Home | History | Annotate | Line # | Download | only in net
rtsock.c revision 1.106
      1 /*	$NetBSD: rtsock.c,v 1.106 2008/05/29 17:53:01 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1988, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.106 2008/05/29 17:53:01 christos Exp $");
     65 
     66 #include "opt_inet.h"
     67 
     68 #include <sys/param.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/mbuf.h>
     72 #include <sys/socket.h>
     73 #include <sys/socketvar.h>
     74 #include <sys/domain.h>
     75 #include <sys/protosw.h>
     76 #include <sys/sysctl.h>
     77 #include <sys/kauth.h>
     78 #include <sys/intr.h>
     79 #ifdef RTSOCK_DEBUG
     80 #include <netinet/in.h>
     81 #endif /* RTSOCK_DEBUG */
     82 
     83 #include <net/if.h>
     84 #include <net/route.h>
     85 #include <net/raw_cb.h>
     86 
     87 #include <machine/stdarg.h>
     88 
     89 DOMAIN_DEFINE(routedomain);	/* forward declare and add to link set */
     90 
     91 struct	sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
     92 struct	sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
     93 
     94 int	route_maxqlen = IFQ_MAXLEN;
     95 static struct	ifqueue route_intrq;
     96 static void	*route_sih;
     97 
     98 struct walkarg {
     99 	int	w_op;
    100 	int	w_arg;
    101 	int	w_given;
    102 	int	w_needed;
    103 	void *	w_where;
    104 	int	w_tmemsize;
    105 	int	w_tmemneeded;
    106 	void *	w_tmem;
    107 };
    108 
    109 static struct mbuf *rt_msg1(int, struct rt_addrinfo *, void *, int);
    110 static int rt_msg2(int, struct rt_addrinfo *, void *, struct walkarg *, int *);
    111 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
    112 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
    113     struct rt_addrinfo *);
    114 static int sysctl_dumpentry(struct rtentry *, void *);
    115 static int sysctl_iflist(int, struct walkarg *, int);
    116 static int sysctl_rtable(SYSCTLFN_PROTO);
    117 static inline void rt_adjustcount(int, int);
    118 static void route_enqueue(struct mbuf *, int);
    119 
    120 /* Sleazy use of local variables throughout file, warning!!!! */
    121 #define dst	info.rti_info[RTAX_DST]
    122 #define gate	info.rti_info[RTAX_GATEWAY]
    123 #define netmask	info.rti_info[RTAX_NETMASK]
    124 #define ifpaddr	info.rti_info[RTAX_IFP]
    125 #define ifaaddr	info.rti_info[RTAX_IFA]
    126 #define brdaddr	info.rti_info[RTAX_BRD]
    127 
    128 static inline void
    129 rt_adjustcount(int af, int cnt)
    130 {
    131 	route_cb.any_count += cnt;
    132 	switch (af) {
    133 	case AF_INET:
    134 		route_cb.ip_count += cnt;
    135 		return;
    136 #ifdef INET6
    137 	case AF_INET6:
    138 		route_cb.ip6_count += cnt;
    139 		return;
    140 #endif
    141 	case AF_IPX:
    142 		route_cb.ipx_count += cnt;
    143 		return;
    144 	case AF_NS:
    145 		route_cb.ns_count += cnt;
    146 		return;
    147 	case AF_ISO:
    148 		route_cb.iso_count += cnt;
    149 		return;
    150 	}
    151 }
    152 
    153 /*ARGSUSED*/
    154 int
    155 route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    156 	struct mbuf *control, struct lwp *l)
    157 {
    158 	int error = 0;
    159 	struct rawcb *rp = sotorawcb(so);
    160 	int s;
    161 
    162 	if (req == PRU_ATTACH) {
    163 		sosetlock(so);
    164 		MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK);
    165 		if ((so->so_pcb = rp) != NULL)
    166 			memset(so->so_pcb, 0, sizeof(*rp));
    167 
    168 	}
    169 	if (req == PRU_DETACH && rp)
    170 		rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
    171 	s = splsoftnet();
    172 
    173 	/*
    174 	 * Don't call raw_usrreq() in the attach case, because
    175 	 * we want to allow non-privileged processes to listen on
    176 	 * and send "safe" commands to the routing socket.
    177 	 */
    178 	if (req == PRU_ATTACH) {
    179 		if (l == NULL)
    180 			error = EACCES;
    181 		else
    182 			error = raw_attach(so, (int)(long)nam);
    183 	} else
    184 		error = raw_usrreq(so, req, m, nam, control, l);
    185 
    186 	rp = sotorawcb(so);
    187 	if (req == PRU_ATTACH && rp) {
    188 		if (error) {
    189 			free((void *)rp, M_PCB);
    190 			splx(s);
    191 			return error;
    192 		}
    193 		rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
    194 		rp->rcb_laddr = &route_src;
    195 		rp->rcb_faddr = &route_dst;
    196 		soisconnected(so);
    197 		so->so_options |= SO_USELOOPBACK;
    198 	}
    199 	splx(s);
    200 	return error;
    201 }
    202 
    203 static const struct sockaddr *
    204 intern_netmask(const struct sockaddr *mask)
    205 {
    206 	struct radix_node *rn;
    207 	extern struct radix_node_head *mask_rnhead;
    208 
    209 	if (mask != NULL &&
    210 	    (rn = rn_search(mask, mask_rnhead->rnh_treetop)))
    211 		mask = (const struct sockaddr *)rn->rn_key;
    212 
    213 	return mask;
    214 }
    215 
    216 /*ARGSUSED*/
    217 int
    218 route_output(struct mbuf *m, ...)
    219 {
    220 	struct sockproto proto = { .sp_family = PF_ROUTE, };
    221 	struct rt_msghdr *rtm = NULL;
    222 	struct rtentry *rt = NULL;
    223 	struct rtentry *saved_nrt = NULL;
    224 	struct rt_addrinfo info;
    225 	int len, error = 0;
    226 	struct ifnet *ifp = NULL;
    227 	struct ifaddr *ifa = NULL;
    228 	struct socket *so;
    229 	va_list ap;
    230 	sa_family_t family;
    231 
    232 	va_start(ap, m);
    233 	so = va_arg(ap, struct socket *);
    234 	va_end(ap);
    235 
    236 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
    237 	if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
    238 	   (m = m_pullup(m, sizeof(int32_t))) == NULL))
    239 		return ENOBUFS;
    240 	if ((m->m_flags & M_PKTHDR) == 0)
    241 		panic("route_output");
    242 	len = m->m_pkthdr.len;
    243 	if (len < sizeof(*rtm) ||
    244 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
    245 		dst = NULL;
    246 		senderr(EINVAL);
    247 	}
    248 	R_Malloc(rtm, struct rt_msghdr *, len);
    249 	if (rtm == NULL) {
    250 		dst = NULL;
    251 		senderr(ENOBUFS);
    252 	}
    253 	m_copydata(m, 0, len, (void *)rtm);
    254 	if (rtm->rtm_version != RTM_VERSION) {
    255 		dst = NULL;
    256 		senderr(EPROTONOSUPPORT);
    257 	}
    258 	rtm->rtm_pid = curproc->p_pid;
    259 	memset(&info, 0, sizeof(info));
    260 	info.rti_addrs = rtm->rtm_addrs;
    261 	if (rt_xaddrs(rtm->rtm_type, (void *)(rtm + 1), len + (char *)rtm, &info))
    262 		senderr(EINVAL);
    263 	info.rti_flags = rtm->rtm_flags;
    264 #ifdef RTSOCK_DEBUG
    265 	if (dst->sa_family == AF_INET) {
    266 		printf("%s: extracted dst %s\n", __func__,
    267 		    inet_ntoa(((const struct sockaddr_in *)dst)->sin_addr));
    268 	}
    269 #endif /* RTSOCK_DEBUG */
    270 	if (dst == NULL || (dst->sa_family >= AF_MAX))
    271 		senderr(EINVAL);
    272 	if (gate != NULL && (gate->sa_family >= AF_MAX))
    273 		senderr(EINVAL);
    274 
    275 	/*
    276 	 * Verify that the caller has the appropriate privilege; RTM_GET
    277 	 * is the only operation the non-superuser is allowed.
    278 	 */
    279 	if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
    280 	    0, rtm, NULL, NULL) != 0)
    281 		senderr(EACCES);
    282 
    283 	switch (rtm->rtm_type) {
    284 
    285 	case RTM_ADD:
    286 		if (gate == NULL)
    287 			senderr(EINVAL);
    288 		error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
    289 		if (error == 0 && saved_nrt) {
    290 			rt_setmetrics(rtm->rtm_inits,
    291 			    &rtm->rtm_rmx, &saved_nrt->rt_rmx);
    292 			saved_nrt->rt_refcnt--;
    293 		}
    294 		break;
    295 
    296 	case RTM_DELETE:
    297 		error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
    298 		if (error == 0) {
    299 			(rt = saved_nrt)->rt_refcnt++;
    300 			goto report;
    301 		}
    302 		break;
    303 
    304 	case RTM_GET:
    305 	case RTM_CHANGE:
    306 	case RTM_LOCK:
    307                 /* XXX This will mask dst with netmask before
    308                  * searching.  It did not used to do that.  --dyoung
    309 		 */
    310 		error = rtrequest1(RTM_GET, &info, &rt);
    311 		if (error != 0)
    312 			senderr(error);
    313 		if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
    314 			struct radix_node *rn;
    315 
    316 			if (memcmp(dst, rt_getkey(rt), dst->sa_len) != 0)
    317 				senderr(ESRCH);
    318 			netmask = intern_netmask(netmask);
    319 			for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
    320 				if (netmask == (const struct sockaddr *)rn->rn_mask)
    321 					break;
    322 			if (rn == NULL)
    323 				senderr(ETOOMANYREFS);
    324 			rt = (struct rtentry *)rn;
    325 		}
    326 
    327 		switch (rtm->rtm_type) {
    328 		case RTM_GET:
    329 		report:
    330 			dst = rt_getkey(rt);
    331 			gate = rt->rt_gateway;
    332 			netmask = rt_mask(rt);
    333 			if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
    334 				;
    335 			else if ((ifp = rt->rt_ifp) != NULL) {
    336 				const struct ifaddr *rtifa;
    337 				ifpaddr = ifp->if_dl->ifa_addr;
    338                                 /* rtifa used to be simply rt->rt_ifa.
    339                                  * If rt->rt_ifa != NULL, then
    340                                  * rt_get_ifa() != NULL.  So this
    341                                  * ought to still be safe. --dyoung
    342 				 */
    343 				rtifa = rt_get_ifa(rt);
    344 				ifaaddr = rtifa->ifa_addr;
    345 #ifdef RTSOCK_DEBUG
    346 				if (ifaaddr->sa_family == AF_INET) {
    347 					printf("%s: copying out RTAX_IFA %s ",
    348 					    __func__,
    349 					    inet_ntoa(((const struct sockaddr_in *)ifaaddr)->sin_addr));
    350 					printf("for dst %s ifa_getifa %p ifa_seqno %p\n",
    351 					    inet_ntoa(((const struct sockaddr_in *)dst)->sin_addr),
    352 					    (void *)rtifa->ifa_getifa, rtifa->ifa_seqno);
    353 				}
    354 #endif /* RTSOCK_DEBUG */
    355 				if (ifp->if_flags & IFF_POINTOPOINT)
    356 					brdaddr = rtifa->ifa_dstaddr;
    357 				else
    358 					brdaddr = NULL;
    359 				rtm->rtm_index = ifp->if_index;
    360 			} else {
    361 				ifpaddr = NULL;
    362 				ifaaddr = NULL;
    363 			}
    364 			(void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
    365 			if (len > rtm->rtm_msglen) {
    366 				struct rt_msghdr *new_rtm;
    367 				R_Malloc(new_rtm, struct rt_msghdr *, len);
    368 				if (new_rtm == NULL)
    369 					senderr(ENOBUFS);
    370 				memmove(new_rtm, rtm, rtm->rtm_msglen);
    371 				Free(rtm); rtm = new_rtm;
    372 			}
    373 			(void)rt_msg2(rtm->rtm_type, &info, (void *)rtm,
    374 			    NULL, 0);
    375 			rtm->rtm_flags = rt->rt_flags;
    376 			rtm->rtm_rmx = rt->rt_rmx;
    377 			rtm->rtm_addrs = info.rti_addrs;
    378 			break;
    379 
    380 		case RTM_CHANGE:
    381 			/*
    382 			 * new gateway could require new ifaddr, ifp;
    383 			 * flags may also be different; ifp may be specified
    384 			 * by ll sockaddr when protocol address is ambiguous
    385 			 */
    386 			if ((error = rt_getifa(&info)) != 0)
    387 				senderr(error);
    388 			if (gate && rt_setgate(rt, gate))
    389 				senderr(EDQUOT);
    390 			/* new gateway could require new ifaddr, ifp;
    391 			   flags may also be different; ifp may be specified
    392 			   by ll sockaddr when protocol address is ambiguous */
    393 			if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) &&
    394 			    (ifp = ifa->ifa_ifp) && (ifaaddr || gate))
    395 				ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate,
    396 				    ifp);
    397 			else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) ||
    398 			    (gate && (ifa = ifa_ifwithroute(rt->rt_flags,
    399 			    rt_getkey(rt), gate))))
    400 				ifp = ifa->ifa_ifp;
    401 			if (ifa) {
    402 				struct ifaddr *oifa = rt->rt_ifa;
    403 				if (oifa != ifa) {
    404 					if (oifa && oifa->ifa_rtrequest) {
    405 						oifa->ifa_rtrequest(RTM_DELETE,
    406 						    rt, &info);
    407 					}
    408 					rt_replace_ifa(rt, ifa);
    409 					rt->rt_ifp = ifp;
    410 				}
    411 			}
    412 			rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
    413 			    &rt->rt_rmx);
    414 			if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
    415 				rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
    416 			/*
    417 			 * Fall into
    418 			 */
    419 		case RTM_LOCK:
    420 			rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
    421 			rt->rt_rmx.rmx_locks |=
    422 			    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
    423 			break;
    424 		}
    425 		break;
    426 
    427 	default:
    428 		senderr(EOPNOTSUPP);
    429 	}
    430 
    431 flush:
    432 	if (rtm) {
    433 		if (error)
    434 			rtm->rtm_errno = error;
    435 		else
    436 			rtm->rtm_flags |= RTF_DONE;
    437 	}
    438 	family = dst ? dst->sa_family : 0;
    439 	if (rt)
    440 		rtfree(rt);
    441     {
    442 	struct rawcb *rp = NULL;
    443 	/*
    444 	 * Check to see if we don't want our own messages.
    445 	 */
    446 	if ((so->so_options & SO_USELOOPBACK) == 0) {
    447 		if (route_cb.any_count <= 1) {
    448 			if (rtm)
    449 				Free(rtm);
    450 			m_freem(m);
    451 			return error;
    452 		}
    453 		/* There is another listener, so construct message */
    454 		rp = sotorawcb(so);
    455 	}
    456 	if (rtm) {
    457 		m_copyback(m, 0, rtm->rtm_msglen, (void *)rtm);
    458 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
    459 			m_freem(m);
    460 			m = NULL;
    461 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
    462 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
    463 		Free(rtm);
    464 	}
    465 	if (rp)
    466 		rp->rcb_proto.sp_family = 0; /* Avoid us */
    467 	if (family)
    468 		proto.sp_protocol = family;
    469 	if (m)
    470 		raw_input(m, &proto, &route_src, &route_dst);
    471 	if (rp)
    472 		rp->rcb_proto.sp_family = PF_ROUTE;
    473     }
    474 	return error;
    475 }
    476 
    477 void
    478 rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics *out)
    479 {
    480 #define metric(f, e) if (which & (f)) out->e = in->e;
    481 	metric(RTV_RPIPE, rmx_recvpipe);
    482 	metric(RTV_SPIPE, rmx_sendpipe);
    483 	metric(RTV_SSTHRESH, rmx_ssthresh);
    484 	metric(RTV_RTT, rmx_rtt);
    485 	metric(RTV_RTTVAR, rmx_rttvar);
    486 	metric(RTV_HOPCOUNT, rmx_hopcount);
    487 	metric(RTV_MTU, rmx_mtu);
    488 	metric(RTV_EXPIRE, rmx_expire);
    489 #undef metric
    490 }
    491 
    492 #define ROUNDUP(a) \
    493 	((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
    494 #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))
    495 
    496 static int
    497 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim, struct rt_addrinfo *rtinfo)
    498 {
    499 	const struct sockaddr *sa = NULL;	/* Quell compiler warning */
    500 	int i;
    501 
    502 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
    503 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
    504 			continue;
    505 		rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
    506 		ADVANCE(cp, sa);
    507 	}
    508 
    509 	/* Check for extra addresses specified, except RTM_GET asking for interface info.  */
    510 	if (rtmtype == RTM_GET) {
    511 		if (((rtinfo->rti_addrs & (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
    512 			return 1;
    513 	} else {
    514 		if ((rtinfo->rti_addrs & (~0 << i)) != 0)
    515 			return 1;
    516 	}
    517 	/* Check for bad data length.  */
    518 	if (cp != cplim) {
    519 		if (i == RTAX_NETMASK + 1 && sa &&
    520 		    cp - ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
    521 			/*
    522 			 * The last sockaddr was netmask.
    523 			 * We accept this for now for the sake of old
    524 			 * binaries or third party softwares.
    525 			 */
    526 			;
    527 		else
    528 			return 1;
    529 	}
    530 	return 0;
    531 }
    532 
    533 static struct mbuf *
    534 rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
    535 {
    536 	struct rt_msghdr *rtm;
    537 	struct mbuf *m;
    538 	int i;
    539 	const struct sockaddr *sa;
    540 	int len, dlen;
    541 
    542 	m = m_gethdr(M_DONTWAIT, MT_DATA);
    543 	if (m == NULL)
    544 		return m;
    545 	MCLAIM(m, &routedomain.dom_mowner);
    546 	switch (type) {
    547 
    548 	case RTM_DELADDR:
    549 	case RTM_NEWADDR:
    550 		len = sizeof(struct ifa_msghdr);
    551 		break;
    552 
    553 #ifdef COMPAT_14
    554 	case RTM_OIFINFO:
    555 		len = sizeof(struct if_msghdr14);
    556 		break;
    557 #endif
    558 
    559 	case RTM_IFINFO:
    560 		len = sizeof(struct if_msghdr);
    561 		break;
    562 
    563 	case RTM_IFANNOUNCE:
    564 	case RTM_IEEE80211:
    565 		len = sizeof(struct if_announcemsghdr);
    566 		break;
    567 
    568 	default:
    569 		len = sizeof(struct rt_msghdr);
    570 	}
    571 	if (len > MHLEN + MLEN)
    572 		panic("rt_msg1: message too long");
    573 	else if (len > MHLEN) {
    574 		m->m_next = m_get(M_DONTWAIT, MT_DATA);
    575 		if (m->m_next == NULL) {
    576 			m_freem(m);
    577 			return NULL;
    578 		}
    579 		MCLAIM(m->m_next, m->m_owner);
    580 		m->m_pkthdr.len = len;
    581 		m->m_len = MHLEN;
    582 		m->m_next->m_len = len - MHLEN;
    583 	} else {
    584 		m->m_pkthdr.len = m->m_len = len;
    585 	}
    586 	m->m_pkthdr.rcvif = NULL;
    587 	m_copyback(m, 0, datalen, data);
    588 	rtm = mtod(m, struct rt_msghdr *);
    589 	(void)memset(rtm, 0, len);
    590 	for (i = 0; i < RTAX_MAX; i++) {
    591 		if ((sa = rtinfo->rti_info[i]) == NULL)
    592 			continue;
    593 		rtinfo->rti_addrs |= (1 << i);
    594 		dlen = ROUNDUP(sa->sa_len);
    595 		m_copyback(m, len, dlen, sa);
    596 		len += dlen;
    597 	}
    598 	if (m->m_pkthdr.len != len) {
    599 		m_freem(m);
    600 		return NULL;
    601 	}
    602 	rtm->rtm_msglen = len;
    603 	rtm->rtm_version = RTM_VERSION;
    604 	rtm->rtm_type = type;
    605 	return m;
    606 }
    607 
    608 /*
    609  * rt_msg2
    610  *
    611  *	 fills 'cp' or 'w'.w_tmem with the routing socket message and
    612  *		returns the length of the message in 'lenp'.
    613  *
    614  * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
    615  *	the message
    616  * otherwise walkarg's w_needed is updated and if the user buffer is
    617  *	specified and w_needed indicates space exists the information is copied
    618  *	into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
    619  *	if the allocation fails ENOBUFS is returned.
    620  */
    621 static int
    622 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct walkarg *w,
    623 	int *lenp)
    624 {
    625 	int i;
    626 	int len, dlen, second_time = 0;
    627 	char *cp0, *cp = cpv;
    628 
    629 	rtinfo->rti_addrs = 0;
    630 again:
    631 	switch (type) {
    632 
    633 	case RTM_DELADDR:
    634 	case RTM_NEWADDR:
    635 		len = sizeof(struct ifa_msghdr);
    636 		break;
    637 #ifdef COMPAT_14
    638 	case RTM_OIFINFO:
    639 		len = sizeof(struct if_msghdr14);
    640 		break;
    641 #endif
    642 
    643 	case RTM_IFINFO:
    644 		len = sizeof(struct if_msghdr);
    645 		break;
    646 
    647 	default:
    648 		len = sizeof(struct rt_msghdr);
    649 	}
    650 	if ((cp0 = cp) != NULL)
    651 		cp += len;
    652 	for (i = 0; i < RTAX_MAX; i++) {
    653 		const struct sockaddr *sa;
    654 
    655 		if ((sa = rtinfo->rti_info[i]) == NULL)
    656 			continue;
    657 		rtinfo->rti_addrs |= (1 << i);
    658 		dlen = ROUNDUP(sa->sa_len);
    659 		if (cp) {
    660 			bcopy(sa, cp, (unsigned)dlen);
    661 			cp += dlen;
    662 		}
    663 		len += dlen;
    664 	}
    665 	if (cp == NULL && w != NULL && !second_time) {
    666 		struct walkarg *rw = w;
    667 
    668 		rw->w_needed += len;
    669 		if (rw->w_needed <= 0 && rw->w_where) {
    670 			if (rw->w_tmemsize < len) {
    671 				if (rw->w_tmem)
    672 					free(rw->w_tmem, M_RTABLE);
    673 				rw->w_tmem = (void *) malloc(len, M_RTABLE,
    674 				    M_NOWAIT);
    675 				if (rw->w_tmem)
    676 					rw->w_tmemsize = len;
    677 			}
    678 			if (rw->w_tmem) {
    679 				cp = rw->w_tmem;
    680 				second_time = 1;
    681 				goto again;
    682 			} else {
    683 				rw->w_tmemneeded = len;
    684 				return ENOBUFS;
    685 			}
    686 		}
    687 	}
    688 	if (cp) {
    689 		struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
    690 
    691 		rtm->rtm_version = RTM_VERSION;
    692 		rtm->rtm_type = type;
    693 		rtm->rtm_msglen = len;
    694 	}
    695 	if (lenp)
    696 		*lenp = len;
    697 	return 0;
    698 }
    699 
    700 /*
    701  * This routine is called to generate a message from the routing
    702  * socket indicating that a redirect has occurred, a routing lookup
    703  * has failed, or that a protocol has detected timeouts to a particular
    704  * destination.
    705  */
    706 void
    707 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
    708 {
    709 	struct rt_msghdr rtm;
    710 	struct mbuf *m;
    711 	const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
    712 
    713 	if (route_cb.any_count == 0)
    714 		return;
    715 	memset(&rtm, 0, sizeof(rtm));
    716 	rtm.rtm_flags = RTF_DONE | flags;
    717 	rtm.rtm_errno = error;
    718 	m = rt_msg1(type, rtinfo, (void *)&rtm, sizeof(rtm));
    719 	if (m == NULL)
    720 		return;
    721 	mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
    722 	route_enqueue(m, sa ? sa->sa_family : 0);
    723 }
    724 
    725 /*
    726  * This routine is called to generate a message from the routing
    727  * socket indicating that the status of a network interface has changed.
    728  */
    729 void
    730 rt_ifmsg(struct ifnet *ifp)
    731 {
    732 	struct if_msghdr ifm;
    733 #ifdef COMPAT_14
    734 	struct if_msghdr14 oifm;
    735 #endif
    736 	struct mbuf *m;
    737 	struct rt_addrinfo info;
    738 
    739 	if (route_cb.any_count == 0)
    740 		return;
    741 	memset(&info, 0, sizeof(info));
    742 	memset(&ifm, 0, sizeof(ifm));
    743 	ifm.ifm_index = ifp->if_index;
    744 	ifm.ifm_flags = ifp->if_flags;
    745 	ifm.ifm_data = ifp->if_data;
    746 	ifm.ifm_addrs = 0;
    747 	m = rt_msg1(RTM_IFINFO, &info, (void *)&ifm, sizeof(ifm));
    748 	if (m == NULL)
    749 		return;
    750 	route_enqueue(m, 0);
    751 #ifdef COMPAT_14
    752 	memset(&info, 0, sizeof(info));
    753 	memset(&oifm, 0, sizeof(oifm));
    754 	oifm.ifm_index = ifp->if_index;
    755 	oifm.ifm_flags = ifp->if_flags;
    756 	oifm.ifm_data.ifi_type = ifp->if_data.ifi_type;
    757 	oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen;
    758 	oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen;
    759 	oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
    760 	oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric;
    761 	oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate;
    762 	oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets;
    763 	oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors;
    764 	oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets;
    765 	oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors;
    766 	oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions;
    767 	oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes;
    768 	oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes;
    769 	oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts;
    770 	oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts;
    771 	oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops;
    772 	oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto;
    773 	oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange;
    774 	oifm.ifm_addrs = 0;
    775 	m = rt_msg1(RTM_OIFINFO, &info, (void *)&oifm, sizeof(oifm));
    776 	if (m == NULL)
    777 		return;
    778 	route_enqueue(m, 0);
    779 #endif
    780 }
    781 
    782 /*
    783  * This is called to generate messages from the routing socket
    784  * indicating a network interface has had addresses associated with it.
    785  * if we ever reverse the logic and replace messages TO the routing
    786  * socket indicate a request to configure interfaces, then it will
    787  * be unnecessary as the routing socket will automatically generate
    788  * copies of it.
    789  */
    790 void
    791 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
    792 {
    793 	struct rt_addrinfo info;
    794 	const struct sockaddr *sa = NULL;
    795 	int pass;
    796 	struct mbuf *m = NULL;
    797 	struct ifnet *ifp = ifa->ifa_ifp;
    798 
    799 	if (route_cb.any_count == 0)
    800 		return;
    801 	for (pass = 1; pass < 3; pass++) {
    802 		memset(&info, 0, sizeof(info));
    803 		if ((cmd == RTM_ADD && pass == 1) ||
    804 		    (cmd == RTM_DELETE && pass == 2)) {
    805 			struct ifa_msghdr ifam;
    806 			int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
    807 
    808 			ifaaddr = sa = ifa->ifa_addr;
    809 			ifpaddr = ifp->if_dl->ifa_addr;
    810 			netmask = ifa->ifa_netmask;
    811 			brdaddr = ifa->ifa_dstaddr;
    812 			memset(&ifam, 0, sizeof(ifam));
    813 			ifam.ifam_index = ifp->if_index;
    814 			ifam.ifam_metric = ifa->ifa_metric;
    815 			ifam.ifam_flags = ifa->ifa_flags;
    816 			m = rt_msg1(ncmd, &info, (void *)&ifam, sizeof(ifam));
    817 			if (m == NULL)
    818 				continue;
    819 			mtod(m, struct ifa_msghdr *)->ifam_addrs =
    820 			    info.rti_addrs;
    821 		}
    822 		if ((cmd == RTM_ADD && pass == 2) ||
    823 		    (cmd == RTM_DELETE && pass == 1)) {
    824 			struct rt_msghdr rtm;
    825 
    826 			if (rt == NULL)
    827 				continue;
    828 			netmask = rt_mask(rt);
    829 			dst = sa = rt_getkey(rt);
    830 			gate = rt->rt_gateway;
    831 			memset(&rtm, 0, sizeof(rtm));
    832 			rtm.rtm_index = ifp->if_index;
    833 			rtm.rtm_flags |= rt->rt_flags;
    834 			rtm.rtm_errno = error;
    835 			m = rt_msg1(cmd, &info, (void *)&rtm, sizeof(rtm));
    836 			if (m == NULL)
    837 				continue;
    838 			mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
    839 		}
    840 #ifdef DIAGNOSTIC
    841 		if (m == NULL)
    842 			panic("%s: called with wrong command", __func__);
    843 #endif
    844 		route_enqueue(m, sa ? sa->sa_family : 0);
    845 	}
    846 }
    847 
    848 static struct mbuf *
    849 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
    850     struct rt_addrinfo *info)
    851 {
    852 	struct if_announcemsghdr ifan;
    853 
    854 	memset(info, 0, sizeof(*info));
    855 	memset(&ifan, 0, sizeof(ifan));
    856 	ifan.ifan_index = ifp->if_index;
    857 	strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
    858 	ifan.ifan_what = what;
    859 	return rt_msg1(type, info, (void *)&ifan, sizeof(ifan));
    860 }
    861 
    862 /*
    863  * This is called to generate routing socket messages indicating
    864  * network interface arrival and departure.
    865  */
    866 void
    867 rt_ifannouncemsg(struct ifnet *ifp, int what)
    868 {
    869 	struct mbuf *m;
    870 	struct rt_addrinfo info;
    871 
    872 	if (route_cb.any_count == 0)
    873 		return;
    874 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
    875 	if (m == NULL)
    876 		return;
    877 	route_enqueue(m, 0);
    878 }
    879 
    880 /*
    881  * This is called to generate routing socket messages indicating
    882  * IEEE80211 wireless events.
    883  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
    884  */
    885 void
    886 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
    887 {
    888 	struct mbuf *m;
    889 	struct rt_addrinfo info;
    890 
    891 	if (route_cb.any_count == 0)
    892 		return;
    893 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
    894 	if (m == NULL)
    895 		return;
    896 	/*
    897 	 * Append the ieee80211 data.  Try to stick it in the
    898 	 * mbuf containing the ifannounce msg; otherwise allocate
    899 	 * a new mbuf and append.
    900 	 *
    901 	 * NB: we assume m is a single mbuf.
    902 	 */
    903 	if (data_len > M_TRAILINGSPACE(m)) {
    904 		struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
    905 		if (n == NULL) {
    906 			m_freem(m);
    907 			return;
    908 		}
    909 		(void)memcpy(mtod(n, void *), data, data_len);
    910 		n->m_len = data_len;
    911 		m->m_next = n;
    912 	} else if (data_len > 0) {
    913 		(void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
    914 		m->m_len += data_len;
    915 	}
    916 	if (m->m_flags & M_PKTHDR)
    917 		m->m_pkthdr.len += data_len;
    918 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
    919 	route_enqueue(m, 0);
    920 }
    921 
    922 /*
    923  * This is used in dumping the kernel table via sysctl().
    924  */
    925 static int
    926 sysctl_dumpentry(struct rtentry *rt, void *v)
    927 {
    928 	struct walkarg *w = v;
    929 	int error = 0, size;
    930 	struct rt_addrinfo info;
    931 
    932 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
    933 		return 0;
    934 	memset(&info, 0, sizeof(info));
    935 	dst = rt_getkey(rt);
    936 	gate = rt->rt_gateway;
    937 	netmask = rt_mask(rt);
    938 	if (rt->rt_ifp) {
    939 		const struct ifaddr *rtifa;
    940 		ifpaddr = rt->rt_ifp->if_dl->ifa_addr;
    941 		/* rtifa used to be simply rt->rt_ifa.  If rt->rt_ifa != NULL,
    942 		 * then rt_get_ifa() != NULL.  So this ought to still be safe.
    943 		 * --dyoung
    944 		 */
    945 		rtifa = rt_get_ifa(rt);
    946 		ifaaddr = rtifa->ifa_addr;
    947 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
    948 			brdaddr = rtifa->ifa_dstaddr;
    949 	}
    950 	if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
    951 		return error;
    952 	if (w->w_where && w->w_tmem && w->w_needed <= 0) {
    953 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
    954 
    955 		rtm->rtm_flags = rt->rt_flags;
    956 		rtm->rtm_use = rt->rt_use;
    957 		rtm->rtm_rmx = rt->rt_rmx;
    958 		KASSERT(rt->rt_ifp != NULL);
    959 		rtm->rtm_index = rt->rt_ifp->if_index;
    960 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
    961 		rtm->rtm_addrs = info.rti_addrs;
    962 		if ((error = copyout(rtm, w->w_where, size)) != 0)
    963 			w->w_where = NULL;
    964 		else
    965 			w->w_where = (char *)w->w_where + size;
    966 	}
    967 	return error;
    968 }
    969 
    970 static int
    971 sysctl_iflist(int af, struct walkarg *w, int type)
    972 {
    973 	struct ifnet *ifp;
    974 	struct ifaddr *ifa;
    975 	struct	rt_addrinfo info;
    976 	int	len, error = 0;
    977 
    978 	memset(&info, 0, sizeof(info));
    979 	IFNET_FOREACH(ifp) {
    980 		if (w->w_arg && w->w_arg != ifp->if_index)
    981 			continue;
    982 		if (IFADDR_EMPTY(ifp))
    983 			continue;
    984 		ifpaddr = ifp->if_dl->ifa_addr;
    985 		switch (type) {
    986 		case NET_RT_IFLIST:
    987 			error =
    988 			    rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
    989 			break;
    990 #ifdef COMPAT_14
    991 		case NET_RT_OIFLIST:
    992 			error =
    993 			    rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
    994 			break;
    995 #endif
    996 		default:
    997 			panic("sysctl_iflist(1)");
    998 		}
    999 		if (error)
   1000 			return error;
   1001 		ifpaddr = NULL;
   1002 		if (w->w_where && w->w_tmem && w->w_needed <= 0) {
   1003 			switch (type) {
   1004 			case NET_RT_IFLIST: {
   1005 				struct if_msghdr *ifm;
   1006 
   1007 				ifm = (struct if_msghdr *)w->w_tmem;
   1008 				ifm->ifm_index = ifp->if_index;
   1009 				ifm->ifm_flags = ifp->if_flags;
   1010 				ifm->ifm_data = ifp->if_data;
   1011 				ifm->ifm_addrs = info.rti_addrs;
   1012 				error = copyout(ifm, w->w_where, len);
   1013 				if (error)
   1014 					return error;
   1015 				w->w_where = (char *)w->w_where + len;
   1016 				break;
   1017 			}
   1018 
   1019 #ifdef COMPAT_14
   1020 			case NET_RT_OIFLIST: {
   1021 				struct if_msghdr14 *ifm;
   1022 
   1023 				ifm = (struct if_msghdr14 *)w->w_tmem;
   1024 				ifm->ifm_index = ifp->if_index;
   1025 				ifm->ifm_flags = ifp->if_flags;
   1026 				ifm->ifm_data.ifi_type = ifp->if_data.ifi_type;
   1027 				ifm->ifm_data.ifi_addrlen =
   1028 				    ifp->if_data.ifi_addrlen;
   1029 				ifm->ifm_data.ifi_hdrlen =
   1030 				    ifp->if_data.ifi_hdrlen;
   1031 				ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
   1032 				ifm->ifm_data.ifi_metric =
   1033 				    ifp->if_data.ifi_metric;
   1034 				ifm->ifm_data.ifi_baudrate =
   1035 				    ifp->if_data.ifi_baudrate;
   1036 				ifm->ifm_data.ifi_ipackets =
   1037 				    ifp->if_data.ifi_ipackets;
   1038 				ifm->ifm_data.ifi_ierrors =
   1039 				    ifp->if_data.ifi_ierrors;
   1040 				ifm->ifm_data.ifi_opackets =
   1041 				    ifp->if_data.ifi_opackets;
   1042 				ifm->ifm_data.ifi_oerrors =
   1043 				    ifp->if_data.ifi_oerrors;
   1044 				ifm->ifm_data.ifi_collisions =
   1045 				    ifp->if_data.ifi_collisions;
   1046 				ifm->ifm_data.ifi_ibytes =
   1047 				    ifp->if_data.ifi_ibytes;
   1048 				ifm->ifm_data.ifi_obytes =
   1049 				    ifp->if_data.ifi_obytes;
   1050 				ifm->ifm_data.ifi_imcasts =
   1051 				    ifp->if_data.ifi_imcasts;
   1052 				ifm->ifm_data.ifi_omcasts =
   1053 				    ifp->if_data.ifi_omcasts;
   1054 				ifm->ifm_data.ifi_iqdrops =
   1055 				    ifp->if_data.ifi_iqdrops;
   1056 				ifm->ifm_data.ifi_noproto =
   1057 				    ifp->if_data.ifi_noproto;
   1058 				ifm->ifm_data.ifi_lastchange =
   1059 				    ifp->if_data.ifi_lastchange;
   1060 				ifm->ifm_addrs = info.rti_addrs;
   1061 				error = copyout(ifm, w->w_where, len);
   1062 				if (error)
   1063 					return error;
   1064 				w->w_where = (char *)w->w_where + len;
   1065 				break;
   1066 			}
   1067 #endif
   1068 			default:
   1069 				panic("sysctl_iflist(2)");
   1070 			}
   1071 		}
   1072 		IFADDR_FOREACH(ifa, ifp) {
   1073 			if (af && af != ifa->ifa_addr->sa_family)
   1074 				continue;
   1075 			ifaaddr = ifa->ifa_addr;
   1076 			netmask = ifa->ifa_netmask;
   1077 			brdaddr = ifa->ifa_dstaddr;
   1078 			if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
   1079 				return error;
   1080 			if (w->w_where && w->w_tmem && w->w_needed <= 0) {
   1081 				struct ifa_msghdr *ifam;
   1082 
   1083 				ifam = (struct ifa_msghdr *)w->w_tmem;
   1084 				ifam->ifam_index = ifa->ifa_ifp->if_index;
   1085 				ifam->ifam_flags = ifa->ifa_flags;
   1086 				ifam->ifam_metric = ifa->ifa_metric;
   1087 				ifam->ifam_addrs = info.rti_addrs;
   1088 				error = copyout(w->w_tmem, w->w_where, len);
   1089 				if (error)
   1090 					return error;
   1091 				w->w_where = (char *)w->w_where + len;
   1092 			}
   1093 		}
   1094 		ifaaddr = netmask = brdaddr = NULL;
   1095 	}
   1096 	return 0;
   1097 }
   1098 
   1099 static int
   1100 sysctl_rtable(SYSCTLFN_ARGS)
   1101 {
   1102 	void 	*where = oldp;
   1103 	size_t	*given = oldlenp;
   1104 	const void *new = newp;
   1105 	int	i, s, error = EINVAL;
   1106 	u_char  af;
   1107 	struct	walkarg w;
   1108 
   1109 	if (namelen == 1 && name[0] == CTL_QUERY)
   1110 		return sysctl_query(SYSCTLFN_CALL(rnode));
   1111 
   1112 	if (new)
   1113 		return EPERM;
   1114 	if (namelen != 3)
   1115 		return EINVAL;
   1116 	af = name[0];
   1117 	w.w_tmemneeded = 0;
   1118 	w.w_tmemsize = 0;
   1119 	w.w_tmem = NULL;
   1120 again:
   1121 	/* we may return here if a later [re]alloc of the t_mem buffer fails */
   1122 	if (w.w_tmemneeded) {
   1123 		w.w_tmem = (void *) malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
   1124 		w.w_tmemsize = w.w_tmemneeded;
   1125 		w.w_tmemneeded = 0;
   1126 	}
   1127 	w.w_op = name[1];
   1128 	w.w_arg = name[2];
   1129 	w.w_given = *given;
   1130 	w.w_needed = 0 - w.w_given;
   1131 	w.w_where = where;
   1132 
   1133 	s = splsoftnet();
   1134 	switch (w.w_op) {
   1135 
   1136 	case NET_RT_DUMP:
   1137 	case NET_RT_FLAGS:
   1138 		for (i = 1; i <= AF_MAX; i++)
   1139 			if ((af == 0 || af == i) &&
   1140 			    (error = rt_walktree(i, sysctl_dumpentry, &w)))
   1141 				break;
   1142 		break;
   1143 
   1144 #ifdef COMPAT_14
   1145 	case NET_RT_OIFLIST:
   1146 		error = sysctl_iflist(af, &w, w.w_op);
   1147 		break;
   1148 #endif
   1149 
   1150 	case NET_RT_IFLIST:
   1151 		error = sysctl_iflist(af, &w, w.w_op);
   1152 	}
   1153 	splx(s);
   1154 
   1155 	/* check to see if we couldn't allocate memory with NOWAIT */
   1156 	if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
   1157 		goto again;
   1158 
   1159 	if (w.w_tmem)
   1160 		free(w.w_tmem, M_RTABLE);
   1161 	w.w_needed += w.w_given;
   1162 	if (where) {
   1163 		*given = (char *)w.w_where - (char *)where;
   1164 		if (*given < w.w_needed)
   1165 			return ENOMEM;
   1166 	} else {
   1167 		*given = (11 * w.w_needed) / 10;
   1168 	}
   1169 	return error;
   1170 }
   1171 
   1172 /*
   1173  * Routing message software interrupt routine
   1174  */
   1175 static void
   1176 route_intr(void *cookie)
   1177 {
   1178 	struct sockproto proto = { .sp_family = PF_ROUTE, };
   1179 	struct mbuf *m;
   1180 	int s;
   1181 
   1182 	mutex_enter(softnet_lock);
   1183 	KERNEL_LOCK(1, NULL);
   1184 	while (!IF_IS_EMPTY(&route_intrq)) {
   1185 		s = splnet();
   1186 		IF_DEQUEUE(&route_intrq, m);
   1187 		splx(s);
   1188 		if (m == NULL)
   1189 			break;
   1190 		proto.sp_protocol = M_GETCTX(m, uintptr_t);
   1191 		raw_input(m, &proto, &route_src, &route_dst);
   1192 	}
   1193 	KERNEL_UNLOCK_ONE(NULL);
   1194 	mutex_exit(softnet_lock);
   1195 }
   1196 
   1197 /*
   1198  * Enqueue a message to the software interrupt routine.
   1199  */
   1200 static void
   1201 route_enqueue(struct mbuf *m, int family)
   1202 {
   1203 	int s, wasempty;
   1204 
   1205 	s = splnet();
   1206 	if (IF_QFULL(&route_intrq)) {
   1207 		IF_DROP(&route_intrq);
   1208 		m_freem(m);
   1209 	} else {
   1210 		wasempty = IF_IS_EMPTY(&route_intrq);
   1211 		M_SETCTX(m, (uintptr_t)family);
   1212 		IF_ENQUEUE(&route_intrq, m);
   1213 		if (wasempty)
   1214 			softint_schedule(route_sih);
   1215 	}
   1216 	splx(s);
   1217 }
   1218 
   1219 void
   1220 rt_init(void)
   1221 {
   1222 
   1223 	route_intrq.ifq_maxlen = route_maxqlen;
   1224 	route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   1225 	    route_intr, NULL);
   1226 }
   1227 
   1228 /*
   1229  * Definitions of protocols supported in the ROUTE domain.
   1230  */
   1231 PR_WRAP_USRREQ(route_usrreq)
   1232 #define	route_usrreq	route_usrreq_wrapper
   1233 
   1234 const struct protosw routesw[] = {
   1235 	{
   1236 		.pr_type = SOCK_RAW,
   1237 		.pr_domain = &routedomain,
   1238 		.pr_flags = PR_ATOMIC|PR_ADDR,
   1239 		.pr_input = raw_input,
   1240 		.pr_output = route_output,
   1241 		.pr_ctlinput = raw_ctlinput,
   1242 		.pr_usrreq = route_usrreq,
   1243 		.pr_init = raw_init,
   1244 	},
   1245 };
   1246 
   1247 struct domain routedomain = {
   1248 	.dom_family = PF_ROUTE,
   1249 	.dom_name = "route",
   1250 	.dom_init = route_init,
   1251 	.dom_protosw = routesw,
   1252 	.dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
   1253 };
   1254 
   1255 SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
   1256 {
   1257 	const struct sysctlnode *rnode = NULL;
   1258 
   1259 	sysctl_createv(clog, 0, NULL, NULL,
   1260 		       CTLFLAG_PERMANENT,
   1261 		       CTLTYPE_NODE, "net", NULL,
   1262 		       NULL, 0, NULL, 0,
   1263 		       CTL_NET, CTL_EOL);
   1264 
   1265 	sysctl_createv(clog, 0, NULL, &rnode,
   1266 		       CTLFLAG_PERMANENT,
   1267 		       CTLTYPE_NODE, "route",
   1268 		       SYSCTL_DESCR("PF_ROUTE information"),
   1269 		       NULL, 0, NULL, 0,
   1270 		       CTL_NET, PF_ROUTE, CTL_EOL);
   1271 	sysctl_createv(clog, 0, NULL, NULL,
   1272 		       CTLFLAG_PERMANENT,
   1273 		       CTLTYPE_NODE, "rtable",
   1274 		       SYSCTL_DESCR("Routing table information"),
   1275 		       sysctl_rtable, 0, NULL, 0,
   1276 		       CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
   1277 	sysctl_createv(clog, 0, &rnode, NULL,
   1278 		       CTLFLAG_PERMANENT,
   1279 		       CTLTYPE_STRUCT, "stats",
   1280 		       SYSCTL_DESCR("Routing statistics"),
   1281 		       NULL, 0, &rtstat, sizeof(rtstat),
   1282 		       CTL_CREATE, CTL_EOL);
   1283 }
   1284