rtsock.c revision 1.115.2.4.4.2 1 /* $NetBSD: rtsock.c,v 1.115.2.4.4.2 2010/05/13 05:36:49 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.115.2.4.4.2 2010/05/13 05:36:49 matt Exp $");
65
66 #include "opt_inet.h"
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/mbuf.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/domain.h>
75 #include <sys/protosw.h>
76 #include <sys/sysctl.h>
77 #include <sys/kauth.h>
78 #include <sys/intr.h>
79 #ifdef RTSOCK_DEBUG
80 #include <netinet/in.h>
81 #endif /* RTSOCK_DEBUG */
82
83 #include <net/if.h>
84 #include <net/route.h>
85 #include <net/raw_cb.h>
86
87 #include <machine/stdarg.h>
88
89 DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
90
91 struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
92 struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
93
94 int route_maxqlen = IFQ_MAXLEN;
95 static struct ifqueue route_intrq;
96 static void *route_sih;
97
98 struct walkarg {
99 int w_op;
100 int w_arg;
101 int w_given;
102 int w_needed;
103 void * w_where;
104 int w_tmemsize;
105 int w_tmemneeded;
106 void * w_tmem;
107 };
108
109 static struct mbuf *rt_msg1(int, struct rt_addrinfo *, void *, int);
110 static int rt_msg2(int, struct rt_addrinfo *, void *, struct walkarg *, int *);
111 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
112 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
113 struct rt_addrinfo *);
114 static int sysctl_dumpentry(struct rtentry *, void *);
115 static int sysctl_iflist(int, struct walkarg *, int);
116 static int sysctl_rtable(SYSCTLFN_PROTO);
117 static inline void rt_adjustcount(int, int);
118 static void route_enqueue(struct mbuf *, int);
119
120 static inline void
121 rt_adjustcount(int af, int cnt)
122 {
123 route_cb.any_count += cnt;
124 switch (af) {
125 case AF_INET:
126 route_cb.ip_count += cnt;
127 return;
128 #ifdef INET6
129 case AF_INET6:
130 route_cb.ip6_count += cnt;
131 return;
132 #endif
133 case AF_IPX:
134 route_cb.ipx_count += cnt;
135 return;
136 case AF_NS:
137 route_cb.ns_count += cnt;
138 return;
139 case AF_ISO:
140 route_cb.iso_count += cnt;
141 return;
142 }
143 }
144
145 /*ARGSUSED*/
146 int
147 route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
148 struct mbuf *control, struct lwp *l)
149 {
150 int error = 0;
151 struct rawcb *rp = sotorawcb(so);
152 int s;
153
154 if (req == PRU_ATTACH) {
155 sosetlock(so);
156 MALLOC(rp, struct rawcb *, sizeof(*rp), M_PCB, M_WAITOK|M_ZERO);
157 so->so_pcb = rp;
158 }
159 if (req == PRU_DETACH && rp)
160 rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
161 s = splsoftnet();
162
163 /*
164 * Don't call raw_usrreq() in the attach case, because
165 * we want to allow non-privileged processes to listen on
166 * and send "safe" commands to the routing socket.
167 */
168 if (req == PRU_ATTACH) {
169 if (l == NULL)
170 error = EACCES;
171 else
172 error = raw_attach(so, (int)(long)nam);
173 } else
174 error = raw_usrreq(so, req, m, nam, control, l);
175
176 rp = sotorawcb(so);
177 if (req == PRU_ATTACH && rp) {
178 if (error) {
179 free(rp, M_PCB);
180 splx(s);
181 return error;
182 }
183 rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
184 rp->rcb_laddr = &route_src;
185 rp->rcb_faddr = &route_dst;
186 soisconnected(so);
187 so->so_options |= SO_USELOOPBACK;
188 }
189 splx(s);
190 return error;
191 }
192
193 static const struct sockaddr *
194 intern_netmask(const struct sockaddr *mask)
195 {
196 struct radix_node *rn;
197 extern struct radix_node_head *mask_rnhead;
198
199 if (mask != NULL &&
200 (rn = rn_search(mask, mask_rnhead->rnh_treetop)))
201 mask = (const struct sockaddr *)rn->rn_key;
202
203 return mask;
204 }
205
206 /*ARGSUSED*/
207 int
208 route_output(struct mbuf *m, ...)
209 {
210 struct sockproto proto = { .sp_family = PF_ROUTE, };
211 struct rt_msghdr *rtm = NULL;
212 struct rt_msghdr *old_rtm = NULL;
213 struct rtentry *rt = NULL;
214 struct rtentry *saved_nrt = NULL;
215 struct rt_addrinfo info;
216 int len, error = 0;
217 struct ifnet *ifp = NULL;
218 struct ifaddr *ifa = NULL;
219 struct socket *so;
220 va_list ap;
221 sa_family_t family;
222
223 va_start(ap, m);
224 so = va_arg(ap, struct socket *);
225 va_end(ap);
226
227 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
228 if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
229 (m = m_pullup(m, sizeof(int32_t))) == NULL))
230 return ENOBUFS;
231 if ((m->m_flags & M_PKTHDR) == 0)
232 panic("route_output");
233 len = m->m_pkthdr.len;
234 if (len < sizeof(*rtm) ||
235 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
236 info.rti_info[RTAX_DST] = NULL;
237 senderr(EINVAL);
238 }
239 R_Malloc(rtm, struct rt_msghdr *, len);
240 if (rtm == NULL) {
241 info.rti_info[RTAX_DST] = NULL;
242 senderr(ENOBUFS);
243 }
244 m_copydata(m, 0, len, rtm);
245 if (rtm->rtm_version != RTM_VERSION) {
246 info.rti_info[RTAX_DST] = NULL;
247 senderr(EPROTONOSUPPORT);
248 }
249 rtm->rtm_pid = curproc->p_pid;
250 memset(&info, 0, sizeof(info));
251 info.rti_addrs = rtm->rtm_addrs;
252 KASSERT(sizeof(*rtm) == RT_ROUNDUP(sizeof(*rtm)));
253 if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
254 &info))
255 senderr(EINVAL);
256 info.rti_flags = rtm->rtm_flags;
257 #ifdef RTSOCK_DEBUG
258 if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
259 printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
260 inet_ntoa(((const struct sockaddr_in *)
261 info.rti_info[RTAX_DST])->sin_addr));
262 }
263 #endif /* RTSOCK_DEBUG */
264 if (info.rti_info[RTAX_DST] == NULL ||
265 (info.rti_info[RTAX_DST]->sa_family >= AF_MAX))
266 senderr(EINVAL);
267 if (info.rti_info[RTAX_GATEWAY] != NULL &&
268 (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
269 senderr(EINVAL);
270
271 /*
272 * Verify that the caller has the appropriate privilege; RTM_GET
273 * is the only operation the non-superuser is allowed.
274 */
275 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
276 0, rtm, NULL, NULL) != 0)
277 senderr(EACCES);
278
279 switch (rtm->rtm_type) {
280
281 case RTM_ADD:
282 if (info.rti_info[RTAX_GATEWAY] == NULL)
283 senderr(EINVAL);
284 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
285 if (error == 0 && saved_nrt) {
286 rt_setmetrics(rtm->rtm_inits,
287 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
288 saved_nrt->rt_refcnt--;
289 }
290 break;
291
292 case RTM_DELETE:
293 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
294 if (error == 0) {
295 (rt = saved_nrt)->rt_refcnt++;
296 goto report;
297 }
298 break;
299
300 case RTM_GET:
301 case RTM_CHANGE:
302 case RTM_LOCK:
303 /* XXX This will mask info.rti_info[RTAX_DST] with
304 * info.rti_info[RTAX_NETMASK] before
305 * searching. It did not used to do that. --dyoung
306 */
307 error = rtrequest1(RTM_GET, &info, &rt);
308 if (error != 0)
309 senderr(error);
310 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
311 struct radix_node *rn;
312
313 if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
314 info.rti_info[RTAX_DST]->sa_len) != 0)
315 senderr(ESRCH);
316 info.rti_info[RTAX_NETMASK] = intern_netmask(
317 info.rti_info[RTAX_NETMASK]);
318 for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
319 if (info.rti_info[RTAX_NETMASK] ==
320 (const struct sockaddr *)rn->rn_mask)
321 break;
322 if (rn == NULL)
323 senderr(ETOOMANYREFS);
324 rt = (struct rtentry *)rn;
325 }
326
327 switch (rtm->rtm_type) {
328 case RTM_GET:
329 report:
330 info.rti_info[RTAX_DST] = rt_getkey(rt);
331 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
332 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
333 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
334 ;
335 else if ((ifp = rt->rt_ifp) != NULL) {
336 const struct ifaddr *rtifa;
337 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
338 /* rtifa used to be simply rt->rt_ifa.
339 * If rt->rt_ifa != NULL, then
340 * rt_get_ifa() != NULL. So this
341 * ought to still be safe. --dyoung
342 */
343 rtifa = rt_get_ifa(rt);
344 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
345 #ifdef RTSOCK_DEBUG
346 if (info.rti_info[RTAX_IFA]->sa_family ==
347 AF_INET) {
348 printf("%s: copying out RTAX_IFA %s ",
349 __func__, inet_ntoa(
350 (const struct sockaddr_in *)
351 info.rti_info[RTAX_IFA])->sin_addr);
352 printf("for info.rti_info[RTAX_DST] %s "
353 "ifa_getifa %p ifa_seqno %p\n",
354 inet_ntoa(
355 (const struct sockaddr_in *)
356 info.rti_info[RTAX_DST])->sin_addr),
357 (void *)rtifa->ifa_getifa,
358 rtifa->ifa_seqno);
359 }
360 #endif /* RTSOCK_DEBUG */
361 if (ifp->if_flags & IFF_POINTOPOINT) {
362 info.rti_info[RTAX_BRD] =
363 rtifa->ifa_dstaddr;
364 } else
365 info.rti_info[RTAX_BRD] = NULL;
366 rtm->rtm_index = ifp->if_index;
367 } else {
368 info.rti_info[RTAX_IFP] = NULL;
369 info.rti_info[RTAX_IFA] = NULL;
370 }
371 (void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
372 if (len > rtm->rtm_msglen) {
373 old_rtm = rtm;
374 R_Malloc(rtm, struct rt_msghdr *, len);
375 if (rtm == NULL)
376 senderr(ENOBUFS);
377 (void)memcpy(rtm, old_rtm, old_rtm->rtm_msglen);
378 }
379 (void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0);
380 rtm->rtm_flags = rt->rt_flags;
381 rtm->rtm_rmx = rt->rt_rmx;
382 rtm->rtm_addrs = info.rti_addrs;
383 break;
384
385 case RTM_CHANGE:
386 /*
387 * new gateway could require new ifaddr, ifp;
388 * flags may also be different; ifp may be specified
389 * by ll sockaddr when protocol address is ambiguous
390 */
391 if ((error = rt_getifa(&info)) != 0)
392 senderr(error);
393 if (info.rti_info[RTAX_GATEWAY] &&
394 rt_setgate(rt, info.rti_info[RTAX_GATEWAY]))
395 senderr(EDQUOT);
396 /* new gateway could require new ifaddr, ifp;
397 flags may also be different; ifp may be specified
398 by ll sockaddr when protocol address is ambiguous */
399 if (info.rti_info[RTAX_IFP] &&
400 (ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) &&
401 (ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] ||
402 info.rti_info[RTAX_GATEWAY])) {
403 ifa = ifaof_ifpforaddr(info.rti_info[RTAX_IFA] ?
404 info.rti_info[RTAX_IFA] :
405 info.rti_info[RTAX_GATEWAY], ifp);
406 } else if ((info.rti_info[RTAX_IFA] &&
407 (ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) ||
408 (info.rti_info[RTAX_GATEWAY] &&
409 (ifa = ifa_ifwithroute(rt->rt_flags,
410 rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) {
411 ifp = ifa->ifa_ifp;
412 }
413 if (ifa) {
414 struct ifaddr *oifa = rt->rt_ifa;
415 if (oifa != ifa) {
416 if (oifa && oifa->ifa_rtrequest) {
417 oifa->ifa_rtrequest(RTM_DELETE,
418 rt, &info);
419 }
420 rt_replace_ifa(rt, ifa);
421 rt->rt_ifp = ifp;
422 }
423 }
424 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
425 &rt->rt_rmx);
426 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
427 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
428 /*FALLTHROUGH*/
429 case RTM_LOCK:
430 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
431 rt->rt_rmx.rmx_locks |=
432 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
433 break;
434 }
435 break;
436
437 default:
438 senderr(EOPNOTSUPP);
439 }
440
441 flush:
442 if (rtm) {
443 if (error)
444 rtm->rtm_errno = error;
445 else
446 rtm->rtm_flags |= RTF_DONE;
447 }
448 family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
449 0;
450 /* We cannot free old_rtm until we have stopped using the
451 * pointers in info, some of which may point to sockaddrs
452 * in old_rtm.
453 */
454 if (old_rtm != NULL)
455 Free(old_rtm);
456 if (rt)
457 rtfree(rt);
458 {
459 struct rawcb *rp = NULL;
460 /*
461 * Check to see if we don't want our own messages.
462 */
463 if ((so->so_options & SO_USELOOPBACK) == 0) {
464 if (route_cb.any_count <= 1) {
465 if (rtm)
466 Free(rtm);
467 m_freem(m);
468 return error;
469 }
470 /* There is another listener, so construct message */
471 rp = sotorawcb(so);
472 }
473 if (rtm) {
474 m_copyback(m, 0, rtm->rtm_msglen, rtm);
475 if (m->m_pkthdr.len < rtm->rtm_msglen) {
476 m_freem(m);
477 m = NULL;
478 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
479 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
480 Free(rtm);
481 }
482 if (rp)
483 rp->rcb_proto.sp_family = 0; /* Avoid us */
484 if (family)
485 proto.sp_protocol = family;
486 if (m)
487 raw_input(m, &proto, &route_src, &route_dst);
488 if (rp)
489 rp->rcb_proto.sp_family = PF_ROUTE;
490 }
491 return error;
492 }
493
494 void
495 rt_setmetrics(u_long which, const struct rt_metrics *in, struct rt_metrics *out)
496 {
497 #define metric(f, e) if (which & (f)) out->e = in->e;
498 metric(RTV_RPIPE, rmx_recvpipe);
499 metric(RTV_SPIPE, rmx_sendpipe);
500 metric(RTV_SSTHRESH, rmx_ssthresh);
501 metric(RTV_RTT, rmx_rtt);
502 metric(RTV_RTTVAR, rmx_rttvar);
503 metric(RTV_HOPCOUNT, rmx_hopcount);
504 metric(RTV_MTU, rmx_mtu);
505 metric(RTV_EXPIRE, rmx_expire);
506 #undef metric
507 }
508
509 static int
510 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
511 struct rt_addrinfo *rtinfo)
512 {
513 const struct sockaddr *sa = NULL; /* Quell compiler warning */
514 int i;
515
516 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
517 if ((rtinfo->rti_addrs & (1 << i)) == 0)
518 continue;
519 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
520 RT_ADVANCE(cp, sa);
521 }
522
523 /*
524 * Check for extra addresses specified, except RTM_GET asking
525 * for interface info.
526 */
527 if (rtmtype == RTM_GET) {
528 if (((rtinfo->rti_addrs &
529 (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
530 return 1;
531 } else if ((rtinfo->rti_addrs & (~0 << i)) != 0)
532 return 1;
533 /* Check for bad data length. */
534 if (cp != cplim) {
535 if (i == RTAX_NETMASK + 1 && sa != NULL &&
536 cp - RT_ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
537 /*
538 * The last sockaddr was info.rti_info[RTAX_NETMASK].
539 * We accept this for now for the sake of old
540 * binaries or third party softwares.
541 */
542 ;
543 else
544 return 1;
545 }
546 return 0;
547 }
548
549 static struct mbuf *
550 rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
551 {
552 struct rt_msghdr *rtm;
553 struct mbuf *m;
554 int i;
555 const struct sockaddr *sa;
556 int len, dlen;
557
558 m = m_gethdr(M_DONTWAIT, MT_DATA);
559 if (m == NULL)
560 return m;
561 MCLAIM(m, &routedomain.dom_mowner);
562 switch (type) {
563
564 case RTM_DELADDR:
565 case RTM_NEWADDR:
566 len = sizeof(struct ifa_msghdr);
567 break;
568
569 #ifdef COMPAT_14
570 case RTM_OIFINFO:
571 len = sizeof(struct if_msghdr14);
572 break;
573 #endif
574
575 case RTM_IFINFO:
576 len = sizeof(struct if_msghdr);
577 break;
578
579 case RTM_IFANNOUNCE:
580 case RTM_IEEE80211:
581 len = sizeof(struct if_announcemsghdr);
582 break;
583
584 default:
585 len = sizeof(struct rt_msghdr);
586 }
587 len = RT_ROUNDUP(len);
588 if (len > MHLEN + MLEN)
589 panic("rt_msg1: message too long");
590 else if (len > MHLEN) {
591 m->m_next = m_get(M_DONTWAIT, MT_DATA);
592 if (m->m_next == NULL) {
593 m_freem(m);
594 return NULL;
595 }
596 MCLAIM(m->m_next, m->m_owner);
597 m->m_pkthdr.len = len;
598 m->m_len = MHLEN;
599 m->m_next->m_len = len - MHLEN;
600 } else {
601 m->m_pkthdr.len = m->m_len = len;
602 }
603 m->m_pkthdr.rcvif = NULL;
604 m_copyback(m, 0, datalen, data);
605 if (len > datalen)
606 (void)memset(mtod(m, char *) + datalen, 0, len - datalen);
607 rtm = mtod(m, struct rt_msghdr *);
608 for (i = 0; i < RTAX_MAX; i++) {
609 if ((sa = rtinfo->rti_info[i]) == NULL)
610 continue;
611 rtinfo->rti_addrs |= (1 << i);
612 dlen = RT_ROUNDUP(sa->sa_len);
613 m_copyback(m, len, dlen, sa);
614 len += dlen;
615 }
616 KASSERT(len == RT_ROUNDUP(len));
617 if (m->m_pkthdr.len != len) {
618 m_freem(m);
619 return NULL;
620 }
621 rtm->rtm_msglen = len;
622 rtm->rtm_version = RTM_VERSION;
623 rtm->rtm_type = type;
624 return m;
625 }
626
627 /*
628 * rt_msg2
629 *
630 * fills 'cp' or 'w'.w_tmem with the routing socket message and
631 * returns the length of the message in 'lenp'.
632 *
633 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
634 * the message
635 * otherwise walkarg's w_needed is updated and if the user buffer is
636 * specified and w_needed indicates space exists the information is copied
637 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
638 * if the allocation fails ENOBUFS is returned.
639 */
640 static int
641 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct walkarg *w,
642 int *lenp)
643 {
644 int i;
645 int len, dlen, second_time = 0;
646 char *cp0, *cp = cpv;
647
648 rtinfo->rti_addrs = 0;
649 again:
650 switch (type) {
651
652 case RTM_DELADDR:
653 case RTM_NEWADDR:
654 len = sizeof(struct ifa_msghdr);
655 break;
656 #ifdef COMPAT_14
657 case RTM_OIFINFO:
658 len = sizeof(struct if_msghdr14);
659 break;
660 #endif
661
662 case RTM_IFINFO:
663 len = sizeof(struct if_msghdr);
664 break;
665
666 default:
667 len = sizeof(struct rt_msghdr);
668 }
669 len = RT_ROUNDUP(len);
670 if ((cp0 = cp) != NULL)
671 cp += len;
672 for (i = 0; i < RTAX_MAX; i++) {
673 const struct sockaddr *sa;
674
675 if ((sa = rtinfo->rti_info[i]) == NULL)
676 continue;
677 rtinfo->rti_addrs |= (1 << i);
678 dlen = RT_ROUNDUP(sa->sa_len);
679 if (cp) {
680 (void)memcpy(cp, sa, (size_t)dlen);
681 cp += dlen;
682 }
683 len += dlen;
684 }
685 if (cp == NULL && w != NULL && !second_time) {
686 struct walkarg *rw = w;
687
688 rw->w_needed += len;
689 if (rw->w_needed <= 0 && rw->w_where) {
690 if (rw->w_tmemsize < len) {
691 if (rw->w_tmem)
692 free(rw->w_tmem, M_RTABLE);
693 rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT);
694 if (rw->w_tmem)
695 rw->w_tmemsize = len;
696 else
697 rw->w_tmemsize = 0;
698 }
699 if (rw->w_tmem) {
700 cp = rw->w_tmem;
701 second_time = 1;
702 goto again;
703 } else {
704 rw->w_tmemneeded = len;
705 return ENOBUFS;
706 }
707 }
708 }
709 KASSERT(len == RT_ROUNDUP(len));
710 if (cp) {
711 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
712
713 rtm->rtm_version = RTM_VERSION;
714 rtm->rtm_type = type;
715 rtm->rtm_msglen = len;
716 }
717 if (lenp)
718 *lenp = len;
719 return 0;
720 }
721
722 /*
723 * This routine is called to generate a message from the routing
724 * socket indicating that a redirect has occurred, a routing lookup
725 * has failed, or that a protocol has detected timeouts to a particular
726 * destination.
727 */
728 void
729 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
730 {
731 struct rt_msghdr rtm;
732 struct mbuf *m;
733 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
734
735 if (route_cb.any_count == 0)
736 return;
737 memset(&rtm, 0, sizeof(rtm));
738 rtm.rtm_flags = RTF_DONE | flags;
739 rtm.rtm_errno = error;
740 m = rt_msg1(type, rtinfo, &rtm, sizeof(rtm));
741 if (m == NULL)
742 return;
743 mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
744 route_enqueue(m, sa ? sa->sa_family : 0);
745 }
746
747 /*
748 * This routine is called to generate a message from the routing
749 * socket indicating that the status of a network interface has changed.
750 */
751 void
752 rt_ifmsg(struct ifnet *ifp)
753 {
754 struct if_msghdr ifm;
755 #ifdef COMPAT_14
756 struct if_msghdr14 oifm;
757 #endif
758 struct mbuf *m;
759 struct rt_addrinfo info;
760
761 if (route_cb.any_count == 0)
762 return;
763 memset(&info, 0, sizeof(info));
764 memset(&ifm, 0, sizeof(ifm));
765 ifm.ifm_index = ifp->if_index;
766 ifm.ifm_flags = ifp->if_flags;
767 ifm.ifm_data = ifp->if_data;
768 ifm.ifm_addrs = 0;
769 m = rt_msg1(RTM_IFINFO, &info, &ifm, sizeof(ifm));
770 if (m == NULL)
771 return;
772 route_enqueue(m, 0);
773 #ifdef COMPAT_14
774 memset(&info, 0, sizeof(info));
775 memset(&oifm, 0, sizeof(oifm));
776 oifm.ifm_index = ifp->if_index;
777 oifm.ifm_flags = ifp->if_flags;
778 oifm.ifm_data.ifi_type = ifp->if_data.ifi_type;
779 oifm.ifm_data.ifi_addrlen = ifp->if_data.ifi_addrlen;
780 oifm.ifm_data.ifi_hdrlen = ifp->if_data.ifi_hdrlen;
781 oifm.ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
782 oifm.ifm_data.ifi_metric = ifp->if_data.ifi_metric;
783 oifm.ifm_data.ifi_baudrate = ifp->if_data.ifi_baudrate;
784 oifm.ifm_data.ifi_ipackets = ifp->if_data.ifi_ipackets;
785 oifm.ifm_data.ifi_ierrors = ifp->if_data.ifi_ierrors;
786 oifm.ifm_data.ifi_opackets = ifp->if_data.ifi_opackets;
787 oifm.ifm_data.ifi_oerrors = ifp->if_data.ifi_oerrors;
788 oifm.ifm_data.ifi_collisions = ifp->if_data.ifi_collisions;
789 oifm.ifm_data.ifi_ibytes = ifp->if_data.ifi_ibytes;
790 oifm.ifm_data.ifi_obytes = ifp->if_data.ifi_obytes;
791 oifm.ifm_data.ifi_imcasts = ifp->if_data.ifi_imcasts;
792 oifm.ifm_data.ifi_omcasts = ifp->if_data.ifi_omcasts;
793 oifm.ifm_data.ifi_iqdrops = ifp->if_data.ifi_iqdrops;
794 oifm.ifm_data.ifi_noproto = ifp->if_data.ifi_noproto;
795 oifm.ifm_data.ifi_lastchange = ifp->if_data.ifi_lastchange;
796 oifm.ifm_addrs = 0;
797 m = rt_msg1(RTM_OIFINFO, &info, &oifm, sizeof(oifm));
798 if (m == NULL)
799 return;
800 route_enqueue(m, 0);
801 #endif
802 }
803
804 /*
805 * This is called to generate messages from the routing socket
806 * indicating a network interface has had addresses associated with it.
807 * if we ever reverse the logic and replace messages TO the routing
808 * socket indicate a request to configure interfaces, then it will
809 * be unnecessary as the routing socket will automatically generate
810 * copies of it.
811 */
812 void
813 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
814 {
815 struct rt_addrinfo info;
816 const struct sockaddr *sa = NULL;
817 int pass;
818 struct mbuf *m = NULL;
819 struct ifnet *ifp = ifa->ifa_ifp;
820
821 if (route_cb.any_count == 0)
822 return;
823 for (pass = 1; pass < 3; pass++) {
824 memset(&info, 0, sizeof(info));
825 if ((cmd == RTM_ADD && pass == 1) ||
826 (cmd == RTM_DELETE && pass == 2)) {
827 struct ifa_msghdr ifam;
828 int ncmd = cmd == RTM_ADD ? RTM_NEWADDR : RTM_DELADDR;
829
830 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
831 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
832 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
833 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
834 memset(&ifam, 0, sizeof(ifam));
835 ifam.ifam_index = ifp->if_index;
836 ifam.ifam_metric = ifa->ifa_metric;
837 ifam.ifam_flags = ifa->ifa_flags;
838 m = rt_msg1(ncmd, &info, &ifam, sizeof(ifam));
839 if (m == NULL)
840 continue;
841 mtod(m, struct ifa_msghdr *)->ifam_addrs =
842 info.rti_addrs;
843 }
844 if ((cmd == RTM_ADD && pass == 2) ||
845 (cmd == RTM_DELETE && pass == 1)) {
846 struct rt_msghdr rtm;
847
848 if (rt == NULL)
849 continue;
850 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
851 info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
852 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
853 memset(&rtm, 0, sizeof(rtm));
854 rtm.rtm_index = ifp->if_index;
855 rtm.rtm_flags |= rt->rt_flags;
856 rtm.rtm_errno = error;
857 m = rt_msg1(cmd, &info, &rtm, sizeof(rtm));
858 if (m == NULL)
859 continue;
860 mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
861 }
862 #ifdef DIAGNOSTIC
863 if (m == NULL)
864 panic("%s: called with wrong command", __func__);
865 #endif
866 route_enqueue(m, sa ? sa->sa_family : 0);
867 }
868 }
869
870 static struct mbuf *
871 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
872 struct rt_addrinfo *info)
873 {
874 struct if_announcemsghdr ifan;
875
876 memset(info, 0, sizeof(*info));
877 memset(&ifan, 0, sizeof(ifan));
878 ifan.ifan_index = ifp->if_index;
879 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
880 ifan.ifan_what = what;
881 return rt_msg1(type, info, &ifan, sizeof(ifan));
882 }
883
884 /*
885 * This is called to generate routing socket messages indicating
886 * network interface arrival and departure.
887 */
888 void
889 rt_ifannouncemsg(struct ifnet *ifp, int what)
890 {
891 struct mbuf *m;
892 struct rt_addrinfo info;
893
894 if (route_cb.any_count == 0)
895 return;
896 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
897 if (m == NULL)
898 return;
899 route_enqueue(m, 0);
900 }
901
902 /*
903 * This is called to generate routing socket messages indicating
904 * IEEE80211 wireless events.
905 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
906 */
907 void
908 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
909 {
910 struct mbuf *m;
911 struct rt_addrinfo info;
912
913 if (route_cb.any_count == 0)
914 return;
915 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
916 if (m == NULL)
917 return;
918 /*
919 * Append the ieee80211 data. Try to stick it in the
920 * mbuf containing the ifannounce msg; otherwise allocate
921 * a new mbuf and append.
922 *
923 * NB: we assume m is a single mbuf.
924 */
925 if (data_len > M_TRAILINGSPACE(m)) {
926 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
927 if (n == NULL) {
928 m_freem(m);
929 return;
930 }
931 (void)memcpy(mtod(n, void *), data, data_len);
932 n->m_len = data_len;
933 m->m_next = n;
934 } else if (data_len > 0) {
935 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
936 m->m_len += data_len;
937 }
938 if (m->m_flags & M_PKTHDR)
939 m->m_pkthdr.len += data_len;
940 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
941 route_enqueue(m, 0);
942 }
943
944 /*
945 * This is used in dumping the kernel table via sysctl().
946 */
947 static int
948 sysctl_dumpentry(struct rtentry *rt, void *v)
949 {
950 struct walkarg *w = v;
951 int error = 0, size;
952 struct rt_addrinfo info;
953
954 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
955 return 0;
956 memset(&info, 0, sizeof(info));
957 info.rti_info[RTAX_DST] = rt_getkey(rt);
958 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
959 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
960 if (rt->rt_ifp) {
961 const struct ifaddr *rtifa;
962 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
963 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
964 * then rt_get_ifa() != NULL. So this ought to still be safe.
965 * --dyoung
966 */
967 rtifa = rt_get_ifa(rt);
968 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
969 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
970 info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
971 }
972 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
973 return error;
974 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
975 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
976
977 rtm->rtm_flags = rt->rt_flags;
978 rtm->rtm_use = rt->rt_use;
979 rtm->rtm_rmx = rt->rt_rmx;
980 KASSERT(rt->rt_ifp != NULL);
981 rtm->rtm_index = rt->rt_ifp->if_index;
982 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
983 rtm->rtm_addrs = info.rti_addrs;
984 if ((error = copyout(rtm, w->w_where, size)) != 0)
985 w->w_where = NULL;
986 else
987 w->w_where = (char *)w->w_where + size;
988 }
989 return error;
990 }
991
992 static int
993 sysctl_iflist(int af, struct walkarg *w, int type)
994 {
995 struct ifnet *ifp;
996 struct ifaddr *ifa;
997 struct rt_addrinfo info;
998 int len, error = 0;
999
1000 memset(&info, 0, sizeof(info));
1001 IFNET_FOREACH(ifp) {
1002 if (w->w_arg && w->w_arg != ifp->if_index)
1003 continue;
1004 if (IFADDR_EMPTY(ifp))
1005 continue;
1006 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
1007 switch (type) {
1008 case NET_RT_IFLIST:
1009 error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
1010 break;
1011 #ifdef COMPAT_14
1012 case NET_RT_OIFLIST:
1013 error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
1014 break;
1015 #endif
1016 default:
1017 panic("sysctl_iflist(1)");
1018 }
1019 if (error)
1020 return error;
1021 info.rti_info[RTAX_IFP] = NULL;
1022 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1023 switch (type) {
1024 case NET_RT_IFLIST: {
1025 struct if_msghdr *ifm;
1026
1027 ifm = (struct if_msghdr *)w->w_tmem;
1028 ifm->ifm_index = ifp->if_index;
1029 ifm->ifm_flags = ifp->if_flags;
1030 ifm->ifm_data = ifp->if_data;
1031 ifm->ifm_addrs = info.rti_addrs;
1032 error = copyout(ifm, w->w_where, len);
1033 if (error)
1034 return error;
1035 w->w_where = (char *)w->w_where + len;
1036 break;
1037 }
1038
1039 #ifdef COMPAT_14
1040 case NET_RT_OIFLIST: {
1041 struct if_msghdr14 *ifm;
1042
1043 ifm = (struct if_msghdr14 *)w->w_tmem;
1044 ifm->ifm_index = ifp->if_index;
1045 ifm->ifm_flags = ifp->if_flags;
1046 ifm->ifm_data.ifi_type = ifp->if_data.ifi_type;
1047 ifm->ifm_data.ifi_addrlen =
1048 ifp->if_data.ifi_addrlen;
1049 ifm->ifm_data.ifi_hdrlen =
1050 ifp->if_data.ifi_hdrlen;
1051 ifm->ifm_data.ifi_mtu = ifp->if_data.ifi_mtu;
1052 ifm->ifm_data.ifi_metric =
1053 ifp->if_data.ifi_metric;
1054 ifm->ifm_data.ifi_baudrate =
1055 ifp->if_data.ifi_baudrate;
1056 ifm->ifm_data.ifi_ipackets =
1057 ifp->if_data.ifi_ipackets;
1058 ifm->ifm_data.ifi_ierrors =
1059 ifp->if_data.ifi_ierrors;
1060 ifm->ifm_data.ifi_opackets =
1061 ifp->if_data.ifi_opackets;
1062 ifm->ifm_data.ifi_oerrors =
1063 ifp->if_data.ifi_oerrors;
1064 ifm->ifm_data.ifi_collisions =
1065 ifp->if_data.ifi_collisions;
1066 ifm->ifm_data.ifi_ibytes =
1067 ifp->if_data.ifi_ibytes;
1068 ifm->ifm_data.ifi_obytes =
1069 ifp->if_data.ifi_obytes;
1070 ifm->ifm_data.ifi_imcasts =
1071 ifp->if_data.ifi_imcasts;
1072 ifm->ifm_data.ifi_omcasts =
1073 ifp->if_data.ifi_omcasts;
1074 ifm->ifm_data.ifi_iqdrops =
1075 ifp->if_data.ifi_iqdrops;
1076 ifm->ifm_data.ifi_noproto =
1077 ifp->if_data.ifi_noproto;
1078 ifm->ifm_data.ifi_lastchange =
1079 ifp->if_data.ifi_lastchange;
1080 ifm->ifm_addrs = info.rti_addrs;
1081 error = copyout(ifm, w->w_where, len);
1082 if (error)
1083 return error;
1084 w->w_where = (char *)w->w_where + len;
1085 break;
1086 }
1087 #endif
1088 default:
1089 panic("sysctl_iflist(2)");
1090 }
1091 }
1092 IFADDR_FOREACH(ifa, ifp) {
1093 if (af && af != ifa->ifa_addr->sa_family)
1094 continue;
1095 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1096 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1097 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1098 if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
1099 return error;
1100 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1101 struct ifa_msghdr *ifam;
1102
1103 ifam = (struct ifa_msghdr *)w->w_tmem;
1104 ifam->ifam_index = ifa->ifa_ifp->if_index;
1105 ifam->ifam_flags = ifa->ifa_flags;
1106 ifam->ifam_metric = ifa->ifa_metric;
1107 ifam->ifam_addrs = info.rti_addrs;
1108 error = copyout(w->w_tmem, w->w_where, len);
1109 if (error)
1110 return error;
1111 w->w_where = (char *)w->w_where + len;
1112 }
1113 }
1114 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1115 info.rti_info[RTAX_BRD] = NULL;
1116 }
1117 return 0;
1118 }
1119
1120 static int
1121 sysctl_rtable(SYSCTLFN_ARGS)
1122 {
1123 void *where = oldp;
1124 size_t *given = oldlenp;
1125 const void *new = newp;
1126 int i, s, error = EINVAL;
1127 u_char af;
1128 struct walkarg w;
1129
1130 if (namelen == 1 && name[0] == CTL_QUERY)
1131 return sysctl_query(SYSCTLFN_CALL(rnode));
1132
1133 if (new)
1134 return EPERM;
1135 if (namelen != 3)
1136 return EINVAL;
1137 af = name[0];
1138 w.w_tmemneeded = 0;
1139 w.w_tmemsize = 0;
1140 w.w_tmem = NULL;
1141 again:
1142 /* we may return here if a later [re]alloc of the t_mem buffer fails */
1143 if (w.w_tmemneeded) {
1144 w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
1145 w.w_tmemsize = w.w_tmemneeded;
1146 w.w_tmemneeded = 0;
1147 }
1148 w.w_op = name[1];
1149 w.w_arg = name[2];
1150 w.w_given = *given;
1151 w.w_needed = 0 - w.w_given;
1152 w.w_where = where;
1153
1154 s = splsoftnet();
1155 switch (w.w_op) {
1156
1157 case NET_RT_DUMP:
1158 case NET_RT_FLAGS:
1159 for (i = 1; i <= AF_MAX; i++)
1160 if ((af == 0 || af == i) &&
1161 (error = rt_walktree(i, sysctl_dumpentry, &w)))
1162 break;
1163 break;
1164
1165 #ifdef COMPAT_14
1166 case NET_RT_OIFLIST:
1167 error = sysctl_iflist(af, &w, w.w_op);
1168 break;
1169 #endif
1170
1171 case NET_RT_IFLIST:
1172 error = sysctl_iflist(af, &w, w.w_op);
1173 }
1174 splx(s);
1175
1176 /* check to see if we couldn't allocate memory with NOWAIT */
1177 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
1178 goto again;
1179
1180 if (w.w_tmem)
1181 free(w.w_tmem, M_RTABLE);
1182 w.w_needed += w.w_given;
1183 if (where) {
1184 *given = (char *)w.w_where - (char *)where;
1185 if (*given < w.w_needed)
1186 return ENOMEM;
1187 } else {
1188 *given = (11 * w.w_needed) / 10;
1189 }
1190 return error;
1191 }
1192
1193 /*
1194 * Routing message software interrupt routine
1195 */
1196 static void
1197 route_intr(void *cookie)
1198 {
1199 struct sockproto proto = { .sp_family = PF_ROUTE, };
1200 struct mbuf *m;
1201 int s;
1202
1203 mutex_enter(softnet_lock);
1204 KERNEL_LOCK(1, NULL);
1205 while (!IF_IS_EMPTY(&route_intrq)) {
1206 s = splnet();
1207 IF_DEQUEUE(&route_intrq, m);
1208 splx(s);
1209 if (m == NULL)
1210 break;
1211 proto.sp_protocol = M_GETCTX(m, uintptr_t);
1212 raw_input(m, &proto, &route_src, &route_dst);
1213 }
1214 KERNEL_UNLOCK_ONE(NULL);
1215 mutex_exit(softnet_lock);
1216 }
1217
1218 /*
1219 * Enqueue a message to the software interrupt routine.
1220 */
1221 static void
1222 route_enqueue(struct mbuf *m, int family)
1223 {
1224 int s, wasempty;
1225
1226 s = splnet();
1227 if (IF_QFULL(&route_intrq)) {
1228 IF_DROP(&route_intrq);
1229 m_freem(m);
1230 } else {
1231 wasempty = IF_IS_EMPTY(&route_intrq);
1232 M_SETCTX(m, (uintptr_t)family);
1233 IF_ENQUEUE(&route_intrq, m);
1234 if (wasempty)
1235 softint_schedule(route_sih);
1236 }
1237 splx(s);
1238 }
1239
1240 void
1241 rt_init(void)
1242 {
1243
1244 route_intrq.ifq_maxlen = route_maxqlen;
1245 route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1246 route_intr, NULL);
1247 }
1248
1249 /*
1250 * Definitions of protocols supported in the ROUTE domain.
1251 */
1252 PR_WRAP_USRREQ(route_usrreq)
1253 #define route_usrreq route_usrreq_wrapper
1254
1255 const struct protosw routesw[] = {
1256 {
1257 .pr_type = SOCK_RAW,
1258 .pr_domain = &routedomain,
1259 .pr_flags = PR_ATOMIC|PR_ADDR,
1260 .pr_input = raw_input,
1261 .pr_output = route_output,
1262 .pr_ctlinput = raw_ctlinput,
1263 .pr_usrreq = route_usrreq,
1264 .pr_init = raw_init,
1265 },
1266 };
1267
1268 struct domain routedomain = {
1269 .dom_family = PF_ROUTE,
1270 .dom_name = "route",
1271 .dom_init = route_init,
1272 .dom_protosw = routesw,
1273 .dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
1274 };
1275
1276 SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
1277 {
1278 const struct sysctlnode *rnode = NULL;
1279
1280 sysctl_createv(clog, 0, NULL, NULL,
1281 CTLFLAG_PERMANENT,
1282 CTLTYPE_NODE, "net", NULL,
1283 NULL, 0, NULL, 0,
1284 CTL_NET, CTL_EOL);
1285
1286 sysctl_createv(clog, 0, NULL, &rnode,
1287 CTLFLAG_PERMANENT,
1288 CTLTYPE_NODE, "route",
1289 SYSCTL_DESCR("PF_ROUTE information"),
1290 NULL, 0, NULL, 0,
1291 CTL_NET, PF_ROUTE, CTL_EOL);
1292 sysctl_createv(clog, 0, NULL, NULL,
1293 CTLFLAG_PERMANENT,
1294 CTLTYPE_NODE, "rtable",
1295 SYSCTL_DESCR("Routing table information"),
1296 sysctl_rtable, 0, NULL, 0,
1297 CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
1298 sysctl_createv(clog, 0, &rnode, NULL,
1299 CTLFLAG_PERMANENT,
1300 CTLTYPE_STRUCT, "stats",
1301 SYSCTL_DESCR("Routing statistics"),
1302 NULL, 0, &rtstat, sizeof(rtstat),
1303 CTL_CREATE, CTL_EOL);
1304 }
1305