rtsock.c revision 1.126 1 /* $NetBSD: rtsock.c,v 1.126 2009/09/12 18:09:25 tsutsui Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1988, 1991, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)rtsock.c 8.7 (Berkeley) 10/12/95
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.126 2009/09/12 18:09:25 tsutsui Exp $");
65
66 #include "opt_inet.h"
67 #ifdef _KERNEL_OPT
68 #include "opt_compat_netbsd.h"
69 #endif
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>
74 #include <sys/mbuf.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/domain.h>
78 #include <sys/protosw.h>
79 #include <sys/sysctl.h>
80 #include <sys/kauth.h>
81 #include <sys/intr.h>
82 #ifdef RTSOCK_DEBUG
83 #include <netinet/in.h>
84 #endif /* RTSOCK_DEBUG */
85
86 #include <net/if.h>
87 #include <net/route.h>
88 #include <net/raw_cb.h>
89
90 #if defined(COMPAT_14) || defined(COMPAT_50)
91 #include <compat/net/if.h>
92 #endif
93
94 #include <machine/stdarg.h>
95
96 DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
97
98 struct sockaddr route_dst = { .sa_len = 2, .sa_family = PF_ROUTE, };
99 struct sockaddr route_src = { .sa_len = 2, .sa_family = PF_ROUTE, };
100
101 int route_maxqlen = IFQ_MAXLEN;
102 static struct ifqueue route_intrq;
103 static void *route_sih;
104
105 static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *);
106 static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
107 static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
108 struct rt_addrinfo *);
109 static int sysctl_dumpentry(struct rtentry *, void *);
110 static int sysctl_iflist(int, struct rt_walkarg *, int);
111 static int sysctl_rtable(SYSCTLFN_PROTO);
112 static void rt_adjustcount(int, int);
113
114 static void
115 rt_adjustcount(int af, int cnt)
116 {
117 route_cb.any_count += cnt;
118 switch (af) {
119 case AF_INET:
120 route_cb.ip_count += cnt;
121 return;
122 #ifdef INET6
123 case AF_INET6:
124 route_cb.ip6_count += cnt;
125 return;
126 #endif
127 case AF_IPX:
128 route_cb.ipx_count += cnt;
129 return;
130 case AF_NS:
131 route_cb.ns_count += cnt;
132 return;
133 case AF_ISO:
134 route_cb.iso_count += cnt;
135 return;
136 }
137 }
138
139 static void
140 cvtmetrics(struct rt_metrics *ortm, const struct nrt_metrics *rtm)
141 {
142 ortm->rmx_locks = rtm->rmx_locks;
143 ortm->rmx_mtu = rtm->rmx_mtu;
144 ortm->rmx_hopcount = rtm->rmx_hopcount;
145 ortm->rmx_expire = rtm->rmx_expire;
146 ortm->rmx_recvpipe = rtm->rmx_recvpipe;
147 ortm->rmx_sendpipe = rtm->rmx_sendpipe;
148 ortm->rmx_ssthresh = rtm->rmx_ssthresh;
149 ortm->rmx_rtt = rtm->rmx_rtt;
150 ortm->rmx_rttvar = rtm->rmx_rttvar;
151 ortm->rmx_pksent = rtm->rmx_pksent;
152 }
153
154 /*ARGSUSED*/
155 int
156 route_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
157 struct mbuf *control, struct lwp *l)
158 {
159 int error = 0;
160 struct rawcb *rp = sotorawcb(so);
161 int s;
162
163 if (req == PRU_ATTACH) {
164 sosetlock(so);
165 rp = malloc(sizeof(*rp), M_PCB, M_WAITOK|M_ZERO);
166 so->so_pcb = rp;
167 }
168 if (req == PRU_DETACH && rp)
169 rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
170 s = splsoftnet();
171
172 /*
173 * Don't call raw_usrreq() in the attach case, because
174 * we want to allow non-privileged processes to listen on
175 * and send "safe" commands to the routing socket.
176 */
177 if (req == PRU_ATTACH) {
178 if (l == NULL)
179 error = EACCES;
180 else
181 error = raw_attach(so, (int)(long)nam);
182 } else
183 error = raw_usrreq(so, req, m, nam, control, l);
184
185 rp = sotorawcb(so);
186 if (req == PRU_ATTACH && rp) {
187 if (error) {
188 free(rp, M_PCB);
189 splx(s);
190 return error;
191 }
192 rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
193 rp->rcb_laddr = &route_src;
194 rp->rcb_faddr = &route_dst;
195 soisconnected(so);
196 so->so_options |= SO_USELOOPBACK;
197 }
198 splx(s);
199 return error;
200 }
201
202 static const struct sockaddr *
203 intern_netmask(const struct sockaddr *mask)
204 {
205 struct radix_node *rn;
206 extern struct radix_node_head *mask_rnhead;
207
208 if (mask != NULL &&
209 (rn = rn_search(mask, mask_rnhead->rnh_treetop)))
210 mask = (const struct sockaddr *)rn->rn_key;
211
212 return mask;
213 }
214
215 /*ARGSUSED*/
216 int
217 route_output(struct mbuf *m, ...)
218 {
219 struct sockproto proto = { .sp_family = PF_ROUTE, };
220 struct rt_msghdr *rtm = NULL;
221 struct rt_msghdr *old_rtm = NULL;
222 struct rtentry *rt = NULL;
223 struct rtentry *saved_nrt = NULL;
224 struct rt_addrinfo info;
225 int len, error = 0;
226 struct ifnet *ifp = NULL;
227 struct ifaddr *ifa = NULL;
228 struct socket *so;
229 va_list ap;
230 sa_family_t family;
231
232 va_start(ap, m);
233 so = va_arg(ap, struct socket *);
234 va_end(ap);
235
236 #define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
237 if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
238 (m = m_pullup(m, sizeof(int32_t))) == NULL))
239 return ENOBUFS;
240 if ((m->m_flags & M_PKTHDR) == 0)
241 panic("route_output");
242 len = m->m_pkthdr.len;
243 if (len < sizeof(*rtm) ||
244 len != mtod(m, struct rt_msghdr *)->rtm_msglen) {
245 info.rti_info[RTAX_DST] = NULL;
246 senderr(EINVAL);
247 }
248 R_Malloc(rtm, struct rt_msghdr *, len);
249 if (rtm == NULL) {
250 info.rti_info[RTAX_DST] = NULL;
251 senderr(ENOBUFS);
252 }
253 m_copydata(m, 0, len, rtm);
254 if (rtm->rtm_version != RTM_VERSION) {
255 info.rti_info[RTAX_DST] = NULL;
256 senderr(EPROTONOSUPPORT);
257 }
258 rtm->rtm_pid = curproc->p_pid;
259 memset(&info, 0, sizeof(info));
260 info.rti_addrs = rtm->rtm_addrs;
261 if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
262 &info))
263 senderr(EINVAL);
264 info.rti_flags = rtm->rtm_flags;
265 #ifdef RTSOCK_DEBUG
266 if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
267 printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
268 inet_ntoa(((const struct sockaddr_in *)
269 info.rti_info[RTAX_DST])->sin_addr));
270 }
271 #endif /* RTSOCK_DEBUG */
272 if (info.rti_info[RTAX_DST] == NULL ||
273 (info.rti_info[RTAX_DST]->sa_family >= AF_MAX))
274 senderr(EINVAL);
275 if (info.rti_info[RTAX_GATEWAY] != NULL &&
276 (info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX))
277 senderr(EINVAL);
278
279 /*
280 * Verify that the caller has the appropriate privilege; RTM_GET
281 * is the only operation the non-superuser is allowed.
282 */
283 if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
284 0, rtm, NULL, NULL) != 0)
285 senderr(EACCES);
286
287 switch (rtm->rtm_type) {
288
289 case RTM_ADD:
290 if (info.rti_info[RTAX_GATEWAY] == NULL)
291 senderr(EINVAL);
292 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
293 if (error == 0 && saved_nrt) {
294 rt_setmetrics(rtm->rtm_inits,
295 &rtm->rtm_rmx, &saved_nrt->rt_rmx);
296 saved_nrt->rt_refcnt--;
297 }
298 break;
299
300 case RTM_DELETE:
301 error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
302 if (error == 0) {
303 (rt = saved_nrt)->rt_refcnt++;
304 goto report;
305 }
306 break;
307
308 case RTM_GET:
309 case RTM_CHANGE:
310 case RTM_LOCK:
311 /* XXX This will mask info.rti_info[RTAX_DST] with
312 * info.rti_info[RTAX_NETMASK] before
313 * searching. It did not used to do that. --dyoung
314 */
315 error = rtrequest1(RTM_GET, &info, &rt);
316 if (error != 0)
317 senderr(error);
318 if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
319 struct radix_node *rn;
320
321 if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
322 info.rti_info[RTAX_DST]->sa_len) != 0)
323 senderr(ESRCH);
324 info.rti_info[RTAX_NETMASK] = intern_netmask(
325 info.rti_info[RTAX_NETMASK]);
326 for (rn = rt->rt_nodes; rn; rn = rn->rn_dupedkey)
327 if (info.rti_info[RTAX_NETMASK] ==
328 (const struct sockaddr *)rn->rn_mask)
329 break;
330 if (rn == NULL)
331 senderr(ETOOMANYREFS);
332 rt = (struct rtentry *)rn;
333 }
334
335 switch (rtm->rtm_type) {
336 case RTM_GET:
337 report:
338 info.rti_info[RTAX_DST] = rt_getkey(rt);
339 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
340 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
341 if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
342 ;
343 else if ((ifp = rt->rt_ifp) != NULL) {
344 const struct ifaddr *rtifa;
345 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
346 /* rtifa used to be simply rt->rt_ifa.
347 * If rt->rt_ifa != NULL, then
348 * rt_get_ifa() != NULL. So this
349 * ought to still be safe. --dyoung
350 */
351 rtifa = rt_get_ifa(rt);
352 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
353 #ifdef RTSOCK_DEBUG
354 if (info.rti_info[RTAX_IFA]->sa_family ==
355 AF_INET) {
356 printf("%s: copying out RTAX_IFA %s ",
357 __func__, inet_ntoa(
358 ((const struct sockaddr_in *)
359 info.rti_info[RTAX_IFA])->sin_addr)
360 );
361 printf("for info.rti_info[RTAX_DST] %s "
362 "ifa_getifa %p ifa_seqno %p\n",
363 inet_ntoa(
364 ((const struct sockaddr_in *)
365 info.rti_info[RTAX_DST])->sin_addr),
366 (void *)rtifa->ifa_getifa,
367 rtifa->ifa_seqno);
368 }
369 #endif /* RTSOCK_DEBUG */
370 if (ifp->if_flags & IFF_POINTOPOINT) {
371 info.rti_info[RTAX_BRD] =
372 rtifa->ifa_dstaddr;
373 } else
374 info.rti_info[RTAX_BRD] = NULL;
375 rtm->rtm_index = ifp->if_index;
376 } else {
377 info.rti_info[RTAX_IFP] = NULL;
378 info.rti_info[RTAX_IFA] = NULL;
379 }
380 (void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
381 if (len > rtm->rtm_msglen) {
382 old_rtm = rtm;
383 R_Malloc(rtm, struct rt_msghdr *, len);
384 if (rtm == NULL)
385 senderr(ENOBUFS);
386 (void)memcpy(rtm, old_rtm, old_rtm->rtm_msglen);
387 }
388 (void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0);
389 rtm->rtm_flags = rt->rt_flags;
390 cvtmetrics(&rtm->rtm_rmx, &rt->rt_rmx);
391 rtm->rtm_addrs = info.rti_addrs;
392 break;
393
394 case RTM_CHANGE:
395 /*
396 * new gateway could require new ifaddr, ifp;
397 * flags may also be different; ifp may be specified
398 * by ll sockaddr when protocol address is ambiguous
399 */
400 if ((error = rt_getifa(&info)) != 0)
401 senderr(error);
402 if (info.rti_info[RTAX_GATEWAY] &&
403 rt_setgate(rt, info.rti_info[RTAX_GATEWAY]))
404 senderr(EDQUOT);
405 /* new gateway could require new ifaddr, ifp;
406 flags may also be different; ifp may be specified
407 by ll sockaddr when protocol address is ambiguous */
408 if (info.rti_info[RTAX_IFP] &&
409 (ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) &&
410 (ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] ||
411 info.rti_info[RTAX_GATEWAY])) {
412 ifa = ifaof_ifpforaddr(info.rti_info[RTAX_IFA] ?
413 info.rti_info[RTAX_IFA] :
414 info.rti_info[RTAX_GATEWAY], ifp);
415 } else if ((info.rti_info[RTAX_IFA] &&
416 (ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) ||
417 (info.rti_info[RTAX_GATEWAY] &&
418 (ifa = ifa_ifwithroute(rt->rt_flags,
419 rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) {
420 ifp = ifa->ifa_ifp;
421 }
422 if (ifa) {
423 struct ifaddr *oifa = rt->rt_ifa;
424 if (oifa != ifa) {
425 if (oifa && oifa->ifa_rtrequest) {
426 oifa->ifa_rtrequest(RTM_DELETE,
427 rt, &info);
428 }
429 rt_replace_ifa(rt, ifa);
430 rt->rt_ifp = ifp;
431 }
432 }
433 rt_setmetrics(rtm->rtm_inits, &rtm->rtm_rmx,
434 &rt->rt_rmx);
435 if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
436 rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
437 /*FALLTHROUGH*/
438 case RTM_LOCK:
439 rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
440 rt->rt_rmx.rmx_locks |=
441 (rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
442 break;
443 }
444 break;
445
446 default:
447 senderr(EOPNOTSUPP);
448 }
449
450 flush:
451 if (rtm) {
452 if (error)
453 rtm->rtm_errno = error;
454 else
455 rtm->rtm_flags |= RTF_DONE;
456 }
457 family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
458 0;
459 /* We cannot free old_rtm until we have stopped using the
460 * pointers in info, some of which may point to sockaddrs
461 * in old_rtm.
462 */
463 if (old_rtm != NULL)
464 Free(old_rtm);
465 if (rt)
466 rtfree(rt);
467 {
468 struct rawcb *rp = NULL;
469 /*
470 * Check to see if we don't want our own messages.
471 */
472 if ((so->so_options & SO_USELOOPBACK) == 0) {
473 if (route_cb.any_count <= 1) {
474 if (rtm)
475 Free(rtm);
476 m_freem(m);
477 return error;
478 }
479 /* There is another listener, so construct message */
480 rp = sotorawcb(so);
481 }
482 if (rtm) {
483 m_copyback(m, 0, rtm->rtm_msglen, rtm);
484 if (m->m_pkthdr.len < rtm->rtm_msglen) {
485 m_freem(m);
486 m = NULL;
487 } else if (m->m_pkthdr.len > rtm->rtm_msglen)
488 m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
489 Free(rtm);
490 }
491 if (rp)
492 rp->rcb_proto.sp_family = 0; /* Avoid us */
493 if (family)
494 proto.sp_protocol = family;
495 if (m)
496 raw_input(m, &proto, &route_src, &route_dst);
497 if (rp)
498 rp->rcb_proto.sp_family = PF_ROUTE;
499 }
500 return error;
501 }
502
503 void
504 rt_setmetrics(u_long which, const struct rt_metrics *in, struct nrt_metrics *out)
505 {
506 #define metric(f, e) if (which & (f)) out->e = in->e;
507 metric(RTV_RPIPE, rmx_recvpipe);
508 metric(RTV_SPIPE, rmx_sendpipe);
509 metric(RTV_SSTHRESH, rmx_ssthresh);
510 metric(RTV_RTT, rmx_rtt);
511 metric(RTV_RTTVAR, rmx_rttvar);
512 metric(RTV_HOPCOUNT, rmx_hopcount);
513 metric(RTV_MTU, rmx_mtu);
514 /* XXX time_t: Will not work after February 2145 (u_long time) */
515 metric(RTV_EXPIRE, rmx_expire);
516 #undef metric
517 }
518
519 static int
520 rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
521 struct rt_addrinfo *rtinfo)
522 {
523 const struct sockaddr *sa = NULL; /* Quell compiler warning */
524 int i;
525
526 for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
527 if ((rtinfo->rti_addrs & (1 << i)) == 0)
528 continue;
529 rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
530 RT_ADVANCE(cp, sa);
531 }
532
533 /*
534 * Check for extra addresses specified, except RTM_GET asking
535 * for interface info.
536 */
537 if (rtmtype == RTM_GET) {
538 if (((rtinfo->rti_addrs &
539 (~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
540 return 1;
541 } else if ((rtinfo->rti_addrs & (~0 << i)) != 0)
542 return 1;
543 /* Check for bad data length. */
544 if (cp != cplim) {
545 if (i == RTAX_NETMASK + 1 && sa != NULL &&
546 cp - RT_ROUNDUP(sa->sa_len) + sa->sa_len == cplim)
547 /*
548 * The last sockaddr was info.rti_info[RTAX_NETMASK].
549 * We accept this for now for the sake of old
550 * binaries or third party softwares.
551 */
552 ;
553 else
554 return 1;
555 }
556 return 0;
557 }
558
559 struct mbuf *
560 rt_msg1(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
561 {
562 struct rt_msghdr *rtm;
563 struct mbuf *m;
564 int i;
565 const struct sockaddr *sa;
566 int len, dlen;
567
568 m = m_gethdr(M_DONTWAIT, MT_DATA);
569 if (m == NULL)
570 return m;
571 MCLAIM(m, &routedomain.dom_mowner);
572 switch (type) {
573
574 case RTM_DELADDR:
575 case RTM_NEWADDR:
576 len = sizeof(struct ifa_msghdr);
577 break;
578
579 #ifdef COMPAT_14
580 case RTM_OOIFINFO:
581 len = sizeof(struct if_msghdr14);
582 break;
583 #endif
584 #ifdef COMPAT_50
585 case RTM_OIFINFO:
586 len = sizeof(struct if_msghdr50);
587 break;
588 #endif
589
590 case RTM_IFINFO:
591 len = sizeof(struct if_msghdr);
592 break;
593
594 case RTM_IFANNOUNCE:
595 case RTM_IEEE80211:
596 len = sizeof(struct if_announcemsghdr);
597 break;
598
599 default:
600 len = sizeof(struct rt_msghdr);
601 }
602 if (len > MHLEN + MLEN)
603 panic("rt_msg1: message too long");
604 else if (len > MHLEN) {
605 m->m_next = m_get(M_DONTWAIT, MT_DATA);
606 if (m->m_next == NULL) {
607 m_freem(m);
608 return NULL;
609 }
610 MCLAIM(m->m_next, m->m_owner);
611 m->m_pkthdr.len = len;
612 m->m_len = MHLEN;
613 m->m_next->m_len = len - MHLEN;
614 } else {
615 m->m_pkthdr.len = m->m_len = len;
616 }
617 m->m_pkthdr.rcvif = NULL;
618 m_copyback(m, 0, datalen, data);
619 if (len > datalen)
620 (void)memset(mtod(m, char *) + datalen, 0, len - datalen);
621 rtm = mtod(m, struct rt_msghdr *);
622 for (i = 0; i < RTAX_MAX; i++) {
623 if ((sa = rtinfo->rti_info[i]) == NULL)
624 continue;
625 rtinfo->rti_addrs |= (1 << i);
626 dlen = RT_ROUNDUP(sa->sa_len);
627 m_copyback(m, len, dlen, sa);
628 len += dlen;
629 }
630 if (m->m_pkthdr.len != len) {
631 m_freem(m);
632 return NULL;
633 }
634 rtm->rtm_msglen = len;
635 rtm->rtm_version = RTM_VERSION;
636 rtm->rtm_type = type;
637 return m;
638 }
639
640 /*
641 * rt_msg2
642 *
643 * fills 'cp' or 'w'.w_tmem with the routing socket message and
644 * returns the length of the message in 'lenp'.
645 *
646 * if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
647 * the message
648 * otherwise walkarg's w_needed is updated and if the user buffer is
649 * specified and w_needed indicates space exists the information is copied
650 * into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
651 * if the allocation fails ENOBUFS is returned.
652 */
653 static int
654 rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
655 int *lenp)
656 {
657 int i;
658 int len, dlen, second_time = 0;
659 char *cp0, *cp = cpv;
660
661 rtinfo->rti_addrs = 0;
662 again:
663 switch (type) {
664
665 case RTM_DELADDR:
666 case RTM_NEWADDR:
667 len = sizeof(struct ifa_msghdr);
668 break;
669 #ifdef COMPAT_14
670 case RTM_OOIFINFO:
671 len = sizeof(struct if_msghdr14);
672 break;
673 #endif
674 #ifdef COMPAT_50
675 case RTM_OIFINFO:
676 len = sizeof(struct if_msghdr50);
677 break;
678 #endif
679
680 case RTM_IFINFO:
681 len = sizeof(struct if_msghdr);
682 break;
683
684 default:
685 len = sizeof(struct rt_msghdr);
686 }
687 if ((cp0 = cp) != NULL)
688 cp += len;
689 for (i = 0; i < RTAX_MAX; i++) {
690 const struct sockaddr *sa;
691
692 if ((sa = rtinfo->rti_info[i]) == NULL)
693 continue;
694 rtinfo->rti_addrs |= (1 << i);
695 dlen = RT_ROUNDUP(sa->sa_len);
696 if (cp) {
697 (void)memcpy(cp, sa, (size_t)dlen);
698 cp += dlen;
699 }
700 len += dlen;
701 }
702 if (cp == NULL && w != NULL && !second_time) {
703 struct rt_walkarg *rw = w;
704
705 rw->w_needed += len;
706 if (rw->w_needed <= 0 && rw->w_where) {
707 if (rw->w_tmemsize < len) {
708 if (rw->w_tmem)
709 free(rw->w_tmem, M_RTABLE);
710 rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT);
711 if (rw->w_tmem)
712 rw->w_tmemsize = len;
713 else
714 rw->w_tmemsize = 0;
715 }
716 if (rw->w_tmem) {
717 cp = rw->w_tmem;
718 second_time = 1;
719 goto again;
720 } else {
721 rw->w_tmemneeded = len;
722 return ENOBUFS;
723 }
724 }
725 }
726 if (cp) {
727 struct rt_msghdr *rtm = (struct rt_msghdr *)cp0;
728
729 rtm->rtm_version = RTM_VERSION;
730 rtm->rtm_type = type;
731 rtm->rtm_msglen = len;
732 }
733 if (lenp)
734 *lenp = len;
735 return 0;
736 }
737
738 /*
739 * This routine is called to generate a message from the routing
740 * socket indicating that a redirect has occurred, a routing lookup
741 * has failed, or that a protocol has detected timeouts to a particular
742 * destination.
743 */
744 void
745 rt_missmsg(int type, struct rt_addrinfo *rtinfo, int flags, int error)
746 {
747 struct rt_msghdr rtm;
748 struct mbuf *m;
749 const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
750
751 if (route_cb.any_count == 0)
752 return;
753 memset(&rtm, 0, sizeof(rtm));
754 rtm.rtm_flags = RTF_DONE | flags;
755 rtm.rtm_errno = error;
756 m = rt_msg1(type, rtinfo, &rtm, sizeof(rtm));
757 if (m == NULL)
758 return;
759 mtod(m, struct rt_msghdr *)->rtm_addrs = rtinfo->rti_addrs;
760 route_enqueue(m, sa ? sa->sa_family : 0);
761 }
762
763 /*
764 * This routine is called to generate a message from the routing
765 * socket indicating that the status of a network interface has changed.
766 */
767 void
768 rt_ifmsg(struct ifnet *ifp)
769 {
770 struct if_msghdr ifm;
771 struct mbuf *m;
772 struct rt_addrinfo info;
773
774 if (route_cb.any_count == 0)
775 return;
776 (void)memset(&info, 0, sizeof(info));
777 (void)memset(&ifm, 0, sizeof(ifm));
778 ifm.ifm_index = ifp->if_index;
779 ifm.ifm_flags = ifp->if_flags;
780 ifm.ifm_data = ifp->if_data;
781 ifm.ifm_addrs = 0;
782 m = rt_msg1(RTM_IFINFO, &info, &ifm, sizeof(ifm));
783 if (m == NULL)
784 return;
785 route_enqueue(m, 0);
786 #ifdef COMPAT_14
787 compat_14_rt_ifmsg(ifp, &ifm);
788 #endif
789 #ifdef COMPAT_50
790 compat_50_rt_ifmsg(ifp, &ifm);
791 #endif
792 }
793
794
795 /*
796 * This is called to generate messages from the routing socket
797 * indicating a network interface has had addresses associated with it.
798 * if we ever reverse the logic and replace messages TO the routing
799 * socket indicate a request to configure interfaces, then it will
800 * be unnecessary as the routing socket will automatically generate
801 * copies of it.
802 */
803 void
804 rt_newaddrmsg(int cmd, struct ifaddr *ifa, int error, struct rtentry *rt)
805 {
806 #define cmdpass(__cmd, __pass) (((__cmd) << 2) | (__pass))
807 struct rt_addrinfo info;
808 const struct sockaddr *sa;
809 int pass;
810 struct mbuf *m;
811 struct ifnet *ifp = ifa->ifa_ifp;
812 struct rt_msghdr rtm;
813 struct ifa_msghdr ifam;
814 int ncmd;
815
816 if (route_cb.any_count == 0)
817 return;
818 for (pass = 1; pass < 3; pass++) {
819 memset(&info, 0, sizeof(info));
820 switch (cmdpass(cmd, pass)) {
821 case cmdpass(RTM_ADD, 1):
822 case cmdpass(RTM_CHANGE, 1):
823 case cmdpass(RTM_DELETE, 2):
824 if (cmd == RTM_ADD)
825 ncmd = RTM_NEWADDR;
826 else
827 ncmd = RTM_DELADDR;
828
829 info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
830 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
831 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
832 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
833 memset(&ifam, 0, sizeof(ifam));
834 ifam.ifam_index = ifp->if_index;
835 ifam.ifam_metric = ifa->ifa_metric;
836 ifam.ifam_flags = ifa->ifa_flags;
837 m = rt_msg1(ncmd, &info, &ifam, sizeof(ifam));
838 if (m == NULL)
839 continue;
840 mtod(m, struct ifa_msghdr *)->ifam_addrs =
841 info.rti_addrs;
842 break;
843 case cmdpass(RTM_ADD, 2):
844 case cmdpass(RTM_CHANGE, 2):
845 case cmdpass(RTM_DELETE, 1):
846 if (rt == NULL)
847 continue;
848 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
849 info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
850 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
851 memset(&rtm, 0, sizeof(rtm));
852 rtm.rtm_index = ifp->if_index;
853 rtm.rtm_flags |= rt->rt_flags;
854 rtm.rtm_errno = error;
855 m = rt_msg1(cmd, &info, &rtm, sizeof(rtm));
856 if (m == NULL)
857 continue;
858 mtod(m, struct rt_msghdr *)->rtm_addrs = info.rti_addrs;
859 break;
860 default:
861 continue;
862 }
863 #ifdef DIAGNOSTIC
864 if (m == NULL)
865 panic("%s: called with wrong command", __func__);
866 #endif
867 route_enqueue(m, sa ? sa->sa_family : 0);
868 }
869 #undef cmdpass
870 }
871
872 static struct mbuf *
873 rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
874 struct rt_addrinfo *info)
875 {
876 struct if_announcemsghdr ifan;
877
878 memset(info, 0, sizeof(*info));
879 memset(&ifan, 0, sizeof(ifan));
880 ifan.ifan_index = ifp->if_index;
881 strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
882 ifan.ifan_what = what;
883 return rt_msg1(type, info, &ifan, sizeof(ifan));
884 }
885
886 /*
887 * This is called to generate routing socket messages indicating
888 * network interface arrival and departure.
889 */
890 void
891 rt_ifannouncemsg(struct ifnet *ifp, int what)
892 {
893 struct mbuf *m;
894 struct rt_addrinfo info;
895
896 if (route_cb.any_count == 0)
897 return;
898 m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
899 if (m == NULL)
900 return;
901 route_enqueue(m, 0);
902 }
903
904 /*
905 * This is called to generate routing socket messages indicating
906 * IEEE80211 wireless events.
907 * XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
908 */
909 void
910 rt_ieee80211msg(struct ifnet *ifp, int what, void *data, size_t data_len)
911 {
912 struct mbuf *m;
913 struct rt_addrinfo info;
914
915 if (route_cb.any_count == 0)
916 return;
917 m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
918 if (m == NULL)
919 return;
920 /*
921 * Append the ieee80211 data. Try to stick it in the
922 * mbuf containing the ifannounce msg; otherwise allocate
923 * a new mbuf and append.
924 *
925 * NB: we assume m is a single mbuf.
926 */
927 if (data_len > M_TRAILINGSPACE(m)) {
928 struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
929 if (n == NULL) {
930 m_freem(m);
931 return;
932 }
933 (void)memcpy(mtod(n, void *), data, data_len);
934 n->m_len = data_len;
935 m->m_next = n;
936 } else if (data_len > 0) {
937 (void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
938 m->m_len += data_len;
939 }
940 if (m->m_flags & M_PKTHDR)
941 m->m_pkthdr.len += data_len;
942 mtod(m, struct if_announcemsghdr *)->ifan_msglen += data_len;
943 route_enqueue(m, 0);
944 }
945
946 /*
947 * This is used in dumping the kernel table via sysctl().
948 */
949 static int
950 sysctl_dumpentry(struct rtentry *rt, void *v)
951 {
952 struct rt_walkarg *w = v;
953 int error = 0, size;
954 struct rt_addrinfo info;
955
956 if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
957 return 0;
958 memset(&info, 0, sizeof(info));
959 info.rti_info[RTAX_DST] = rt_getkey(rt);
960 info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
961 info.rti_info[RTAX_NETMASK] = rt_mask(rt);
962 if (rt->rt_ifp) {
963 const struct ifaddr *rtifa;
964 info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
965 /* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
966 * then rt_get_ifa() != NULL. So this ought to still be safe.
967 * --dyoung
968 */
969 rtifa = rt_get_ifa(rt);
970 info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
971 if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
972 info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
973 }
974 if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
975 return error;
976 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
977 struct rt_msghdr *rtm = (struct rt_msghdr *)w->w_tmem;
978
979 rtm->rtm_flags = rt->rt_flags;
980 rtm->rtm_use = rt->rt_use;
981 cvtmetrics(&rtm->rtm_rmx, &rt->rt_rmx);
982 KASSERT(rt->rt_ifp != NULL);
983 rtm->rtm_index = rt->rt_ifp->if_index;
984 rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
985 rtm->rtm_addrs = info.rti_addrs;
986 if ((error = copyout(rtm, w->w_where, size)) != 0)
987 w->w_where = NULL;
988 else
989 w->w_where = (char *)w->w_where + size;
990 }
991 return error;
992 }
993
994 static int
995 sysctl_iflist(int af, struct rt_walkarg *w, int type)
996 {
997 struct ifnet *ifp;
998 struct ifaddr *ifa;
999 struct rt_addrinfo info;
1000 int len, error = 0;
1001
1002 memset(&info, 0, sizeof(info));
1003 IFNET_FOREACH(ifp) {
1004 if (w->w_arg && w->w_arg != ifp->if_index)
1005 continue;
1006 if (IFADDR_EMPTY(ifp))
1007 continue;
1008 info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
1009 switch (type) {
1010 case NET_RT_IFLIST:
1011 error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
1012 break;
1013 #ifdef COMPAT_14
1014 case NET_RT_OOIFLIST:
1015 error = rt_msg2(RTM_OOIFINFO, &info, NULL, w, &len);
1016 break;
1017 #endif
1018 #ifdef COMPAT_50
1019 case NET_RT_OIFLIST:
1020 error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
1021 break;
1022 #endif
1023 default:
1024 panic("sysctl_iflist(1)");
1025 }
1026 if (error)
1027 return error;
1028 info.rti_info[RTAX_IFP] = NULL;
1029 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1030 switch (type) {
1031 case NET_RT_IFLIST: {
1032 struct if_msghdr *ifm;
1033
1034 ifm = (struct if_msghdr *)w->w_tmem;
1035 ifm->ifm_index = ifp->if_index;
1036 ifm->ifm_flags = ifp->if_flags;
1037 ifm->ifm_data = ifp->if_data;
1038 ifm->ifm_addrs = info.rti_addrs;
1039 error = copyout(ifm, w->w_where, len);
1040 if (error)
1041 return error;
1042 w->w_where = (char *)w->w_where + len;
1043 break;
1044 }
1045
1046 #ifdef COMPAT_14
1047 case NET_RT_OOIFLIST:
1048 error = compat_14_iflist(ifp, w, &info, len);
1049 if (error)
1050 return error;
1051 break;
1052 #endif
1053 #ifdef COMPAT_50
1054 case NET_RT_OIFLIST:
1055 error = compat_50_iflist(ifp, w, &info, len);
1056 if (error)
1057 return error;
1058 break;
1059 #endif
1060 default:
1061 panic("sysctl_iflist(2)");
1062 }
1063 }
1064 IFADDR_FOREACH(ifa, ifp) {
1065 if (af && af != ifa->ifa_addr->sa_family)
1066 continue;
1067 info.rti_info[RTAX_IFA] = ifa->ifa_addr;
1068 info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
1069 info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
1070 if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
1071 return error;
1072 if (w->w_where && w->w_tmem && w->w_needed <= 0) {
1073 struct ifa_msghdr *ifam;
1074
1075 ifam = (struct ifa_msghdr *)w->w_tmem;
1076 ifam->ifam_index = ifa->ifa_ifp->if_index;
1077 ifam->ifam_flags = ifa->ifa_flags;
1078 ifam->ifam_metric = ifa->ifa_metric;
1079 ifam->ifam_addrs = info.rti_addrs;
1080 error = copyout(w->w_tmem, w->w_where, len);
1081 if (error)
1082 return error;
1083 w->w_where = (char *)w->w_where + len;
1084 }
1085 }
1086 info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
1087 info.rti_info[RTAX_BRD] = NULL;
1088 }
1089 return 0;
1090 }
1091
1092 static int
1093 sysctl_rtable(SYSCTLFN_ARGS)
1094 {
1095 void *where = oldp;
1096 size_t *given = oldlenp;
1097 const void *new = newp;
1098 int i, s, error = EINVAL;
1099 u_char af;
1100 struct rt_walkarg w;
1101
1102 if (namelen == 1 && name[0] == CTL_QUERY)
1103 return sysctl_query(SYSCTLFN_CALL(rnode));
1104
1105 if (new)
1106 return EPERM;
1107 if (namelen != 3)
1108 return EINVAL;
1109 af = name[0];
1110 w.w_tmemneeded = 0;
1111 w.w_tmemsize = 0;
1112 w.w_tmem = NULL;
1113 again:
1114 /* we may return here if a later [re]alloc of the t_mem buffer fails */
1115 if (w.w_tmemneeded) {
1116 w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
1117 w.w_tmemsize = w.w_tmemneeded;
1118 w.w_tmemneeded = 0;
1119 }
1120 w.w_op = name[1];
1121 w.w_arg = name[2];
1122 w.w_given = *given;
1123 w.w_needed = 0 - w.w_given;
1124 w.w_where = where;
1125
1126 s = splsoftnet();
1127 switch (w.w_op) {
1128
1129 case NET_RT_DUMP:
1130 case NET_RT_FLAGS:
1131 for (i = 1; i <= AF_MAX; i++)
1132 if ((af == 0 || af == i) &&
1133 (error = rt_walktree(i, sysctl_dumpentry, &w)))
1134 break;
1135 break;
1136
1137 #ifdef COMPAT_14
1138 case NET_RT_OOIFLIST:
1139 error = sysctl_iflist(af, &w, w.w_op);
1140 break;
1141 #endif
1142 #ifdef COMPAT_50
1143 case NET_RT_OIFLIST:
1144 error = sysctl_iflist(af, &w, w.w_op);
1145 break;
1146 #endif
1147
1148 case NET_RT_IFLIST:
1149 error = sysctl_iflist(af, &w, w.w_op);
1150 }
1151 splx(s);
1152
1153 /* check to see if we couldn't allocate memory with NOWAIT */
1154 if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
1155 goto again;
1156
1157 if (w.w_tmem)
1158 free(w.w_tmem, M_RTABLE);
1159 w.w_needed += w.w_given;
1160 if (where) {
1161 *given = (char *)w.w_where - (char *)where;
1162 if (*given < w.w_needed)
1163 return ENOMEM;
1164 } else {
1165 *given = (11 * w.w_needed) / 10;
1166 }
1167 return error;
1168 }
1169
1170 /*
1171 * Routing message software interrupt routine
1172 */
1173 static void
1174 route_intr(void *cookie)
1175 {
1176 struct sockproto proto = { .sp_family = PF_ROUTE, };
1177 struct mbuf *m;
1178 int s;
1179
1180 mutex_enter(softnet_lock);
1181 KERNEL_LOCK(1, NULL);
1182 while (!IF_IS_EMPTY(&route_intrq)) {
1183 s = splnet();
1184 IF_DEQUEUE(&route_intrq, m);
1185 splx(s);
1186 if (m == NULL)
1187 break;
1188 proto.sp_protocol = M_GETCTX(m, uintptr_t);
1189 raw_input(m, &proto, &route_src, &route_dst);
1190 }
1191 KERNEL_UNLOCK_ONE(NULL);
1192 mutex_exit(softnet_lock);
1193 }
1194
1195 /*
1196 * Enqueue a message to the software interrupt routine.
1197 */
1198 void
1199 route_enqueue(struct mbuf *m, int family)
1200 {
1201 int s, wasempty;
1202
1203 s = splnet();
1204 if (IF_QFULL(&route_intrq)) {
1205 IF_DROP(&route_intrq);
1206 m_freem(m);
1207 } else {
1208 wasempty = IF_IS_EMPTY(&route_intrq);
1209 M_SETCTX(m, (uintptr_t)family);
1210 IF_ENQUEUE(&route_intrq, m);
1211 if (wasempty)
1212 softint_schedule(route_sih);
1213 }
1214 splx(s);
1215 }
1216
1217 void
1218 rt_init(void)
1219 {
1220
1221 route_intrq.ifq_maxlen = route_maxqlen;
1222 route_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
1223 route_intr, NULL);
1224 }
1225
1226 /*
1227 * Definitions of protocols supported in the ROUTE domain.
1228 */
1229 PR_WRAP_USRREQ(route_usrreq)
1230 #define route_usrreq route_usrreq_wrapper
1231
1232 const struct protosw routesw[] = {
1233 {
1234 .pr_type = SOCK_RAW,
1235 .pr_domain = &routedomain,
1236 .pr_flags = PR_ATOMIC|PR_ADDR,
1237 .pr_input = raw_input,
1238 .pr_output = route_output,
1239 .pr_ctlinput = raw_ctlinput,
1240 .pr_usrreq = route_usrreq,
1241 .pr_init = raw_init,
1242 },
1243 };
1244
1245 struct domain routedomain = {
1246 .dom_family = PF_ROUTE,
1247 .dom_name = "route",
1248 .dom_init = route_init,
1249 .dom_protosw = routesw,
1250 .dom_protoswNPROTOSW = &routesw[__arraycount(routesw)],
1251 };
1252
1253 SYSCTL_SETUP(sysctl_net_route_setup, "sysctl net.route subtree setup")
1254 {
1255 const struct sysctlnode *rnode = NULL;
1256
1257 sysctl_createv(clog, 0, NULL, NULL,
1258 CTLFLAG_PERMANENT,
1259 CTLTYPE_NODE, "net", NULL,
1260 NULL, 0, NULL, 0,
1261 CTL_NET, CTL_EOL);
1262
1263 sysctl_createv(clog, 0, NULL, &rnode,
1264 CTLFLAG_PERMANENT,
1265 CTLTYPE_NODE, "route",
1266 SYSCTL_DESCR("PF_ROUTE information"),
1267 NULL, 0, NULL, 0,
1268 CTL_NET, PF_ROUTE, CTL_EOL);
1269 sysctl_createv(clog, 0, NULL, NULL,
1270 CTLFLAG_PERMANENT,
1271 CTLTYPE_NODE, "rtable",
1272 SYSCTL_DESCR("Routing table information"),
1273 sysctl_rtable, 0, NULL, 0,
1274 CTL_NET, PF_ROUTE, 0 /* any protocol */, CTL_EOL);
1275 sysctl_createv(clog, 0, &rnode, NULL,
1276 CTLFLAG_PERMANENT,
1277 CTLTYPE_STRUCT, "stats",
1278 SYSCTL_DESCR("Routing statistics"),
1279 NULL, 0, &rtstat, sizeof(rtstat),
1280 CTL_CREATE, CTL_EOL);
1281 }
1282