = 0 - w.w_given;
   1126 	w.w_where = where;
   1127 
   1128 	s = splsoftnet();
   1129 	switch (w.w_op) {
   1130 
   1131 	case NET_RT_DUMP:
   1132 	case NET_RT_FLAGS:
   1133 		for (i = 1; i <= AF_MAX; i++)
   1134 			if ((af == 0 || af == i) &&
   1135 			    (error = rt_walktree(i, sysctl_dumpentry, &w)))
   1136 				break;
   1137 		break;
   1138 
   1139 #ifdef COMPAT_14
   1140 	case NET_RT_OIFLIST:
   1141 		error = sysctl_iflist(af, &w, w.w_op);
   1142 		break;
   1143 #endif
   1144 
   1145 	case NET_RT_IFLIST:
   1146 		error = sysctl_iflist(af, &w, w.w_op);
   1147 	}
   1148 	splx(s);
   1149 
   1150 	/* check to see if we couldn't allocate memory with NOWAIT */
   1151 	if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
   1152 		goto again;
   1153 
   1154 	if (w.w_tmem)
   1155 		free(w.w_tmem, M_RTABLE);
   1156 	w.w_needed += w.w_given;
   1157 	if (where) {
   1158 		*given = (char *)w.w_where - (char *)where;
   1159 		if (*given < w.w_needed)
   1160 			return ENOMEM;
   1161 	} else {
   1162 		*given = (11 * w.w_needed) / 10;
   1163 	}
   1164 	return error;
   1165 }
   1166 
   1167 /*
   1168  * Routing message software interrupt routine
   1169  */
   1170 static void
   1171 route_intr(void *cookie)
   1172 {
   1173 	struct sockproto proto = { .sp_family = PF_ROUTE, };
   1174 	struct mbuf *m;
   1175 	int s;
   1176 
   1177 	mutex_enter(softnet_lock);
   1178 	KERNEL_LOCK(1, NULL);
   1179 	while (!IF_IS_EMPTY(&route_intrq)) {
   1180 		s = splnet();
   1181 		IF_DEQUEUE(&route_intrq, m);
   1182 		splx(s);
   1183 		if (m == NULL)
   1184 			break;
   1185 		proto.sp_protocol = M_GETCTX(m, uintptr_t);
   1186 		raw_input(m, &proto, &route_src, &route_dst);
   1187 	}
   1188 	KERNEL_UNLOCK_ONE(NULL);
   1189 	mutex_exit(softnet_lock);
   1190 }
   1191 
   1192 /*
   1193  * Enqueue a message to the software interrupt routine.
   1194  */
   1195 static void
   1196 route_enqueue(struct mbuf *m, int family)
   1197 {
   1198 	int s, wasempty;
   1199 
   1200 	s = splnet();
   1201 	if (IF_QFULL(&route_intrq)) {
   1202 		IF_DROP(&route_intrq);
   1203 		m_freem(m);
   1204 	} else {
   1205 		wasempty = IF_IS_EMPTY(&route_intrq);
   1206 		M_SETCTX(m, (uintptr_t)family);
   1207 		IF_ENQUEUE(&route_intrq, m);
   1208 		if (wasempty)
   1209 			softint_schedule(route_sih);
   1210 	}
   1211 	splx(s);
   1212 }
   1213 
   1214 void
   1215 rt_init(void)
   1216 {
   1217 
   1218 	route_intrq.ifq_maxlen = route_maxqlen;
   1219 	route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   1220 	    route_intr, NULL);
   1221 }
   1222 
   1223 /*
   1224  * Definitions of protocols supported in the ROUTE domain.
   1225  */
   1226 PR_WRAP_USRREQ(route_usrreq)
   1227 #define	route_usrreq	route_usrreq_wrapper
   1228 
   1229 const struct protosw routesw[] = {
   1230 	{
   1231 		.pr_type = SOCK_RAW,
   1232 		.pr_domain = &routedomain,
   1233 		.pr_flags = PR_ATOMIC|PR_ADDR,
   1234 		.pr_input = raw_input,
   1235 		.pr_output = route_output,
   1236 		.pr_ctlinput = raw_ctlinput,
   1237 		.pr_usrreq = route_usrreq,
   1238 		.pr_init = raw_init,
   1239 	},
   1240 };
   1241 
   1242 struct domain routedomain = {
   1243 	.dom_family = PF_ROUTE,
   1244 	.dom_name = "route",
   1245 	.dom_init = route_init,
   1246 	.dom_protosw = routesw,
   1247 	.dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
   1248 };
   1249 
   1250 SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
   1251 {
   1252 	const struct sysctlnode *rnode = NULL;
   1253 
   1254 	sysctl_createv(clog, 0, NULL, NULL,
   1255 		       CTLFLAG_PERMANENT,
   1256 		       CTLTYPE_NODE, "net", NULL,
   1257 		       NULL, 0, NULL, 0,
   1258 		       CTL_NET, CTL_EOL);
   1259 
   1260 	sysctl_createv(clog, 0, NULL, &rnode,
   1261 		       CTLFLAG_PERMANENT,
   1262 		       CTLTYPE_NODE, "route",
   1263 		       SYSCTL_DESCR("PF_ROUTE information"),
   1264 		       NULL, 0, NULL, 0,
   1265 		       CTL_NET, PF_ROUTE, CTL_EOL);
   1266 	sysctl_createv(clog, 0, NULL, NULL,
   1267 		       CTLFLAG_PERMANENT,
   1268 		       CTLTYPE_NODE, "rtable",
   1269 		       SYSCTL_DESCR("Routing table information"),
   1270 		       sysctl_rtable, 0, NULL, 0,
   1271 		       CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
   1272 	sysctl_createv(clog, 0, &rnode, NULL,
   1273 		       CTLFLAG_PERMANENT,
   1274 		       CTLTYPE_STRUCT, "stats",
   1275 		       SYSCTL_DESCR("Routing statistics"),
   1276 		       NULL, 0, &rtstat, sizeof(rtstat),
   1277 		       CTL_CREATE, CTL_EOL);
   1278 }
   1279