Home | History | Annotate | Line # | Download | only in net
rtsock.c revision 1.111
      1 /*	$NetBSD: rtsock.c,v 1.111 2008/08/28 19:33:24 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1988, 1991, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)rtsock.c	8.7 (Berkeley) 10/12/95
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.111 2008/08/28 19:33:24 christos Exp $");
     65 
     66 #include "opt_inet.h"
     67 
     68 #include <sys/param.h>
     69 #include <sys/systm.h>
     70 #include <sys/proc.h>
     71 #include <sys/mbuf.h>
     72 #include <sys/socket.h>
     73 #include <sys/socketvar.h>
     74 #include <sys/domain.h>
     75 #include <sys/protosw.h>
     76 #include <sys/sysctl.h>
     77 #include <sys/kauth.h>
     78 #include <sys/intr.h>
     79 #ifdef RTSOCK_DEBUG
     80 #include <netinet/in.h>
     81 #endif /* RTSOCK_DEBUG */
     82 
     83 #include <net/if.h>
     84 #include <net/route.h>
     85 #include <net/raw_cb.h>
     86 
     87 #include <machine/stdarg.h>
     88 
     89 DOMAIN_DEFINE(routedomain);	/* forward declare and add to link set */
     90 
     91 struct	sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
     92 struct	sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
     93 
     94 int	route_maxqlen = IFQ_MAXLEN;
     95 static struct	ifqueue route_intrq;
     96 static void	*route_sih;
     97 
     98 struct walkarg {
     99 	int	w_op;
    100 	int	w_arg;
    101 	int	w_given;
    102 	int	w_needed;
    103 	void *	w_where;
    104 	int	w_tmemsize;
    105 	int	w_tmemneeded;
    106 	void *	w_tmem;
    107 };
    108 
    109 static struct mbuf *rt_msg1(int, struct rt_addrinfo *, void *, int);
    110 static int rt_msg2(int, struct rt_addrinfo *, void *, struct walkarg *, int *);
    111 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
    112 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
    113     struct rt_addrinfo *);
    114 static int sysctl_dumpentry(struct rtentry *, void *);
    115 static int sysctl_iflist(int, struct walkarg *, int);
    116 static int sysctl_rtable(SYSCTLFN_PROTO);
    117 static inline void rt_adjustcount(int, int);
    118 static void route_enqueue(struct mbuf *, int);
    119 
    120 /* Sleazy use of local variables throughout file, warning!!!! */
    121 #define dst	info.rti_info[RTAX_DST]
    122 #define gate	info.rti_info[RTAX_GATEWAY]
    123 #define netmask	info.rti_info[RTAX_NETMASK]
    124 #define ifpaddr	info.rti_info[RTAX_IFP]
    125 #define ifaaddr	info.rti_info[RTAX_IFA]
    126 #define brdaddr	info.rti_info[RTAX_BRD]
    127 
    128 static inline void
    129 rt_adjustcount(int af, int cnt)
    130 {
    131 	route_cb.any_count += cnt;
    132 	switch (af) {
    133 	case AF_INET:
    134 		route_cb.ip_count += cnt;
    135 		return;
    136 #ifdef INET6
    137 	case AF_INET6:
    138 		route_cb.ip6_count += cnt;
    139 		return;
    140 #endif
    141 	case AF_IPX:
    142 		route_cb.ipx_count += cnt;
    143 		return;
    144 	case AF_NS:
    145 		route_cb.ns_count += cnt;
    146 		return;
    147 	case AF_ISO:
    148 		route_cb.iso_count += cnt;
    149 		return;
    150 	}
    151 }
    152 
    153 /*ARGSUSED*/
    154 int
    155 route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
    156 	struct mbuf *control, struct lwp *l)
    157 {
    158 	int error = 0;
    159 	struct rawcb *rp = sotorawcb(so);
    160 	int s;
    161 
    162 	if (req == PRU_ATTACH) {
    163 		sosetlock(so);
    164 		MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK|M_ZERO);
    165 		so->so_pcb = rp;
    166 	}
    167 	if (req == PRU_DETACH && rp)
    168 		rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
    169 	s = splsoftnet();
    170 
    171 	/*
    172 	 * Don't call raw_usrreq() in the attach case, because
    173 	 * we want to allow non-privileged processes to listen on
    174 	 * and send "safe" commands to the routing socket.
    175 	 */
    176 	if (req == PRU_ATTACH) {
    177 		if (l == NULL)
    178 			error = EACCES;
    179 		else
    180 			error = raw_attach(so, (int)(long)nam);
    181 	} else
    182 		error = raw_usrreq(so, req, m, nam, control, l);
    183 
    184 	rp = sotorawcb(so);
    185 	if (req == PRU_ATTACH && rp) {
    186 		if (error) {
    187 			free((void *)rp, M_PCB);
    188 			splx(s);
    189 			return error;
    190 		}
    191 		rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
    192 		rp->rcb_laddr = &route_src;
    193 		rp->rcb_faddr = &route_dst;
    194 		soisconnected(so);
    195 		so->so_options |= SO_USELOOPBACK;
    196 	}
    197 	splx(s);
    198 	return error;
    199 }
    200 
    201 static const struct sockaddr *
    202 intern_netmask(const struct sockaddr *mask)
    203 {
    204 	struct radix_node *rn;
    205 	extern struct radix_node_head *mask_rnhead;
    206 
    207 	if (mask != NULL &&
    208 	    (rn = rn_search(mask, mask_rnhead->rnh_treetop)))
    209 		mask = (const struct sockaddr *)rn->rn_key;
    210 
    211 	return mask;
    212 }
    213 
    214 /*ARGSUSED*/
    215 int
    216 route_output(struct mbuf *m, ...)
    217 {
    218 	struct sockproto proto = { .sp_family = PF_ROUTE, };
    219 	struct rt_msghdr *rtm = NULL;
    220 	struct rtentry *rt = NULL;
    221 	struct rtentry *saved_nrt = NULL;
    222 	struct rt_addrinfo info;
    223 	int len, error = 0;
    224 	struct ifnet *ifp = NULL;
    225 	struct ifaddr *ifa = NULL;
    226 	struct socket *so;
    227 	va_list ap;
    228 	sa_family_t family;
    229 
    230 	va_start(ap, m);
    231 	so = va_arg(ap, struct socket *);
    232 	va_end(ap);
    233 
    234 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
    235 	if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
    236 	   (m = m_pullup(m, sizeof(int32_t))) == NULL))
    237 		return ENOBUFS;
    238 	if ((m->m_flags & M_PKTHDR) == 0)
    239 		panic("route_output");
    240 	len = m->m_pkthdr.len;
    241 	if (len < sizeof(*rtm) ||
    242 	    len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
    243 		dst = NULL;
    244 		senderr(EINVAL);
    245 	}
    246 	R_Malloc(rtm, struct rt_msghdr *, len);
    247 	if (rtm == NULL) {
    248 		dst = NULL;
    249 		senderr(ENOBUFS);
    250 	}
    251 	m_copydata(m, 0, len, (void *)rtm);
    252 	if (rtm->rtm_version != RTM_VERSION) {
    253 		dst = NULL;
    254 		senderr(EPROTONOSUPPORT);
    255 	}
    256 	rtm->rtm_pid = curproc->p_pid;
    257 	memset(&info, 0, sizeof(info));
    258 	info.rti_addrs = rtm->rtm_addrs;
    259 	if (rt_xaddrs(rtm->rtm_type, (void *)(rtm + 1), len + (char *)rtm, &info))
    260 		senderr(EINVAL);
    261 	info.rti_flags = rtm->rtm_flags;
    262 #ifdef RTSOCK_DEBUG
    263 	if (dst->sa_family == AF_INET) {
    264 		printf("%s: extracted dst %s\n", __func__,
    265 		    inet_ntoa(((const struct sockaddr_in *)dst)->sin_addr));
    266 	}
    267 #endif /* RTSOCK_DEBUG */
    268 	if (dst == NULL || (dst->sa_family >= AF_MAX))
    269 		senderr(EINVAL);
    270 	if (gate != NULL && (gate->sa_family >= AF_MAX))
    271 		senderr(EINVAL);
    272 
    273 	/*
    274 	 * Verify that the caller has the appropriate privilege; RTM_GET
    275 	 * is the only operation the non-superuser is allowed.
    276 	 */
    277 	if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
    278 	    0, rtm, NULL, NULL) != 0)
    279 		senderr(EACCES);
    280 
    281 	switch (rtm->rtm_type) {
    282 
    283 	case RTM_ADD:
    284 		if (gate == NULL)
    285 			senderr(EINVAL);
    286 		error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
    287 		if (error == 0 && saved_nrt) {
    288 			rt_setmetrics(rtm->rtm_inits,
    289 			    &rtm->rtm_rmx, &saved_nrt->rt_rmx);
    290 			saved_nrt->rt_refcnt--;
    291 		}
    292 		break;
    293 
    294 	case RTM_DELETE:
    295 		error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
    296 		if (error == 0) {
    297 			(rt = saved_nrt)->rt_refcnt++;
    298 			goto report;
    299 		}
    300 		break;
    301 
    302 	case RTM_GET:
    303 	case RTM_CHANGE:
    304 	case RTM_LOCK:
    305                 /* XXX This will mask dst with netmask before
    306                  * searching.  It did not used to do that.  --dyoung
    307 		 */
    308 		error = rtrequest1(RTM_GET, &info, &rt);
    309 		if (error != 0)
    310 			senderr(error);
    311 		if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
    312 			struct radix_node *rn;
    313 
    314 			if (memcmp(dst, rt_getkey(rt), dst->sa_len) != 0)
    315 				senderr(ESRCH);
    316 			netmask = intern_netmask(netmask);
    317 			for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
    318 				if (netmask == (const struct sockaddr *)rn->rn_mask)
    319 					break;
    320 			if (rn == NULL)
    321 				senderr(ETOOMANYREFS);
    322 			rt = (struct rtentry *)rn;
    323 		}
    324 
    325 		switch (rtm->rtm_type) {
    326 		case RTM_GET:
    327 		report:
    328 			dst = rt_getkey(rt);
    329 			gate = rt->rt_gateway;
    330 			netmask = rt_mask(rt);
    331 			if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
    332 				;
    333 			else if ((ifp = rt->rt_ifp) != NULL) {
    334 				const struct ifaddr *rtifa;
    335 				ifpaddr = ifp->if_dl->ifa_addr;
    336                                 /* rtifa used to be simply rt->rt_ifa.
    337                                  * If rt->rt_ifa != NULL, then
    338                                  * rt_get_ifa() != NULL.  So this
    339                                  * ought to still be safe. --dyoung
    340 				 */
    341 				rtifa = rt_get_ifa(rt);
    342 				ifaaddr = rtifa->ifa_addr;
    343 #ifdef RTSOCK_DEBUG
    344 				if (ifaaddr->sa_family == AF_INET) {
    345 					printf("%s: copying out RTAX_IFA %s ",
    346 					    __func__,
    347 					    inet_ntoa(((const struct sockaddr_in *)ifaaddr)->sin_addr));
    348 					printf("for dst %s ifa_getifa %p ifa_seqno %p\n",
    349 					    inet_ntoa(((const struct sockaddr_in *)dst)->sin_addr),
    350 					    (void *)rtifa->ifa_getifa, rtifa->ifa_seqno);
    351 				}
    352 #endif /* RTSOCK_DEBUG */
    353 				if (ifp->if_flags & IFF_POINTOPOINT)
    354 					brdaddr = rtifa->ifa_dstaddr;
    355 				else
    356 					brdaddr = NULL;
    357 				rtm->rtm_index = ifp->if_index;
    358 			} else {
    359 				ifpaddr = NULL;
    360 				ifaaddr = NULL;
    361 			}
    362 			(void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
    363 			if (len > rtm->rtm_msglen) {
    364 				struct rt_msghdr *new_rtm;
    365 				R_Malloc(new_rtm, struct rt_msghdr *, len);
    366 				if (new_rtm == NULL)
    367 					senderr(ENOBUFS);
    368 				(void)memcpy(new_rtm, rtm, rtm->rtm_msglen);
    369 				Free(rtm); rtm = new_rtm;
    370 			}
    371 			(void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0);
    372 			rtm->rtm_flags = rt->rt_flags;
    373 			rtm->rtm_rmx = rt->rt_rmx;
    374 			rtm->rtm_addrs = info.rti_addrs;
    375 			break;
    376 
    377 		case RTM_CHANGE:
    378 			/*
    379 			 * new gateway could require new ifaddr, ifp;
    380 			 * flags may also be different; ifp may be specified
    381 			 * by ll sockaddr when protocol address is ambiguous
    382 			 */
    383 			if ((error = rt_getifa(&info)) != 0)
    384 				senderr(error);
    385 			if (gate && rt_setgate(rt, gate))
    386 				senderr(EDQUOT);
    387 			/* new gateway could require new ifaddr, ifp;
    388 			   flags may also be different; ifp may be specified
    389 			   by ll sockaddr when protocol address is ambiguous */
    390 			if (ifpaddr && (ifa = ifa_ifwithnet(ifpaddr)) &&
    391 			    (ifp = ifa->ifa_ifp) && (ifaaddr || gate))
    392 				ifa = ifaof_ifpforaddr(ifaaddr ? ifaaddr : gate,
    393 				    ifp);
    394 			else if ((ifaaddr && (ifa = ifa_ifwithaddr(ifaaddr))) ||
    395 			    (gate && (ifa = ifa_ifwithroute(rt->rt_flags,
    396 			    rt_getkey(rt), gate))))
    397 				ifp = ifa->ifa_ifp;
    398 			if (ifa) {
    399 				struct ifaddr *oifa = rt->rt_ifa;
    400 				if (oifa != ifa) {
    401 					if (oifa && oifa->ifa_rtrequest) {
    402 						oifa->ifa_rtrequest(RTM_DELETE,
    403 						    rt, &info);
    404 					}
    405 					rt_replace_ifa(rt, ifa);
    406 					rt->rt_ifp = ifp;
    407 				}
    408 			}
    409 			rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
    410 			    &rt->rt_rmx);
    411 			if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
    412 				rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
    413 			/*
    414 			 * Fall into
    415 			 */
    416 		case RTM_LOCK:
    417 			rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
    418 			rt->rt_rmx.rmx_locks |=
    419 			    (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
    420 			break;
    421 		}
    422 		break;
    423 
    424 	default:
    425 		senderr(EOPNOTSUPP);
    426 	}
    427 
    428 flush:
    429 	if (rtm) {
    430 		if (error)
    431 			rtm->rtm_errno = error;
    432 		else
    433 			rtm->rtm_flags |= RTF_DONE;
    434 	}
    435 	family = dst ? dst->sa_family : 0;
    436 	if (rt)
    437 		rtfree(rt);
    438     {
    439 	struct rawcb *rp = NULL;
    440 	/*
    441 	 * Check to see if we don't want our own messages.
    442 	 */
    443 	if ((so->so_options & SO_USELOOPBACK) == 0) {
    444 		if (route_cb.any_count <= 1) {
    445 			if (rtm)
    446 				Free(rtm);
    447 			m_freem(m);
    448 			return error;
    449 		}
    450 		/* There is another listener, so construct message */
    451 		rp = sotorawcb(so);
    452 	}
    453 	if (rtm) {
    454 		m_copyback(m, 0, rtm->rtm_msglen, (void *)rtm);
    455 		if (m->m_pkthdr.len < rtm->rtm_msglen) {
    456 			m_freem(m);
    457 			m = NULL;
    458 		} else if (m->m_pkthdr.len > rtm->rtm_msglen)
    459 			m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
    460 		Free(rtm);
    461 	}
    462 	if (rp)
    463 		rp->rcb_proto.sp_family = 0; /* Avoid us */
    464 	if (family)
    465 		proto.sp_protocol = family;
    466 	if (m)
    467 		raw_input(m, &proto, &route_src, &route_dst);
    468 	if (rp)
    469 		rp->rcb_proto.sp_family = PF_ROUTE;
    470     }
    471 	return error;
    472 }
    473 
    474 void
    475 rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics *out)
    476 {
    477 #define metric(f, e) if (which & (f)) out->e = in->e;
    478 	metric(RTV_RPIPE, rmx_recvpipe);
    479 	metric(RTV_SPIPE, rmx_sendpipe);
    480 	metric(RTV_SSTHRESH, rmx_ssthresh);
    481 	metric(RTV_RTT, rmx_rtt);
    482 	metric(RTV_RTTVAR, rmx_rttvar);
    483 	metric(RTV_HOPCOUNT, rmx_hopcount);
    484 	metric(RTV_MTU, rmx_mtu);
    485 	metric(RTV_EXPIRE, rmx_expire);
    486 #undef metric
    487 }
    488 
    489 #define ROUNDUP(a) \
    490 	((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
    491 #define ADVANCE(x, n) (x += ROUNDUP((n)->sa_len))
    492 
    493 static int
    494 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim, struct rt_addrinfo *rtinfo)
    495 {
    496 	const struct sockaddr *sa = NULL;	/* Quell compiler warning */
    497 	int i;
    498 
    499 	for (i = 0; (i < RTAX_MAX) && (cp < cplim); i++) {
    500 		if ((rtinfo->rti_addrs & (1 << i)) == 0)
    501 			continue;
    502 		rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
    503 		ADVANCE(cp, sa);
    504 	}
    505 
    506 	/* Check for extra addresses specified, except RTM_GET asking for interface info.  */
    507 	if (rtmtype == RTM_GET) {
    508 		if (((rtinfo->rti_addrs & (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
    509 			return 1;
    510 	} else {
    511 		if ((rtinfo->rti_addrs & (~0 << i)) != 0)
    512 			return 1;
    513 	}
    514 	/* Check for bad data length.  */
    515 	if (cp != cplim) {
    516 		if (i == RTAX_NETMASK + 1 && sa &&
    517 		    cp - ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
    518 			/*
    519 			 * The last sockaddr was netmask.
    520 			 * We accept this for now for the sake of old
    521 			 * binaries or third party softwares.
    522 			 */
    523 			;
    524 		else
    525 			return 1;
    526 	}
    527 	return 0;
    528 }
    529 
    530 static struct mbuf *
    531 rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
    532 {
    533 	struct rt_msghdr *rtm;
    534 	struct mbuf *m;
    535 	int i;
    536 	const struct sockaddr *sa;
    537 	int len, dlen;
    538 
    539 	m = m_gethdr(M_DONTWAIT, MT_DATA);
    540 	if (m == NULL)
    541 		return m;
    542 	MCLAIM(m, &routedomain.dom_mowner);
    543 	switch (type) {
    544 
    545 	case RTM_DELADDR:
    546 	case RTM_NEWADDR:
    547 		len = sizeof(struct ifa_msghdr);
    548 		break;
    549 
    550 #ifdef COMPAT_14
    551 	case RTM_OIFINFO:
    552 		len = sizeof(struct if_msghdr14);
    553 		break;
    554 #endif
    555 
    556 	case RTM_IFINFO:
    557 		len = sizeof(struct if_msghdr);
    558 		break;
    559 
    560 	case RTM_IFANNOUNCE:
    561 	case RTM_IEEE80211:
    562 		len = sizeof(struct if_announcemsghdr);
    563 		break;
    564 
    565 	default:
    566 		len = sizeof(struct rt_msghdr);
    567 	}
    568 	if (len > MHLEN + MLEN)
    569 		panic("rt_msg1: message too long");
    570 	else if (len > MHLEN) {
    571 		m->m_next = m_get(M_DONTWAIT, MT_DATA);
    572 		if (m->m_next == NULL) {
    573 			m_freem(m);
    574 			return NULL;
    575 		}
    576 		MCLAIM(m->m_next, m->m_owner);
    577 		m->m_pkthdr.len = len;
    578 		m->m_len = MHLEN;
    579 		m->m_next->m_len = len - MHLEN;
    580 	} else {
    581 		m->m_pkthdr.len = m->m_len = len;
    582 	}
    583 	m->m_pkthdr.rcvif = NULL;
    584 	m_copyback(m, 0, datalen, data);
    585 	if (len > datalen)
    586 		(void)memset(mtod(m, char *) + datalen, 0, len - datalen);
    587 	rtm = mtod(m, struct rt_msghdr *);
    588 	for (i = 0; i < RTAX_MAX; i++) {
    589 		if ((sa = rtinfo->rti_info[i]) == NULL)
    590 			continue;
    591 		rtinfo->rti_addrs |= (1 << i);
    592 		dlen = ROUNDUP(sa->sa_len);
    593 		m_copyback(m, len, dlen, sa);
    594 		len += dlen;
    595 	}
    596 	if (m->m_pkthdr.len != len) {
    597 		m_freem(m);
    598 		return NULL;
    599 	}
    600 	rtm->rtm_msglen = len;
    601 	rtm->rtm_version = RTM_VERSION;
    602 	rtm->rtm_type = type;
    603 	return m;
    604 }
    605 
    606 /*
    607  * rt_msg2
    608  *
    609  *	 fills 'cp' or 'w'.w_tmem with the routing socket message and
    610  *		returns the length of the message in 'lenp'.
    611  *
    612  * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
    613  *	the message
    614  * otherwise walkarg's w_needed is updated and if the user buffer is
    615  *	specified and w_needed indicates space exists the information is copied
    616  *	into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
    617  *	if the allocation fails ENOBUFS is returned.
    618  */
    619 static int
    620 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct walkarg *w,
    621 	int *lenp)
    622 {
    623 	int i;
    624 	int len, dlen, second_time = 0;
    625 	char *cp0, *cp = cpv;
    626 
    627 	rtinfo->rti_addrs = 0;
    628 again:
    629 	switch (type) {
    630 
    631 	case RTM_DELADDR:
    632 	case RTM_NEWADDR:
    633 		len = sizeof(struct ifa_msghdr);
    634 		break;
    635 #ifdef COMPAT_14
    636 	case RTM_OIFINFO:
    637 		len = sizeof(struct if_msghdr14);
    638 		break;
    639 #endif
    640 
    641 	case RTM_IFINFO:
    642 		len = sizeof(struct if_msghdr);
    643 		break;
    644 
    645 	default:
    646 		len = sizeof(struct rt_msghdr);
    647 	}
    648 	if ((cp0 = cp) != NULL)
    649 		cp += len;
    650 	for (i = 0; i < RTAX_MAX; i++) {
    651 		const struct sockaddr *sa;
    652 
    653 		if ((sa = rtinfo->rti_info[i]) == NULL)
    654 			continue;
    655 		rtinfo->rti_addrs |= (1 << i);
    656 		dlen = ROUNDUP(sa->sa_len);
    657 		if (cp) {
    658 			(void)memcpy(cp, sa, (size_t)dlen);
    659 			cp += dlen;
    660 		}
    661 		len += dlen;
    662 	}
    663 	if (cp == NULL && w != NULL && !second_time) {
    664 		struct walkarg *rw = w;
    665 
    666 		rw->w_needed += len;
    667 		if (rw->w_needed <= 0 && rw->w_where) {
    668 			if (rw->w_tmemsize < len) {
    669 				if (rw->w_tmem)
    670 					free(rw->w_tmem, M_RTABLE);
    671 				rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT);
    672 				if (rw->w_tmem)
    673 					rw->w_tmemsize = len;
    674 				else
    675 					rw->w_tmemsize = 0;
    676 			}
    677 			if (rw->w_tmem) {
    678 				cp = rw->w_tmem;
    679 				second_time = 1;
    680 				goto again;
    681 			} else {
    682 				rw->w_tmemneeded = len;
    683 				return ENOBUFS;
    684 			}
    685 		}
    686 	}
    687 	if (cp) {
    688 		struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
    689 
    690 		rtm->rtm_version = RTM_VERSION;
    691 		rtm->rtm_type = type;
    692 		rtm->rtm_msglen = len;
    693 	}
    694 	if (lenp)
    695 		*lenp = len;
    696 	return 0;
    697 }
    698 
    699 /*
    700  * This routine is called to generate a message from the routing
    701  * socket indicating that a redirect has occurred, a routing lookup
    702  * has failed, or that a protocol has detected timeouts to a particular
    703  * destination.
    704  */
    705 void
    706 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
    707 {
    708 	struct rt_msghdr rtm;
    709 	struct mbuf *m;
    710 	const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
    711 
    712 	if (route_cb.any_count == 0)
    713 		return;
    714 	memset(&rtm, 0, sizeof(rtm));
    715 	rtm.rtm_flags = RTF_DONE | flags;
    716 	rtm.rtm_errno = error;
    717 	m = rt_msg1(type, rtinfo, &rtm, sizeof(rtm));
    718 	if (m == NULL)
    719 		return;
    720 	mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
    721 	route_enqueue(m, sa ? sa->sa_family : 0);
    722 }
    723 
    724 /*
    725  * This routine is called to generate a message from the routing
    726  * socket indicating that the status of a network interface has changed.
    727  */
    728 void
    729 rt_ifmsg(struct ifnet *ifp)
    730 {
    731 	struct if_msghdr ifm;
    732 #ifdef COMPAT_14
    733 	struct if_msghdr14 oifm;
    734 #endif
    735 	struct mbuf *m;
    736 	struct rt_addrinfo info;
    737 
    738 	if (route_cb.any_count == 0)
    739 		return;
    740 	memset(&info, 0, sizeof(info));
    741 	memset(&ifm, 0, sizeof(ifm));
    742 	ifm.ifm_index = ifp->if_index;
    743 	ifm.ifm_flags = ifp->if_flags;
    744 	ifm.ifm_data = ifp->if_data;
    745 	ifm.ifm_addrs = 0;
    746 	m = rt_msg1(RTM_IFINFO, &info, &ifm, sizeof(ifm));
    747 	if (m == NULL)
    748 		return;
    749 	route_enqueue(m, 0);
    750 #ifdef COMPAT_14
    751 	memset(&info, 0, sizeof(info));
    752 	memset(&oifm, 0, sizeof(oifm));
    753 	oifm.ifm_index = ifp->if_index;
    754 	oifm.ifm_flags = ifp->if_flags;
    755 	oifm.ifm_data.ifi_type = ifp->if_data.ifi_type;
    756 	oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen;
    757 	oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen;
    758 	oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
    759 	oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric;
    760 	oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate;
    761 	oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets;
    762 	oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors;
    763 	oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets;
    764 	oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors;
    765 	oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions;
    766 	oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes;
    767 	oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes;
    768 	oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts;
    769 	oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts;
    770 	oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops;
    771 	oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto;
    772 	oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange;
    773 	oifm.ifm_addrs = 0;
    774 	m = rt_msg1(RTM_OIFINFO, &info, &oifm, sizeof(oifm));
    775 	if (m == NULL)
    776 		return;
    777 	route_enqueue(m, 0);
    778 #endif
    779 }
    780 
    781 /*
    782  * This is called to generate messages from the routing socket
    783  * indicating a network interface has had addresses associated with it.
    784  * if we ever reverse the logic and replace messages TO the routing
    785  * socket indicate a request to configure interfaces, then it will
    786  * be unnecessary as the routing socket will automatically generate
    787  * copies of it.
    788  */
    789 void
    790 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
    791 {
    792 	struct rt_addrinfo info;
    793 	const struct sockaddr *sa = NULL;
    794 	int pass;
    795 	struct mbuf *m = NULL;
    796 	struct ifnet *ifp = ifa->ifa_ifp;
    797 
    798 	if (route_cb.any_count == 0)
    799 		return;
    800 	for (pass = 1; pass < 3; pass++) {
    801 		memset(&info, 0, sizeof(info));
    802 		if ((cmd == RTM_ADD && pass == 1) ||
    803 		    (cmd == RTM_DELETE && pass == 2)) {
    804 			struct ifa_msghdr ifam;
    805 			int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
    806 
    807 			ifaaddr = sa = ifa->ifa_addr;
    808 			ifpaddr = ifp->if_dl->ifa_addr;
    809 			netmask = ifa->ifa_netmask;
    810 			brdaddr = ifa->ifa_dstaddr;
    811 			memset(&ifam, 0, sizeof(ifam));
    812 			ifam.ifam_index = ifp->if_index;
    813 			ifam.ifam_metric = ifa->ifa_metric;
    814 			ifam.ifam_flags = ifa->ifa_flags;
    815 			m = rt_msg1(ncmd, &info, &ifam, sizeof(ifam));
    816 			if (m == NULL)
    817 				continue;
    818 			mtod(m, struct ifa_msghdr *)->ifam_addrs =
    819 			    info.rti_addrs;
    820 		}
    821 		if ((cmd == RTM_ADD && pass == 2) ||
    822 		    (cmd == RTM_DELETE && pass == 1)) {
    823 			struct rt_msghdr rtm;
    824 
    825 			if (rt == NULL)
    826 				continue;
    827 			netmask = rt_mask(rt);
    828 			dst = sa = rt_getkey(rt);
    829 			gate = rt->rt_gateway;
    830 			memset(&rtm, 0, sizeof(rtm));
    831 			rtm.rtm_index = ifp->if_index;
    832 			rtm.rtm_flags |= rt->rt_flags;
    833 			rtm.rtm_errno = error;
    834 			m = rt_msg1(cmd, &info, &rtm, sizeof(rtm));
    835 			if (m == NULL)
    836 				continue;
    837 			mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
    838 		}
    839 #ifdef DIAGNOSTIC
    840 		if (m == NULL)
    841 			panic("%s: called with wrong command", __func__);
    842 #endif
    843 		route_enqueue(m, sa ? sa->sa_family : 0);
    844 	}
    845 }
    846 
    847 static struct mbuf *
    848 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
    849     struct rt_addrinfo *info)
    850 {
    851 	struct if_announcemsghdr ifan;
    852 
    853 	memset(info, 0, sizeof(*info));
    854 	memset(&ifan, 0, sizeof(ifan));
    855 	ifan.ifan_index = ifp->if_index;
    856 	strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
    857 	ifan.ifan_what = what;
    858 	return rt_msg1(type, info, &ifan, sizeof(ifan));
    859 }
    860 
    861 /*
    862  * This is called to generate routing socket messages indicating
    863  * network interface arrival and departure.
    864  */
    865 void
    866 rt_ifannouncemsg(struct ifnet *ifp, int what)
    867 {
    868 	struct mbuf *m;
    869 	struct rt_addrinfo info;
    870 
    871 	if (route_cb.any_count == 0)
    872 		return;
    873 	m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
    874 	if (m == NULL)
    875 		return;
    876 	route_enqueue(m, 0);
    877 }
    878 
    879 /*
    880  * This is called to generate routing socket messages indicating
    881  * IEEE80211 wireless events.
    882  * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
    883  */
    884 void
    885 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
    886 {
    887 	struct mbuf *m;
    888 	struct rt_addrinfo info;
    889 
    890 	if (route_cb.any_count == 0)
    891 		return;
    892 	m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
    893 	if (m == NULL)
    894 		return;
    895 	/*
    896 	 * Append the ieee80211 data.  Try to stick it in the
    897 	 * mbuf containing the ifannounce msg; otherwise allocate
    898 	 * a new mbuf and append.
    899 	 *
    900 	 * NB: we assume m is a single mbuf.
    901 	 */
    902 	if (data_len > M_TRAILINGSPACE(m)) {
    903 		struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
    904 		if (n == NULL) {
    905 			m_freem(m);
    906 			return;
    907 		}
    908 		(void)memcpy(mtod(n, void *), data, data_len);
    909 		n->m_len = data_len;
    910 		m->m_next = n;
    911 	} else if (data_len > 0) {
    912 		(void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
    913 		m->m_len += data_len;
    914 	}
    915 	if (m->m_flags & M_PKTHDR)
    916 		m->m_pkthdr.len += data_len;
    917 	mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
    918 	route_enqueue(m, 0);
    919 }
    920 
    921 /*
    922  * This is used in dumping the kernel table via sysctl().
    923  */
    924 static int
    925 sysctl_dumpentry(struct rtentry *rt, void *v)
    926 {
    927 	struct walkarg *w = v;
    928 	int error = 0, size;
    929 	struct rt_addrinfo info;
    930 
    931 	if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
    932 		return 0;
    933 	memset(&info, 0, sizeof(info));
    934 	dst = rt_getkey(rt);
    935 	gate = rt->rt_gateway;
    936 	netmask = rt_mask(rt);
    937 	if (rt->rt_ifp) {
    938 		const struct ifaddr *rtifa;
    939 		ifpaddr = rt->rt_ifp->if_dl->ifa_addr;
    940 		/* rtifa used to be simply rt->rt_ifa.  If rt->rt_ifa != NULL,
    941 		 * then rt_get_ifa() != NULL.  So this ought to still be safe.
    942 		 * --dyoung
    943 		 */
    944 		rtifa = rt_get_ifa(rt);
    945 		ifaaddr = rtifa->ifa_addr;
    946 		if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
    947 			brdaddr = rtifa->ifa_dstaddr;
    948 	}
    949 	if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
    950 		return error;
    951 	if (w->w_where && w->w_tmem && w->w_needed <= 0) {
    952 		struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
    953 
    954 		rtm->rtm_flags = rt->rt_flags;
    955 		rtm->rtm_use = rt->rt_use;
    956 		rtm->rtm_rmx = rt->rt_rmx;
    957 		KASSERT(rt->rt_ifp != NULL);
    958 		rtm->rtm_index = rt->rt_ifp->if_index;
    959 		rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
    960 		rtm->rtm_addrs = info.rti_addrs;
    961 		if ((error = copyout(rtm, w->w_where, size)) != 0)
    962 			w->w_where = NULL;
    963 		else
    964 			w->w_where = (char *)w->w_where + size;
    965 	}
    966 	return error;
    967 }
    968 
    969 static int
    970 sysctl_iflist(int af, struct walkarg *w, int type)
    971 {
    972 	struct ifnet *ifp;
    973 	struct ifaddr *ifa;
    974 	struct	rt_addrinfo info;
    975 	int	len, error = 0;
    976 
    977 	memset(&info, 0, sizeof(info));
    978 	IFNET_FOREACH(ifp) {
    979 		if (w->w_arg && w->w_arg != ifp->if_index)
    980 			continue;
    981 		if (IFADDR_EMPTY(ifp))
    982 			continue;
    983 		ifpaddr = ifp->if_dl->ifa_addr;
    984 		switch (type) {
    985 		case NET_RT_IFLIST:
    986 			error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
    987 			break;
    988 #ifdef COMPAT_14
    989 		case NET_RT_OIFLIST:
    990 			error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
    991 			break;
    992 #endif
    993 		default:
    994 			panic("sysctl_iflist(1)");
    995 		}
    996 		if (error)
    997 			return error;
    998 		ifpaddr = NULL;
    999 		if (w->w_where && w->w_tmem && w->w_needed <= 0) {
   1000 			switch (type) {
   1001 			case NET_RT_IFLIST: {
   1002 				struct if_msghdr *ifm;
   1003 
   1004 				ifm = (struct if_msghdr *)w->w_tmem;
   1005 				ifm->ifm_index = ifp->if_index;
   1006 				ifm->ifm_flags = ifp->if_flags;
   1007 				ifm->ifm_data = ifp->if_data;
   1008 				ifm->ifm_addrs = info.rti_addrs;
   1009 				error = copyout(ifm, w->w_where, len);
   1010 				if (error)
   1011 					return error;
   1012 				w->w_where = (char *)w->w_where + len;
   1013 				break;
   1014 			}
   1015 
   1016 #ifdef COMPAT_14
   1017 			case NET_RT_OIFLIST: {
   1018 				struct if_msghdr14 *ifm;
   1019 
   1020 				ifm = (struct if_msghdr14 *)w->w_tmem;
   1021 				ifm->ifm_index = ifp->if_index;
   1022 				ifm->ifm_flags = ifp->if_flags;
   1023 				ifm->ifm_data.ifi_type = ifp->if_data.ifi_type;
   1024 				ifm->ifm_data.ifi_addrlen =
   1025 				    ifp->if_data.ifi_addrlen;
   1026 				ifm->ifm_data.ifi_hdrlen =
   1027 				    ifp->if_data.ifi_hdrlen;
   1028 				ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
   1029 				ifm->ifm_data.ifi_metric =
   1030 				    ifp->if_data.ifi_metric;
   1031 				ifm->ifm_data.ifi_baudrate =
   1032 				    ifp->if_data.ifi_baudrate;
   1033 				ifm->ifm_data.ifi_ipackets =
   1034 				    ifp->if_data.ifi_ipackets;
   1035 				ifm->ifm_data.ifi_ierrors =
   1036 				    ifp->if_data.ifi_ierrors;
   1037 				ifm->ifm_data.ifi_opackets =
   1038 				    ifp->if_data.ifi_opackets;
   1039 				ifm->ifm_data.ifi_oerrors =
   1040 				    ifp->if_data.ifi_oerrors;
   1041 				ifm->ifm_data.ifi_collisions =
   1042 				    ifp->if_data.ifi_collisions;
   1043 				ifm->ifm_data.ifi_ibytes =
   1044 				    ifp->if_data.ifi_ibytes;
   1045 				ifm->ifm_data.ifi_obytes =
   1046 				    ifp->if_data.ifi_obytes;
   1047 				ifm->ifm_data.ifi_imcasts =
   1048 				    ifp->if_data.ifi_imcasts;
   1049 				ifm->ifm_data.ifi_omcasts =
   1050 				    ifp->if_data.ifi_omcasts;
   1051 				ifm->ifm_data.ifi_iqdrops =
   1052 				    ifp->if_data.ifi_iqdrops;
   1053 				ifm->ifm_data.ifi_noproto =
   1054 				    ifp->if_data.ifi_noproto;
   1055 				ifm->ifm_data.ifi_lastchange =
   1056 				    ifp->if_data.ifi_lastchange;
   1057 				ifm->ifm_addrs = info.rti_addrs;
   1058 				error = copyout(ifm, w->w_where, len);
   1059 				if (error)
   1060 					return error;
   1061 				w->w_where = (char *)w->w_where + len;
   1062 				break;
   1063 			}
   1064 #endif
   1065 			default:
   1066 				panic("sysctl_iflist(2)");
   1067 			}
   1068 		}
   1069 		IFADDR_FOREACH(ifa, ifp) {
   1070 			if (af && af != ifa->ifa_addr->sa_family)
   1071 				continue;
   1072 			ifaaddr = ifa->ifa_addr;
   1073 			netmask = ifa->ifa_netmask;
   1074 			brdaddr = ifa->ifa_dstaddr;
   1075 			if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
   1076 				return error;
   1077 			if (w->w_where && w->w_tmem && w->w_needed <= 0) {
   1078 				struct ifa_msghdr *ifam;
   1079 
   1080 				ifam = (struct ifa_msghdr *)w->w_tmem;
   1081 				ifam->ifam_index = ifa->ifa_ifp->if_index;
   1082 				ifam->ifam_flags = ifa->ifa_flags;
   1083 				ifam->ifam_metric = ifa->ifa_metric;
   1084 				ifam->ifam_addrs = info.rti_addrs;
   1085 				error = copyout(w->w_tmem, w->w_where, len);
   1086 				if (error)
   1087 					return error;
   1088 				w->w_where = (char *)w->w_where + len;
   1089 			}
   1090 		}
   1091 		ifaaddr = netmask = brdaddr = NULL;
   1092 	}
   1093 	return 0;
   1094 }
   1095 
   1096 static int
   1097 sysctl_rtable(SYSCTLFN_ARGS)
   1098 {
   1099 	void 	*where = oldp;
   1100 	size_t	*given = oldlenp;
   1101 	const void *new = newp;
   1102 	int	i, s, error = EINVAL;
   1103 	u_char  af;
   1104 	struct	walkarg w;
   1105 
   1106 	if (namelen == 1 && name[0] == CTL_QUERY)
   1107 		return sysctl_query(SYSCTLFN_CALL(rnode));
   1108 
   1109 	if (new)
   1110 		return EPERM;
   1111 	if (namelen != 3)
   1112 		return EINVAL;
   1113 	af = name[0];
   1114 	w.w_tmemneeded = 0;
   1115 	w.w_tmemsize = 0;
   1116 	w.w_tmem = NULL;
   1117 again:
   1118 	/* we may return here if a later [re]alloc of the t_mem buffer fails */
   1119 	if (w.w_tmemneeded) {
   1120 		w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
   1121 		w.w_tmemsize = w.w_tmemneeded;
   1122 		w.w_tmemneeded = 0;
   1123 	}
   1124 	w.w_op = name[1];
   1125 	w.w_arg = name[2];
   1126 	w.w_given = *given;
   1127 	w.w_needed = 0 - w.w_given;
   1128 	w.w_where = where;
   1129 
   1130 	s = splsoftnet();
   1131 	switch (w.w_op) {
   1132 
   1133 	case NET_RT_DUMP:
   1134 	case NET_RT_FLAGS:
   1135 		for (i = 1; i <= AF_MAX; i++)
   1136 			if ((af == 0 || af == i) &&
   1137 			    (error = rt_walktree(i, sysctl_dumpentry, &w)))
   1138 				break;
   1139 		break;
   1140 
   1141 #ifdef COMPAT_14
   1142 	case NET_RT_OIFLIST:
   1143 		error = sysctl_iflist(af, &w, w.w_op);
   1144 		break;
   1145 #endif
   1146 
   1147 	case NET_RT_IFLIST:
   1148 		error = sysctl_iflist(af, &w, w.w_op);
   1149 	}
   1150 	splx(s);
   1151 
   1152 	/* check to see if we couldn't allocate memory with NOWAIT */
   1153 	if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
   1154 		goto again;
   1155 
   1156 	if (w.w_tmem)
   1157 		free(w.w_tmem, M_RTABLE);
   1158 	w.w_needed += w.w_given;
   1159 	if (where) {
   1160 		*given = (char *)w.w_where - (char *)where;
   1161 		if (*given < w.w_needed)
   1162 			return ENOMEM;
   1163 	} else {
   1164 		*given = (11 * w.w_needed) / 10;
   1165 	}
   1166 	return error;
   1167 }
   1168 
   1169 /*
   1170  * Routing message software interrupt routine
   1171  */
   1172 static void
   1173 route_intr(void *cookie)
   1174 {
   1175 	struct sockproto proto = { .sp_family = PF_ROUTE, };
   1176 	struct mbuf *m;
   1177 	int s;
   1178 
   1179 	mutex_enter(softnet_lock);
   1180 	KERNEL_LOCK(1, NULL);
   1181 	while (!IF_IS_EMPTY(&route_intrq)) {
   1182 		s = splnet();
   1183 		IF_DEQUEUE(&route_intrq, m);
   1184 		splx(s);
   1185 		if (m == NULL)
   1186 			break;
   1187 		proto.sp_protocol = M_GETCTX(m, uintptr_t);
   1188 		raw_input(m, &proto, &route_src, &route_dst);
   1189 	}
   1190 	KERNEL_UNLOCK_ONE(NULL);
   1191 	mutex_exit(softnet_lock);
   1192 }
   1193 
   1194 /*
   1195  * Enqueue a message to the software interrupt routine.
   1196  */
   1197 static void
   1198 route_enqueue(struct mbuf *m, int family)
   1199 {
   1200 	int s, wasempty;
   1201 
   1202 	s = splnet();
   1203 	if (IF_QFULL(&route_intrq)) {
   1204 		IF_DROP(&route_intrq);
   1205 		m_freem(m);
   1206 	} else {
   1207 		wasempty = IF_IS_EMPTY(&route_intrq);
   1208 		M_SETCTX(m, (uintptr_t)family);
   1209 		IF_ENQUEUE(&route_intrq, m);
   1210 		if (wasempty)
   1211 			softint_schedule(route_sih);
   1212 	}
   1213 	splx(s);
   1214 }
   1215 
   1216 void
   1217 rt_init(void)
   1218 {
   1219 
   1220 	route_intrq.ifq_maxlen = route_maxqlen;
   1221 	route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
   1222 	    route_intr, NULL);
   1223 }
   1224 
   1225 /*
   1226  * Definitions of protocols supported in the ROUTE domain.
   1227  */
   1228 PR_WRAP_USRREQ(route_usrreq)
   1229 #define	route_usrreq	route_usrreq_wrapper
   1230 
   1231 const struct protosw routesw[] = {
   1232 	{
   1233 		.pr_type = SOCK_RAW,
   1234 		.pr_domain = &routedomain,
   1235 		.pr_flags = PR_ATOMIC|PR_ADDR,
   1236 		.pr_input = raw_input,
   1237 		.pr_output = route_output,
   1238 		.pr_ctlinput = raw_ctlinput,
   1239 		.pr_usrreq = route_usrreq,
   1240 		.pr_init = raw_init,
   1241 	},
   1242 };
   1243 
   1244 struct domain routedomain = {
   1245 	.dom_family = PF_ROUTE,
   1246 	.dom_name = "route",
   1247 	.dom_init = route_init,
   1248 	.dom_protosw = routesw,
   1249 	.dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
   1250 };
   1251 
   1252 SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
   1253 {
   1254 	const struct sysctlnode *rnode = NULL;
   1255 
   1256 	sysctl_createv(clog, 0, NULL, NULL,
   1257 		       CTLFLAG_PERMANENT,
   1258 		       CTLTYPE_NODE, "net", NULL,
   1259 		       NULL, 0, NULL, 0,
   1260 		       CTL_NET, CTL_EOL);
   1261 
   1262 	sysctl_createv(clog, 0, NULL, &rnode,
   1263 		       CTLFLAG_PERMANENT,
   1264 		       CTLTYPE_NODE, "route",
   1265 		       SYSCTL_DESCR("PF_ROUTE information"),
   1266 		       NULL, 0, NULL, 0,
   1267 		       CTL_NET, PF_ROUTE, CTL_EOL);
   1268 	sysctl_createv(clog, 0, NULL, NULL,
   1269 		       CTLFLAG_PERMANENT,
   1270 		       CTLTYPE_NODE, "rtable",
   1271 		       SYSCTL_DESCR("Routing table information"),
   1272 		       sysctl_rtable, 0, NULL, 0,
   1273 		       CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
   1274 	sysctl_createv(clog, 0, &rnode, NULL,
   1275 		       CTLFLAG_PERMANENT,
   1276 		       CTLTYPE_STRUCT, "stats",
   1277 		       SYSCTL_DESCR("Routing statistics"),
   1278 		       NULL, 0, &rtstat, sizeof(rtstat),
   1279 		       CTL_CREATE, CTL_EOL);
   1280 }
   1281